1. Let $\mathbf{Y}=\left(Y_{1}, Y_{2}, Y_{3}\right)^{\prime} \sim \mathcal{N}_{3}(\boldsymbol{\mu}, \mathbf{V})$, where

$$
\boldsymbol{\mu}=\left(\begin{array}{r}
6 \\
-2 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{V}=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 2 & 1 \\
-1 & 1 & 3
\end{array}\right)
$$

Define the statistics

$$
\begin{aligned}
& T_{1}=3 Y_{1}+Y_{2}-2 Y_{3} \\
& T_{2}=Y_{1}-5 Y_{2}+Y_{3} .
\end{aligned}
$$

(a) Find the distribution of $\mathbf{T}=\left(T_{1}, T_{2}\right)^{\prime}$.
(b) Differentiate the mgf of $\mathbf{T}$ to find $E(\mathbf{T})$ and $\operatorname{cov}(\mathbf{T})$. These should match your answers in part (a).
2. Consider the linear model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where $\mathbf{X}$ is $n \times p$ matrix with (full) rank $r=p$ and $\boldsymbol{\epsilon} \sim \mathcal{N}_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.
(a) Find the distribution of $\widehat{\boldsymbol{\beta}}$.
(b) Find the distribution of $\widehat{\theta}=\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}$, for a fixed conformable $\mathbf{a}$.
(c) Find the distribution of $\widehat{\mathbf{Y}}$ (the vector of fitted values).
(d) Find the distribution of $\widehat{\mathbf{e}}$ (the vector of residuals).
3. Suppose that $\phi(\cdot)$ is the standard normal density function.
(a) For $b<1 / 2$, compute

$$
I(a, b)=\int_{\mathcal{R}} e^{a z+b z^{2}} \phi(z) d z
$$

(b) $(\uparrow)$ Suppose further that $Y_{1}$ and $Y_{2}$ are independent random variables with moment generating functions $M_{Y_{1}}(t)=I(t, 0)$ and $M_{Y_{2}}(t)=I(0, t)$. Find the constant $k$ so that the statistic $U=k\left(Y_{1}^{2}+Y_{2}\right)$ follows an exponential distribution with mean 2 .
4. Let $U$ and $V$ have the joint density

$$
f_{U, V}(u, v)=\left\{\begin{array}{cc}
\pi^{-1} e^{-\frac{1}{2}\left(u^{2}+v^{2}\right)}, & u v \geq 0 \\
0, & u v<0
\end{array}\right.
$$

(a) Show that $U$ and $V$ are both marginally standard normal.
(b) Is the covariance matrix of $(U, V)^{\prime}$ singular or nonsingular?
(c) Does $(U, V)^{\prime}$ have a bivariate normal distribution? What is the main point?
5. Suppose that $U$ has a noncentral $\chi^{2}$ with $n$ degrees of freedom and noncentrality parameter $\lambda$. Determine conditions under which $E\left(U^{-j}\right)<\infty, j=1,2, \ldots$, and give expressions for these (inverse) moments when they are finite.
6. Suppose that $\mathbf{Y} \sim \mathcal{N}_{p}(\mathbf{0}, \mathbf{V}), r(\mathbf{V})=p$, and let $\mathbf{A}$ be a symmetric matrix defining the quadratic form $\mathbf{Y}^{\prime} \mathbf{A Y}$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ denote the eigenvalues of $\mathbf{V}^{1 / 2} \mathbf{A} \mathbf{V}^{1 / 2}$.
(a) Give the conditions, in terms of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$, under which $\mathbf{Y}^{\prime} \mathbf{A Y}$ has a $\chi^{2}$ distribution.
(b) When $\mathbf{Y}^{\prime} \mathbf{A Y}$ is not $\chi^{2}$, it is sometimes approximated by the distribution of a constant multiple of a $\chi^{2}$ random variable. The constant and the degrees of freedom are chosen to match the first two moments of $\mathbf{Y}^{\prime} \mathbf{A Y}$. Let $U$ denote a random variable having a (central) $\chi^{2}$ distribution with $r$ degrees of freedom. Determine the constants $c$ and $r$ in terms of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ so that $\mathbf{Y}^{\prime} \mathbf{A Y}$ and $c U$ have the same mean and variance.
7. Suppose that $Z_{1}, Z_{2}, \ldots, Z_{n}$ are iid standard normal random variables.
(a) Derive the joint distribution of $\bar{Z}, Z_{1}-\bar{Z}, Z_{2}-\bar{Z}, \ldots, Z_{n}-\bar{Z}$.
(b) $(\uparrow)$ Deduce that $\bar{Z}$ and $\sum_{i=1}^{n}\left(Z_{i}-\bar{Z}\right)^{2}$ are independent.
(c) Let $\mathbf{Y}$ have an $n$-variate normal distribution with mean $\boldsymbol{\mu}$ and covariance matrix $\mathbf{V}$, where $\operatorname{var}\left(Y_{i}\right)=\sigma^{2}$, for all $i$, and $\operatorname{cov}\left(Y_{i}, Y_{j}\right)=\sigma^{2}(1-\rho)$, for $i \neq j$, where $0<\rho<1$. Prove that $\bar{Y}$ and $\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$ are independent. This is a generalization of part (b).
8. Suppose that $\mathbf{X}$ is a random vector with moment generating function $M_{\mathbf{X}}(\mathbf{t})$. Let $\dot{M}_{\mathbf{X}}(\mathbf{t})=(\partial / \partial \mathbf{t}) M_{\mathbf{X}}(\mathbf{t})$ and $\ddot{M}_{\mathbf{X}}(\mathbf{t})=\left(\partial / \partial \mathbf{t}^{\prime}\right) \dot{M}_{\mathbf{X}}(\mathbf{t})$. Prove each of the following:

$$
\begin{aligned}
E(\mathbf{X}) & =\left.\dot{M}_{\mathbf{X}}(\mathbf{t})\right|_{\mathbf{t}=\mathbf{0}} \\
E\left(\mathbf{X X}^{\prime}\right) & =\left.\ddot{M}_{\mathbf{X}}(\mathbf{t})\right|_{\mathbf{t}=\mathbf{0}} \\
E\left(\mathbf{X}^{\prime} \mathbf{A X}\right) & =\operatorname{tr}\left\{\left.\mathbf{A} \ddot{M}_{\mathbf{X}}(\mathbf{t})\right|_{\mathbf{t}=\mathbf{0}}\right\} .
\end{aligned}
$$

9. Calibration. Consider the simple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i},
$$

for $i=1,2, \ldots, n$, where $\epsilon_{i} \sim \operatorname{iid} \mathcal{N}\left(0, \sigma^{2}\right)$. Suppose that a new value of $Y$ is observed, say, $Y_{0}$ (independent of $Y_{1}, Y_{2}, \ldots, Y_{n}$ ) and that we wish to estimate the corresponding value of $x_{0}$.
(a) Regard $x_{0}$ as a parameter. Based on the observed data $\left(x_{i}, Y_{i}\right), i=1,2, \ldots, n$, and the new value $Y_{0}$, find the maximum likelihood estimators of $\beta_{0}, \beta_{1}, x_{0}$, and $\sigma^{2}$.
(b) Derive a $100(1-\alpha)$ percent confidence interval for $x_{0}$. When does such an interval exist? Hint: Consider the random variable $V=\left(Y_{0}-\widehat{Y}_{0}\right)^{2}$, where $\widehat{Y}_{0}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}$. Find a function of $V$ that has an $F(1, n-2)$ distribution.
10. Suppose that $Y_{1}$ and $Y_{2}$ are iid $\mathcal{N}(0,1)$ random variables. Show that the moment generating function of $X=Y_{1} Y_{2}$ is

$$
M_{X}(t)=\left(1-t^{2}\right)^{-1 / 2}
$$

11. Suppose that $\mathbf{Y} \sim \mathcal{N}_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right)$ and let $\mathbf{P}_{\mathbf{X}}$ be the perpendicular projection operator onto $\mathcal{C}(\mathbf{X})$. Suppose that $r(\mathbf{X})=r$. Define

$$
\tilde{\sigma}^{2}=\mathbf{Y}^{\prime}\left(\mathbf{I}-\mathbf{P}_{\mathbf{X}}\right) \mathbf{Y} / k
$$

and consider using $\widetilde{\sigma}^{2}$ as an estimator for $\sigma^{2}$.
(a) Show that the mean-squared error of $\widetilde{\sigma}^{2}$ is given by

$$
\operatorname{MSE}\left(\widetilde{\sigma}^{2}\right)=\sigma^{4}\left[\frac{2(n-r)+(n-r-k)^{2}}{k^{2}}\right]
$$

(b) Find the value of $k$ that minimizes $\operatorname{MSE}\left(\widetilde{\sigma}^{2}\right)$.
12. Assume that $\mathbf{Y} \sim \mathcal{N}_{2}(\boldsymbol{\mu}, \mathbf{V})$, where

$$
\boldsymbol{\mu}=\binom{1}{1} \quad \text { and } \quad \mathbf{V}=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right)
$$

Let

$$
\mathbf{A}=\frac{1}{8}\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

and $\mathbf{B}=(1,-2)^{\prime}$.
(a) Find the distribution of $U_{1}=\mathbf{Y}^{\prime} \mathbf{A} \mathbf{Y}$.
(b) Find the distribution of $U_{2}=\mathbf{B}^{\prime} \mathbf{Y}$.
(c) Compute the correlation between $U_{1}$ and $U_{2}$.
13. Consider the two-way fixed effects (crossed) ANOVA model

$$
Y_{i j}=\mu+\alpha_{i}+\beta_{j}+\epsilon_{i j},
$$

for $i=1,2, \ldots, a$ and $j=1,2, \ldots, b$, where $\epsilon_{i} \sim \operatorname{iid} \mathcal{N}\left(0, \sigma^{2}\right)$. In matrix form, $\mathbf{X}$ and $\boldsymbol{\beta}$ are

$$
\mathbf{X}_{n \times p}=\left(\begin{array}{cccccc}
\mathbf{1}_{b} & \mathbf{1}_{b} & \mathbf{0}_{b} & \cdots & \mathbf{0}_{b} & \mathbf{I}_{b} \\
\mathbf{1}_{b} & \mathbf{0}_{b} & \mathbf{1}_{b} & \cdots & \mathbf{0}_{b} & \mathbf{I}_{b} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\mathbf{1}_{b} & \mathbf{0}_{b} & \mathbf{0}_{b} & \cdots & \mathbf{1}_{b} & \mathbf{I}_{b}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\beta}_{p \times 1}=\left(\begin{array}{c}
\mu \\
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{a} \\
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{b}
\end{array}\right)
$$

where $p=a+b+1$ and $n=a b$. Redo Example 5.6 (notes), showing how to choose the A matrices, determining the distributions of the relevant quadratic forms, and showing the form the associated ANOVA table with expected mean squares. Show also how to construct $F$ tests for $H_{0}: \alpha_{1}=\alpha_{2}=\cdots=\alpha_{a}=0$ and $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{b}=0$.
14. Suppose that $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{I})$ and that $\mathbf{A}_{i}$ is a symmetric idempotent matrix with rank $s_{i}$, for $i=1,2, \ldots, k$. Assume that $\mathbf{A}_{i} \mathbf{A}_{j}=\mathbf{0}$, for $i \neq j$ and that $\mathbf{A}_{i} \boldsymbol{\mu}=\boldsymbol{\beta}_{i}$, for $i=1,2, \ldots, k$. Define $\mathbf{Y}=\mathbf{A}_{1} \mathbf{X}+\mathbf{A}_{2} \mathbf{X}+\cdots+\mathbf{A}_{k} \mathbf{X}$. Determine the distribution of $\mathbf{Y}^{\prime} \mathbf{Y}$ in terms of $s_{1}, s_{2}, \ldots, s_{k}$ and $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \ldots, \boldsymbol{\beta}_{k}$.

