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1 Where Do Data Come From?

1.1 Introduction

Definition: Statistics is the science of data; how to interpret data, analyze data, and
design studies to collect data.

• Statistics is used in all majors and areas of science, social science, and the human-
ities.

• “Statisticians get to play in everyone else’s back yard.” (John Tukey)

Example 1.1. Caffeine is commonly used to treat newborn infants for apnea of prema-
turity and to prevent the onset of other acute conditions. Known as “the silver bullet” in
the treatment of prematurely born infants, caffeine is widely regarded within the neonatal
care community to be safe and cost effective. It has also been approved by the US Food
and Drug Administration for use with preterm infants due to its history of providing
beneficial outcomes with no long-term adverse side effects. Cox et al. (2015) summarize
a study where one of the research questions was:

• Does treating premature infants with caffeine increase the chances of developing
necrotizing enterocolitis?

Necrotizing enterocolitis (NEC) is a serious condition characterized by infection and
inflammation of the intestine. It is most commonly observed in premature infants. Left
untreated, NEC can lead to serious health complications and even death.

In an 18-month period during 2008-2009, there were 615 infants admitted to the neonatal
intensive care unit at Palmetto Richland Hospital in Columbia, SC.

• 35 out of 137 patients (26%) receiving caffeine developed NEC

• 10 out of 478 patients (2%) not receiving caffeine developed NEC.

What do these results say about caffeine and whether it increases the development of
NEC? Does caffeine cause a greater percentage of NEC cases?

Definitions: Individuals are the objects observed in a study. Individuals are often
people, but they don’t have to be. A variable is a characteristic that we measure on
each individual. Measurements of variables are called data.

• In the NEC study (Example 1.1), the individuals are the infants.

• There were many variables recorded in the NEC study. Here are some of them:

– NEC (Yes/No)
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– Caffeine (Yes/No)

∗ if “Yes,” different doses were also recorded (in mg/kg/dose)

– Birth weight (measured in grams)

– Gestational age (measured in weeks)

– Race (AA, Hispanic, White, Other)

– Sex (M/F)

– Nutrition type (Breastmilk, Fluids, Formula, TPN)

– Maternal drug use (Yes/No)

∗ if “Yes,” what type (Alcohol, Cocaine, Marijuana, Tobacco)

– Time to discharge from the NICU (measured in days)

– Alive at discharge (Yes/No).

Definitions: A categorical variable places individuals into one of several groups or
categories. A quantitative variable assumes numerical values. Measurements will be
different for different individuals. This is what statisticians call variation.

Note: Graphs can be used to display the variation observed in one or more variables. In
Figure 1.1 (next page), we use a histogram to display the variation in the birth weight
data for the 615 infants. Birth weight is a quantitative variable. Its measurements are
numerical in nature (e.g., 2402 grams).

1.2 Populations and samples

“You don’t have to eat the entire pot of soup to know that it needs more salt.”

Definitions: In a statistical study, the population is the entire group of individuals
about which we want information. A sample is the part of the population we actually
observe.

Discussion: In the NEC study (Example 1.1), the sample is the 615 infants admitted
to the neonatal intensive care unit. We observed these individuals and we recorded data
on them. What is the population in this example? In other words, what larger group of
individuals do these 615 infants represent accurately?

Example 1.2. During December 11-15, 2023, Rasmussen Reports asked 1500 likely
voters in the US to rate President Biden’s job performance. Forty three percent (43%)
of the respondents “approved” of his job performance.

• Sample: The 1500 likely voters contacted

• Population: Likely voters in the US.
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Figure 1.1: Necrotizing enterocolitis data. Histogram of birth weights for 615 infants.
This figure was created using R.

Discussion: What do these results suggest about the population? The 43% approval
rating is for the 1500 likely voters in the sample. Could the population approval rating
be different? Rasmussen stated that the margin of error associated with their sample
results was ±2.5%. What precisely does this mean?

Note: Example 1.2 describes the results of a sample survey. These are studies where
individuals are contacted in person, over the phone, by mail or email, etc.

• Interpreting the results of a sample survey depends on the notions of population
and sample.

• In most situations, the population is much too large to observe (e.g., all likely voters
in the US, etc.). This is why we use samples.

• Statistical inference: What do the results from the sample suggest about the
population of individuals?

Definition: A special type of survey occurs when the goal is to observe every individual
in the population. This is called a census.
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• The United States Constitution empowers the Congress to carry out a census for
the American people. This started in 1790 and has occurred every 10 years since
then.

• “The actual Enumeration shall be made within three Years after the first Meeting
of the Congress of the United States, and within every subsequent Term of ten
Years, in such Manner as they shall by Law direct (Article 1, Section 2).”

• The results of the decennial census have broad implications; e.g., deciding how
many representatives each state will have, apportionment of federal funds for un-
derrepresented states/groups, etc.

1.3 Observational studies and experiments

Definition: An observational study passively observes individuals and measures vari-
ables of interest. There is no attempt to influence the responses.

• The NEC study (Example 1.1) and the Rasmussen survey (Example 1.2) are ex-
amples of observational studies.

• We observe individuals’ responses (i.e., developed NEC/not?, approve/not?) and
simply record this information.

Example 1.3. I recently reviewed a grant proposal for the Hong Kong Research Grants
Council. The proposal described an observational study involving Hong Kong area high
school students:

• 101 students who were “non-heavy” smartphone users; < 6 hours/day

• 103 students who were “heavy” smartphone users; ≥ 6 hours/day.

One variable measured on each student was whether s/he experienced sleep problems
(categorical). Another variable recorded was the number of steps each student took per
day (quantitative).

Remark: In this example, you can imagine two populations:

• all HK high school students who are “non-heavy” smartphone users

• all HK high school students who are “heavy” smartphone users.

The investigators wanted to compare these two populations for the different variables
recorded. Comparing two populations is a common goal in observational studies and
experiments.

Definition: An experiment is a study where the investigators actively and deliberately
impose some type of treatment or intervention on the individuals. This is done to see
how individuals’ responses are influenced by the treatment or intervention.
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Example 1.4. Moore and Notz (pp 12-13) describe an experiment where welfare mothers
in the US are randomly assigned to two groups:

• Group 1: No job training provided

• Group 2: Job training provided.

Unlike in an observational study, investigators actively assigned each individual (mother)
to one of two treatment groups. We can then follow the two groups over time to see how
they compare.

• Analyzing results from experiments usually compare the averages of the groups−not
individual mothers.

• We could compare the groups using different variables:

– Job placement? (Yes/No). This is a categorical variable.

– Income (annual earnings in dollars). This is a quantitative variable.

• Statistical methods courses like STAT 201, STAT 205, or STAT 206 teach you how
to perform statistical inference analyses for categorical and quantitative data. This
is not the focus of this course.

• Q: Is it ethical to purposefully withhold job training from individual mothers?

Important: In observational studies, we passively observe the results. In experiments,
we act deliberately and then observe the effect of doing so. If they are properly performed,
experiments can give better information about causality. We will see why in Chapters
5-6. For example, does providing job training to welfare mothers cause an increase in
annual earnings?

Example 1.5. If a woman eats more cereal, does this increase her chances of having
a male offspring? As silly as this sounds, Matthews et al. (2008) claim they found
“evidence” that this is true from an observational study.

• The results were published in a prestigious medical journal in the UK in 2008.
When this “discovery” was picked up by the media, it made national headlines.

• Doesn’t Dad have his say? From GEN 101, we know that males (XY) are het-
erogametic (i.e., males have non-matching sex chromosomes); females (XX) are
not.

• Therefore, for the cereal claim to be plausible, we would have to either dismiss basic
genetics knowledge or claim that a woman’s cereal consumption helps to influence
what chromosome (X or Y) the male passes on.
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• Young et al. (2009) later demonstrated that this “finding” was easily explained
by random chance. Investigators considered many dietary variables in the study,
and they “cherry-picked” single ones which just happened to be associated with
the male sex offspring (a spurious association).

Remark: The problem with many observational studies is that their “findings” cannot
be replicated. In other words, if the same or similar study is performed again, the
conclusions would be different.

• Unfortunately, silly claims like the cereal one are commonly thrust onto an unin-
formed public (and media) who blindly accept them as fact.

• As another example, I recently read online of a study concluding that wearing high
heels causes cancer!

Discussion: The replication crisis is well documented. For example, in 2015, the
Open Science Collaboration Project estimated that only about 1/3 of findings published
in top psychology journals could be replicated.

• The replication crisis is a term that started in the social sciences (psychology, in
particular), but the “hard sciences” have had their fair share of controversy too.
Another recent OSCP effort showed that only 2 of 5 cancer biology experiments
could be replicated.

• How should we think of replication in studies like the NEC study (Example 1.1)
where we only observe a sample of 615 infants? Another research team could redo
this study with a different sample of 615 premature infants and get a different
result.

• We need to stop thinking that any single study or experiment is definitive proof. In
fact, a provocative and highly cited article by Ioannidis (2005) makes a compelling
argument that most published research findings are probably false.

References:

Cox, C., Hashem, N., Tebbs, J., Bookstaver, B., and Iskersky, V. (2015). Evaluation
of caffeine and the development of necrotizing enterocolitis. Journal of Neonatal-
Perinatal Medicine 8, 339–347.

Ioannidis, J. (2005). Why most published research findings are false. PLOS Science 2,
696–701.

Matthews, F., Johnson, P., and Neil, A. (2008). You are what your mother eats: Evi-
dence for maternal preconception diet influencing foetal sex in humans. Proceedings
of the Royal Society B 277, 1661–1668.

Open Science Collaboration (2015). Estimating the reproducibility of psychological
science. Science 349.

Young, S., Bang, H, and Oktay, K. (2009). Cereal-induced gender selection? Most
likely a multiple testing false positive. Proceedings of the Royal Society B 278,
1211–1212.
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2 Samples, Good and Bad

2.1 Introduction

Example 2.1. Moore and Notz (pp 3-4, 21) describe an online poll by the Michigan
online news site MLive. In 2014, the site asked visitors,

Should Michigan legalize marijuana?

Of the 9684 respondents, 7906 (82%) of them said “Yes.” In 2015, the Pew Research
Center conducted a poll asking,

Do you think the use of marijuana should be made legal or not?

Among the 1500 participants, only 53% agreed on the legal use of marijuana. Why are
these poll results so different? Here are some possible reasons:

• the sampling designs for the two polls are different: the online poll used a voluntary
response sample whereas the Pew poll likely used a more sophisticated sampling
design.

• the populations sampled are different: the online poll probably used mostly resi-
dents of Michigan (those who are more likely to visit MLive) whereas the Pew poll
sampled US adult residents.

2.2 How to sample badly

Recall: The goal of statistical inference is to use the information in a sample of indi-
viduals to describe a larger population of individuals.

Definition: The way we select a sample from a population is called the sampling
design. We would like our design to provide accurate results about the population.

Definition: If a sampling design systematically favors certain individuals over others,
we call the design biased.

• A convenience sample collects individuals that are the easiest to contact.

• A voluntary response sample includes individuals who choose themselves to be
included.

These designs are biased. They often underrepresent certain groups of individuals. There-
fore, the sample will not be representative of the larger population.
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Remark: Some students think that larger sample sizes are always better. However,
large sample sizes do not make up for bad sampling designs; see Example 2.1. We have
all heard of the aphorism, “Garbage in, garbage out.” With larger biased samples, you
simply have more garbage.

Example 2.2. You have been asked to inspect a truck shipment of oranges. The truck
carries 100 boxes, each box with 100 oranges (10,000 oranges all together−this is the
population). You select 5 boxes nearest to the door. In each box, you pick 5 oranges
from the top. You have a sample of 25 oranges. This is a convenience sample. Why might
this sample not be representative of the entire population of oranges in the shipment?

Example 2.3. In 2013, researchers in Peru aimed to assess whether there was an asso-
ciation between Facebook dependence and poor sleep quality. The researchers contacted
students in their own classrooms before or after lectures to obtain observations on 418
undergraduate students. This is a convenience sample. This sample of students is likely
not representative of all Facebook users.

Example 2.4. C-Span routinely provides viewers the opportunity to phone in and
give comments about political issues. Recently, callers were asked to comment on the
current state of affairs with Iran and North Korea. Do these callers’ comments accurately
reflect the views of the entire voting public in the US? Probably not. The calls received
constitute a voluntary response sample. Individuals choose themselves for the sample,
and these individuals tend to believe very strongly about issues being discussed.

Example 2.5. The 1936 presidential election between Landon (R) and Roosevelt (D)
proved to shape the future of polling. Literary Digest, a magazine founded in 1890, had
correctly predicted the outcomes of the 1916, 1920, 1924, 1928, and 1932 elections by
conducting polls. Their 1936 “postal card poll” claimed to have asked one fourth of the
nation’s voters which candidate they intended to vote for.

• Based on their poll, Literary Digest predicted Landon would win the election with
57% of the popular vote and an electoral college margin of 370 to 161.

• In fact, Roosevelt won the election with 61% of the popular vote and an electoral
college landslide of 523 to 8 (the largest ever). Roosevelt won 46 of 48 states, losing
only Maine and Vermont.

What happened? The predictions were based on more than 2 million returned post
cards. However, this was a voluntary response sample (only those who returned the post
cards were included). In addition, the mailings only went to people who had 1936 auto
registrations, who were listed in telephone books, and who were on Literary Digest ’s
subscription list! Literary Digest went bankrupt soon after this debacle.

• George Gallup, a pioneer of survey sampling techniques and inventor of the Gallup
poll, correctly predicted the 1936 election using a much more representative sample
of only 50,000 individuals.
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• Interestingly, Gallup later badly botched the 1948 election prediction when they
claimed Dewey (R) would beat Truman (D) by “5-15 percentage points.” Truman
won in a landslide. Gallup blamed their mistake on the fact that sampling ended
three weeks before the election.

• Nate Silver, author of the FiveThirtyEight web site, gained national recognition
when he correctly predicted each state’s outcome in the 2012 presidential election
between Romney (R) and Obama (D).

• Interestingly, Mr. Silver predicted in July 2015 that Donald Trump had only “a 5%
chance” of winning the 2016 Republican nomination. In October 2016, he predicted
Trump had “a 12% chance” of winning the 2016 presidential election.

2.3 Simple random samples

Recall: Convenience and voluntary response sampling designs are biased. They tend to
systematically favor certain individuals over others. To avoid systematic undercoverage,
use impersonal chance to select individuals.

Definition: A simple random sample (SRS) of size n has the same chance of being
selected as any other sample of size n. As a result, each individual has the same chance
of being selected.

• A simple random sampling design is unbiased. There is no systematic favoring of
certain individuals over others.

• A simple random sampling design will give accurate results for a population over
the long run. There is still no guarantee a particular SRS will be perfectly repre-
sentative.

• The last remark may seem frustrating, but a SRS is a huge improvement over biased
designs. It is our “best chance” to get accurate results about the population.

Example 2.6. We can use R to demonstrate how simple random samples can be taken.
Suppose I want to take a SRS of n = 5 students from this class (the population). Suppose
there are 160 students in the class, and each of you has a numerical coding assigned on
my course enrollment list (the names listed below are fake).

Student Code
Abherdine 1

Albert 2
Anderson 3

...
...

Yell 158
Zhang 159

Zynkowski 160

PAGE 9
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The R code below can be used to select 5 numerical codes between 1 and 160:

students = seq(1,160,1)

sample(students,5,replace=F)

When I ran this code, I got the following sample:

> sample(students,5,replace=F)

[1] 66 110 23 123 52

Students whose codes are 66, 110, 23, 123, and 52 would constitute the sample.

Important: Individuals in a SRS are selected at random. Therefore, if we repeated this
exercise again, we would get a different sample:

> sample(students,5,replace=F)

[1] 98 114 20 146 86

Q: How many samples of size n = 5 are possible in this exercise?
A: Combinatoric rules from probability can be used to answer this question. It is
820,384,032! The key feature of a SRS is each of the 820,384,032 possible samples has
the same chance of happening.

Remark: Selecting simple random samples from very large populations is not as straight-
forward as it sounds. For one, it may not be possible to get a reliable sampling frame
(i.e., a list of all individuals in the population). For example,

• Population: USC undergraduates (Columbia campus). Size: 27,343 (as of Fall
2022)

• Population: SC (aged 18 and older). Size: 4 million (as of July 2019)

• Population: USA (aged 18 and older). Size: 255 million (as of July 2019).

In practice, those performing the study may not identify exactly what the population is,
construct an exact sampling frame, and then choose a SRS from this list.

• It is more likely that “reasonable attempts” will have been made to choose indi-
viduals at random from those in the population.

• Although the sample obtained for analysis might not be a true SRS, it might not
be that far off.

Note: Instead of using R’s sample function to select simple random samples, the authors
of your text suggest a table of random digits can be used; see Moore and Notz
(Example 4, pp 27-28).

• This table is essentially a list of numbers determined at random.

• Using it will accomplish the same goal as using software like R.
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Example 2.7. The College of Arts and Sciences (CAS) is the largest college at USC.
Suppose Dean Samuels wants to form a committee by selecting the chairs of three (n = 3)
departments using a simple random sample. There are 21 departments in CAS:

Department Code Geography Code Department Code
AA Studies 01 Geography 08 Psychology 15

Anthropology 02 History 09 Religious Studies 16
Biology 03 LLC 10 Sociology 17

Chem/Biochem 04 Mathematics 11 Statistics 18
Criminal Justice 05 Philosophy 12 Theatre/Dance 19

EOE 06 Physics 13 Vis Art/Design 20
English 07 Political Sci 14 Women’s/Gen Studies 21

Here are entries on line 101 in the Table of Random Digits (Moore and Notz, Table A):

19 22 39 50 34 05 75 62 87 13 96 40 91 25 31 42 54 48 28 53

Department chairs from Theatre and Dance (19), Criminal Justice (05) and Physics (13)
would be selected.

Q: How many samples of size n = 3 are possible in this exercise?
A: There are 1,330 different samples of size n = 3. The key feature of a SRS is each of
the 1,330 possible samples has the same chance of happening.

Had you entered instead at line 150, the random digits would have been:

07 51 18 89 15 41 26 71 68 53 84 56 97 93 67 32 33 70 33 16

and department chairs from English (07), Statistics (18), and Psychology (15) would be
selected.

Summary: When selecting a sample of individuals, our goal is to choose one that is
representative of the population.

• Biased designs: convenience, voluntary response. These designs suffer from sys-
tematic undercoverage of certain groups.

• Unbiased design: SRS. This design gives representative samples on average (over
the long run).

Other sampling designs will be discussed in Section 4. These include stratified sampling,
cluster sampling, and systematic sampling. Sampling in real life (from large populations)
usually involves some form of stratification and clustering.

PAGE 11



STAT 110: CHAPTER 3 JOSHUA M. TEBBS

3 What do Samples Tell Us?

3.1 Parameters and statistics

Example 3.1. During December 3-5, 2023, Rasmussen Reports conducted a national
telephone and online survey using a sample of n = 992 American adults. Each participant
was asked,

Should Christmas be celebrated in public schools?

The survey found that 685 of the 992 adults in the sample answered “Yes” to this question
(69%).

Definition: A parameter is a number that describes a population of individuals. Unless
every individual in the population is observed, a population parameter is unknown.

Definition: A statistic is a number calculated from a sample of individuals. We can
calculate the value of a statistic because it is based on the individuals observed in the
sample.

Discussion: In Example 3.1, we can think of the population as “all American adults;”
i.e., individuals aged 18 and over. There are approximately 255 million American adults
(based on July 2019 census.gov data). Define

p = population proportion of American adults who agree Christmas should

be celebrated in public schools.

Because p describes the population of all American adults (all 255 million of them), it is
a parameter. We call p a population proportion. It is unknown.

What do we know? We do know that 685 out of the 992 American adults in the sample
agreed that Christmas should be celebrated in public schools. Therefore, the sample
proportion is

p̂ =
685

992
≈ 0.69 (or 69%).

The sample proportion p̂ is a statistic. It is calculated using the individuals in the sample.

Terminology: We say that the sample proportion p̂ = 0.69 is an estimate of the
population proportion p.

Main point: We use sample statistics to estimate population parameters. Want to
estimate an unknown population parameter? Choose a sample from the population and
use a sample statistic to estimate it. This is the idea behind statistical inference.
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3.2 Bias and variability

Discussion: Rasmussen Reports found that 685 out of 992 American adults sampled
are in favor of celebrating Christmas in public schools. Suppose Gallup did the same
poll during the same time with the same number of individuals (992), asking the exact
same question, and found that 715 out of 992 American adults were in favor of this. The
sample proportion based on Gallup’s sample is

p̂ =
715

992
≈ 0.72 (or 72%).

How can Gallup’s sample proportion be different than Rasmussen’s? That’s easy. Each
sample uses different people.

Important: Values of statistics like p̂ change from sample to sample because different
samples contain different individuals. On the other hand, population parameters like p
do not change. They represent the entire population.

Exercise: Let’s use R to simulate many different sample proportions p̂. We are doing
this so you can see that statistic’s values do indeed change from sample to sample.

• I assumed that the population proportion is p = 0.70. In real life, this would be
unknown, but I can pretend I know what it is for this classroom exercise.

• I used R to simulate 10,000 values of the sample proportion p̂ under this assumption.
Each sample proportion is calculated from a SRS of size n = 992.

• I used a histogram to display the 10,000 sample proportions. This histogram is
shown in Figure 3.1 (next page).

Observations: The histogram in Figure 3.1 reveals some important insights. Here are
some of them:

• The sample proportion p̂ changes from sample to sample, but the values center at
the truth about the population (i.e., at p = 0.70).

– In other words, the sample proportion estimates are “correct on the average.”
This is what it means for an estimate to be unbiased.

– We say that the sample proportion p̂ is an unbiased estimate of the popu-
lation proportion p.

– Unbiasedness (i.e., no bias) is guaranteed when we use a SRS. This is why we
use them.

– Unbiasedness is not guaranteed when we used biased sampling designs like
convenience and voluntary response samples!

• The Rasmussen and Gallup sample proportion estimates (0.69 and 0.72, respec-
tively) are close to the true population proportion p = 0.70, but some estimates
are much further away; e.g., 0.65, 0.75, etc.
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Figure 3.1: 10,000 sample proportions p̂. Each one is based on a SRS of n = 992
individuals. The population proportion is p = 0.70.

– The spread in the histogram gives us information on precision; i.e., how vari-
able the sample proportion estimates are.

– Rasmussen used a sample size of n = 992 American adults. How can we make
the sample proportion estimate p̂ more precise (i.e., less variable)? Answer:
Take a larger SRS (see next simulation).

• The shape of the histogram resembles a normal distribution. We will study
normal distributions in Chapter 13.

Another simulation: We repeat our simulation exercise under identical conditions,
except we now use a sample size of

n = 992× 10 = 9920.

In other words, we are now pretending that each sample is 10 times larger than the
Rasmussen sample. This would emulate the situation where Rasmussen sampled 10
times as many American adults as it did originally.
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Figure 3.2: 10,000 sample proportions p̂. Each one is based on a SRS of n = 9920
individuals. The population proportion is p = 0.70.

Observations: The histogram in Figure 3.2 displays the results from this simulation:

• The sample proportions p̂ remain centered at the truth p = 0.70.

– The sample proportion estimate p̂ remains unbiased. Bias does not depend
on sample size (as long as a SRS is used).

• We see that the same normal distribution pattern emerges.

• The only difference from increasing the sample size (from n = 992 to n = 9920) is
that the variability in the estimates has decreased (look at the scale/range on the
horizontal axis).

– In Figure 3.2 (n = 9920), the variability is much smaller than it was in Figure
3.1 (n = 992). In other words, the estimate p̂ is more precise.

• This suggests that we can improve the precision of the estimate p̂ by taking a larger
SRS. Indeed, this is true.
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Remark: We want sample estimates like p̂ to be accurate and precise. Although
“accuracy” and “precision” sound similar in everyday English expression, they have very
different meanings (at least in statistics they do).

• Accuracy deals with bias. Precision deals with variability.

Bias is a consistent repeated deviation of a sample statistic from a population parameter
if we took many samples. Variability describes how spread out the values of a sample
statistic are if we took many samples.

• The dartboard analogy above describes these two concepts beautifully. The dart-
board in the lower right shows what would happen if our sample estimate had low
bias and low variability. This is the best we can hope for when sampling from a
population.

Main point: A good sample produces small bias (or no bias) and small variability.

• To eliminate bias, use a SRS. This design produces estimates that are unbiased. In
other words, we neither overestimate nor underestimate the value of the population
parameter on average.

• To reduce the variability in a SRS, use a larger sample. The larger the sample size,
the smaller the variability (i.e., the more precise our estimates are).
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3.3 Margin of error and confidence statements

Recall: In Example 3.1, we discussed the Rasmussen survey question:

Should Christmas be celebrated in public schools?

The survey found that 685 of the 992 adults in the sample answered “Yes” to this question
(69%).

• Rasmussen stated “the margin of sampling error is ±3 percentage points with a
95% level of confidence.” What does this statement mean?

Reality: Even if we use a SRS with a large sample size (like n = 992), we cannot be
sure how close our estimate

p̂ ≈ 0.69

is to the population proportion p. We do not sample the entire population, so no one
knows what p is. As a result, there will always be a degree of uncertainty with our
estimate.

Q: How could we determine what p is exactly in this example?
A: Sample all 255 million American adults and ask them (i.e., perform a census). How
large is this number? If you contacted one person each minute starting now, and never
took any breaks, it would take you 475.6 years to complete the census! Now, you know
why samples are used to estimate population parameters like p.

Definition: The margin of error is a number that describes how precise a sample
estimate is.

• The smaller the margin of error, the more precise (less variable) the estimate is.

• Large margins of error indicate less precision (more variability).

Note: Rasmussen found the sample proportion of adults who believe Christmas should
be celebrated in public schools to be

p̂ =
685

992
≈ 0.69 (or 69%).

They also stated that the margin of error was ±3 percentage points with a 95% level of
confidence. This allows us to write the following confidence statement:

• “We are 95% confident that the proportion of American adults who believe Christ-
mas should be celebrated in public schools is between 0.66 and 0.72 (i.e., between
66% and 72%).”
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Definition: A confidence statement is a statement about a population parameter. It
contains two parts:

• Margin of error. This quantifies how close the sample statistic (estimate) is to
the population parameter. This is related to variability.

• Level of confidence. Our statement about the population is never completely
certain. The level of confidence tells us how confident we are in the statement.

Discussion: The confidence statement in the Rasmussen poll example is an illustration
of statistical inference. We are using a sample statistic p̂ and its margin of error to make
a statement about the population proportion p.

• We are 95% confident the population proportion p is between 0.66 and 0.72, that
is,

0.66 < p < 0.72.

This is a statement about the population of all American adults.

Q: What does the phrase “95% level of confidence” mean? This was the phrase Ras-
mussen used to accompany its margin of error.
A: First of all, what this means is that we are not 100% confident. This is an unfortunate
reality when performing statistical inference for any population.

• Remember, the only way we can be 100% sure about the population is to perform
a census (and we know what that would entail).

• Therefore, do we know for a fact that

0.66 < p < 0.72

and that this interval is correct about the population proportion p? No, we don’t.
In other words, it could be that the population proportion p is outside this interval.

• The phrase “95% confidence” only assures that 95% of the time our sample will
produce an estimate p̂ whose corresponding confidence statement will be correct.

• In other words, 5% of the time, our sample will produce a confidence statement
that is not correct.

• How do we know if Rasmussen’s sample is one of the 95% which produced a correct
statement about p? We don’t.

• This is the tradeoff we must live with. We make our lives easier by sampling from
a population (and not having to take a census). But the price we pay for this is
there is always uncertainty about our inferences.
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Q: How do we calculate the margin of error for a sample?
A: This is a hard question to answer in general. However, the following result is true.

Result: If a SRS is used, the margin of error in the sample proportion p̂ associated with
a 95% confidence level is approximately equal to

margin of error =
1√
n
,

where n is the sample size. This formula is only applicable for a SRS design with a 95%
level of confidence. If either of these changed, then the formula would change.

Discussion: We now see mathematically why larger samples produce more precise sta-
tistical inference (when a SRS is used). Because the sample size n is in the denominator
of this formula, increasing n will decrease the margin of error. For example,

n = 100 =⇒ 1√
100

=
1

10
= 0.10 (or 10%)

n = 400 =⇒ 1√
400

=
1

20
= 0.05 (or 5%)

n = 1600 =⇒ 1√
1600

=
1

40
= 0.025 (or 2.5%).

This shows that to cut the margin of error in half, the sample size must increase by four
times.

Example 3.2. During September 25-October 1, 2023, Pew Research Center conducted
a survey using a sample of n = 8, 842 American adults. Each participant was asked,

Would you support or oppose the U.S. government banning TikTok?

The survey found that 38% of the adults in the sample would support the US government
banning TikTok.
(a) If this was a SRS, then what is the margin of error associated with this estimate
assuming a 95% level of confidence?
(b) After you calculate the margin of error, write the corresponding confidence statement.

Solutions: In part (a), we use the margin of error formula

margin of error =
1√

8842
≈ 1

94.03
≈ 0.01.

The margin of error is 0.01 or 1%. In part (b), our confidence statement is

• “We are 95% confident that the proportion of American adults who support the
US government banning TikTok is between 0.37 and 0.39 (i.e., between 37% and
39%).”
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Example 3.3. During October 1-23, 2023, Gallup conducted a telephone survey using
a sample of n = 1, 009 American adults. Each participant was asked,

Is there more crime in your area than there was a year ago, or less?

The survey found that 55% of the adults in the sample said there was more crime than
a year ago.
(a) If this was a SRS, then what is the margin of error associated with this estimate
assuming a 95% level of confidence?
(b) After you calculate the margin of error, write the corresponding confidence statement.

Solutions: In part (a), we use the margin of error formula

margin of error =
1√

1009
≈ 1

33.30
≈ 0.03.

The margin of error is 0.03 or 3%. In part (b), our confidence statement is

• “We are 95% confident that the proportion of American adults who say there is
more crime than a year ago is between 0.52 and 0.58 (i.e., between 52% and 58%).”

Final thoughts: Confidence statements are a form a statistical inference. We are taking
the results from a sample, and we are making a statement about the population.

Q: Can we use a larger level of confidence?
A: We can, but the margin of error formula

margin of error =
1√
n

would no longer be correct. This formula is only approximately correct for 95% confidence
statements about a population proportion p. We will show later in the course (Chapter
21) how to include different levels of confidence−including those which are larger and
smaller.

Remark: The margin of error formula above is only applicable for statistical inference
problems where the population is really large.

• The three examples in this chapter (Rasmussen, Pew, and Gallup) have all featured
the same population:

– American adults (aged 18 and older). Size: 255 million (as of July 2019).

• We would not want to use this formula for smaller populations, like this class (160
students) or in Example 2.7 (21 department chairs).

• Moore and Notz describe how the sampling variability of a statistic (which is what
the margin of error describes numerically) is unaffected as long as the population
size is at least 20 times that of the sample size. Clearly, there is nothing to worry
about when we are sampling from all American adults.

PAGE 20



STAT 110: CHAPTER 4 JOSHUA M. TEBBS

4 Sample Surveys in the Real World

4.1 Introduction

Example 4.1. A Pew Research Center opinion poll conducted over the phone reports
a sample of size n = 1, 507 people. Your favorite web site posts the poll results. You
read the results and are satisfied because (at the bottom of the article) you see words
like “probability sample,” “margin of error,” and “95 percent confidence.”

However, let’s look more closely at what it took to secure these 1,507 responses:

Landline Cell Total
Noncontacts 2,464 3,114 5,578
Not eligible 18,427 6,048 24,475
Other 104 56 160
Unknown eligibility 3,305 361 3,666
Refusals, breakoffs, and partials 4,719 4,836 9,555
Complete interview 902 605 1,507
Totals 29,921 15,056 44,977

It’s pretty likely the web site you read did not give this information. That is, to secure
1,507 responses, Pew had to contact 44,977 people! This gives a response rate of

1507

44977
≈ 0.034 (or 3.4%).

In other words, the nonresponse rate is 96.6%!

• Reporting a large sample size like n = 1, 507 seems impressive until you dig deeper.

• What about the 43,470 people that didn’t respond?

• Do you believe the poll results are representative of the larger population now?

Reality: Getting feedback from humans in sample surveys is not easy. Many people
will not participate over the phone, in person, or through mail/email. Response rates in
sample surveys are usually low like in this example.

Preview: This chapter describes how sample surveys can go wrong and what can be
done to mitigate the problems that arise. Not all problems can be eliminated, and even if
they could, we still never get to make confidence statements (about a population) which
are free of uncertainty. This chapter is illuminating, because you will learn just how bad
things can be. If nothing else, you should learn to be skeptical of sample surveys you see
in the news, even if it appears everything is statistically sound.
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Preview: There are two types of errors that can occur in sample surveys:

1. Sampling errors

2. Nonsampling errors

4.2 Sampling errors

Terminology: Sampling errors are errors that arise through the act of selecting a
sample. There are two types of sampling errors:

1. Biased sampling designs

• convenience sample, voluntary response sample

• these designs lead to biased samples which are not representative of the pop-
ulation.

2. Random sampling error.

Definition: Undercoverage occurs when some groups in the population are left out of
the process of choosing the sample.

• This is the main problem with convenience samples. By sampling those that are
the “easiest to reach,” you exclude many groups of individuals.

• Similarly, voluntary response samples will usually include only those individuals
who feel most strongly about the issue (strongly in favor/strongly against). This
leaves out most people in the middle.

We can avoid biased designs if we use simple random samples. However, random sam-
pling error is unavoidable. This is the natural error that arises because a simple random
sample is only a part of the population. Recall the confidence statement we wrote in
Example 3.3:

• “We are 95% confident that the proportion of American adults who say there is
more crime than a year ago is between 0.52 and 0.58 (i.e., between 52% and 58%).”

Important: The margin of error in a confidence statement only accounts for random
sampling error. It does not account for anything else.

Q: How can we reduce random sampling error?
A: Use larger samples.

Q: How can we eliminate random sampling error?
A: Take a census.
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4.3 Nonsampling errors

Conceptualization: Suppose you have selected a simple random sample from a popu-
lation. You’re off to a great start! Now, what can go wrong?

Terminology: Nonsampling errors are errors that arise for reasons not related to the
act of sampling. Here are examples:

• Incomplete or inaccurate sampling frame

• nonresponse (this is the biggest one in sample surveys)

• poorly worded or misleading questions

• interviewer bias

• data entry or processing errors

• individuals giving false responses (either on purpose or because they don’t know).

Example 4.2. Many opinion polls in the US still conduct interviews by telephone
using random digit dialing. If every American adult (255 million) had exactly one phone
number, then this would be an ideal way to establish a reliable sampling frame. However,
which groups of individuals are excluded?

• Individuals without phones (about 2% of the US population?)

• Other groups, for example, military members overseas, individuals in long-term
care hospitals, prisoners, etc.

In addition, certain individuals could have multiple phone lines (duplication), in which
case they could be included more than once.

Recall: In Example 2.5, we talked about the Literary Digest example and how predicting
the 1936 presidential election between Landon (R) and Roosevelt (D) was badly botched.
Recall, the sampling frame consisted of

• people who had 1936 auto registrations

• people who were listed in telephone books

• people who were on Literary Digest ’s subscription list.

Even if Literary Digest had taken a simple random sample from this sampling frame
(they didn’t), a biased sample would have likely still resulted. Unfortunately, almost 100
years later, political polling isn’t that much better.
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Main point: Even when simple random sampling is used, sampling frame errors can
still lead to undercoverage. Certain groups of individuals in the population will not be
available for selection. Leaving these groups out causes bias.

Terminology: Nonresponse occurs when an individual is selected for a sample but
investigators are unable to obtain responses from them.

• This is usually the largest source of nonsampling error in sample surveys.

• Recall in Example 4.1, Pew experienced a nonresponse rate of almost 97%!

• If nonresponse happens for random reasons, then this may not cause bias. However,
certain groups of individuals may not want to participate because they do not feel
comfortable sharing their responses on certain topics. This does cause bias.

The response rate in a sample survey is

number of individuals who complete the survey

number of individuals contacted
× 100%.

The nonresponse rate is simply “100% minus the response rate.”

Q: What can be done to mitigate the effects of nonresponse?
A: A common tactic in sample surveys is to reach out to a nonresponding individual in
another way; e.g., following up an incomplete phone call with a personal letter requesting
a mail-in response. This can decrease the nonresponse rate. Other strategies include:

• substitute “similar” households of nonresponders

• use probability weighting to weight responses differently. For example,

– if the response rate from a certain race group is below the national average,
give them more weight.

– if the response rate from rural areas is above the national average, give them
less weight.

– Here is an actual excerpt from a New York Times sample survey:

“The results have been weighted to take account of household size and
number of telephone lines into the residence and to adjust for varia-
tions in the sample relating to geographic region, sex, race, age, and
education.”

– Probability weighting techniques are usually complex and mathematical (es-
pecially when adjusting margins of error).

Example 4.3. In 2006, a political polling organization asked the following question:

“In light of the mounting casualties we have seen recently, do you approve of
the way President Bush is handling the war in Iraq?”

PAGE 24



STAT 110: CHAPTER 4 JOSHUA M. TEBBS

No one likes “mounting casualties.” This question is misleading and encourages negative
responses. Here are other examples:

• “Is our government providing too much money for welfare programs?”

– 44 percent said “Yes.” When “welfare programs” was replaced with “assis-
tance to the poor,” only 13% responded “Yes.” Question wording can greatly
influence the results.

• “Does it seem possible or does it seem impossible to you that the Nazi extermination
of the Jews never happened?”

– This question is poorly worded. 22 percent of the sample said that it was
“possible.” A much simpler version of this question was later asked and only
1% of the respondents said it was “possible.”

The wording of questions in a sample survey always influences the results. Poorly
worded and misleading questions can create serious nonsampling error.

Example 4.4. Singer (2005) described the results of a sample survey carried out among
biology teachers in Louisiana. The following excerpt appeared in a New York Times
editorial, published on February 4, 2005:

“A 1998 doctoral dissertation found that 24 percent of the biology teachers
sampled in Louisiana said that creationism had a scientific foundation and
that 17 percent were not sure.”

Q: Could 41% of the biology teachers in Louisiana reject or not be sure of evolution?

Remark: Another source of nonsampling error is response error. This happens when
individuals give incorrect responses. This could happen on purpose, or it could be be-
cause the participant cannot recall specific information. The latter is common with
self-reported data. For example, a survey may ask,

“How many cigarettes did you smoke last week?”

It is unlikely that smokers will be able to remember the exact number. In other situations,
individuals may feel embarrassed about the topic being discussed or they may not feel
comfortable sharing their true responses. For example, suppose someone asked you,

“Have you ever drink-spiked someone to take advantage of them sexually?”

Guilty individuals may be inclined to lie for obvious reasons.

Randomized-response technique: This is a sample survey method that can preserve
individual anonymity. This encourages participants to provide truthful responses to
sensitive questions. Here is an example of how it works.
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Example 4.5. Frenger et al. (2016) summarize a sample survey involving professional
German athletes. The question investigators wanted to ask was,

Have you used prohibited substances/methods with the aim to enhance your
sports performance?

This question was asked as part of a randomized-response survey. Each athlete was
presented with two questions:

1. Have you used prohibited substances/methods with the aim to enhance your sports
performance?

2. Are there 7 days in a week?

To decide which question an athlete would answer, s/he would be given a list of randomly
generated numbers such as

8 4 4 3 8 1 3 3 9 3

3 3 0 4 4 9 1 7 1 6

6 7 9 6 7 1 4 1 4 9

5 0 4 4 7 8 2 5 0 2

6 2 9 0 9 3 2 3 5 1

and then asked to choose one number.

• If this number was a 1, 2, or 3, then s/he would answer Question 2.

• Otherwise, s/he would answer Question 1.

Individual athlete anonymity is preserved as long as the athlete never reveals which
number s/he chose. Why? A “Yes” answer in this survey for any athlete could be a
response to the innocuous Question 2!

Discussion: If the numbers above are truly random and equally likely, then the proba-
bility of a “Yes” response in this example is

0.7p+ 0.3(1) = 0.7p+ 0.3,

where

p = population proportion of professional German athletes who have used

prohibited substances/methods.

Therefore, the sample proportion of “Yes” responses is not an unbiased estimate of p, but
instead of 0.7p+0.3. Simple algebra can then be used to create an unbiased estimate of p.
In other words, one can estimate the population proportion of this sensitive characteristic
while protecting the anonymity of each athlete in the survey.
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4.4 Other (good) sampling designs

Terminology: A probability sample is a sample chosen by chance. We must know
what samples are possible and what chance (probability) each possible sample has. Here
are examples:

• Simple random sample (SRS)

• Stratifed random sample

• Cluster random sample

• Systematic random sample.

Recall in a SRS, each sample of size n has the same chance of being selected. This is the
defining characteristic of a SRS.

Terminology: A stratified random sample arises in two steps:

1. Divide the sampling frame into groups of individuals, called strata. Strata could
be formed by sex, race, income class, political affiliation, etc.

2. Take a SRS from each stratum and combine each SRS to form the complete sample.

The reason for stratification is simple. We can guarantee equal representation (or pro-
portional representation) of individuals from each stratum. Most polling organizations
use some type of stratification to ensure the sample selected is representative of the larger
population (e.g., all American adults, all likely voters in the US, etc.).

Example 4.5. Williams (1990) summarized a large seroprevalence study in Houston,
Texas to estimate HIV positivity among heterosexual males who were intravenous drug
users (IVDUs) and were not receiving treatment for their addiction. Here were the results
from their study:

Race Sample size Infected Sample proportion
Hispanic 107 4 0.037 (3.7%)
White 214 14 0.065 (6.5%)
Black 600 59 0.098 (9.8%)
Total 921 77

In this example, investigators split the population into three race strata: Hispanic, White,
and Black. Individuals in each stratum gave demographic and risk information. Infec-
tivity was determined by enzyme-linked immunosorbant assay (ELISA).

Discussion: Do you think each of the three samples above is a true SRS? Probably not.
Given the sensitive nature of this study, there would be no way to know all members of
the population.
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Example 4.6. A large university has 25000 undergraduate students and 5000 graduate
students. The university newspaper wants to get the opinions of students on a topic
involving free speech. The Editor asks his staff to use a stratified random sample with

• 200 undergraduate students

• 50 graduate students.

There are two strata in this example: undergraduate students and graduate students.

Q: Does each sample of size 250 have the same chance of being selected? Recall this is
the defining characteristic of a SRS.
A: No, it is not possible for a sample to include all undergraduate students, for example.
In fact, the chance an undergraduate student would be selected is

200

25000
= 0.008 (or 0.8%).

The chance a graduate student would be selected is

50

5000
= 0.01 (or 1%).

Therefore, undergraduates and graduates have different probabilities of inclusion. This
compromise is made in stratified random samples to ensure fair representation.

Results: The following responses were observed:

Stratum Sample size Agreed Sample proportion
Undergraduate 200 100 0.50 (50%)

Graduate 50 20 0.40 (40%)
Total 250 120

Discussion: Suppose we want to estimate

p = population proportion of all university students who agree.

How should we do this? It wouldn’t be fair to simply take the average of 50% (for
undergraduates) and 40% (for graduates) because the stratum sizes are different. Un-
dergraduate input should have more weight because their stratum is bigger. A better
estimate would weight the responses by the stratum sizes, that is,

0.5(25000) + 0.4(5000)

30000
=

12500 + 2000

30000
=

14500

30000
≈ 0.483 (or 48.3%).

This would be an unbiased estimate of p from stratified random sampling. Calculating
the margin of error of this estimate would be more difficult, but it would be lower than
if a SRS had been used with 250 students. Why do you think this is?
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Terminology: A cluster random sample arises in two steps:

1. Divide the sampling frame into clusters and take a SRS of clusters.

2. Sample every individual in each cluster selected.

Example 4.7. A researcher was interested in studying the eating habits of children in
the fourth grade. One of the goals was to determine if BMI was related to participation
in federal programs which provide free and reduced-price meals. She oversaw a study
in Augusta, GA, which has 33 public elementary schools. A cluster random sampling
design was used.

• A SRS of 6 elementary schools was chosen from the 33 schools in the city.

• Each fourth-grade student in the selected schools was invited to participate in the
study.

• There were a total of 329 fourth grade children who participated.

What is the population? In this example, why would a cluster random sample be easier
to observe than a SRS?

Discussion: Stratified and cluster random sampling designs seem similar because in
both the sampling frame is divided into smaller groups. However, the two designs are
different.

• The strata in a stratified random sample consist of individuals who are homogeneous
in some way (e.g., sex, race, political affiliation, etc.). On the other hand, clusters
in a cluster sample will probably include individuals from all strata.

• Stratified random samples are used to ensure overall representation. However, a
secondary goal is often to compare the results between/among the strata; e.g.,

– How do individuals of different sexes compare? Different races?

– What is President Biden’s approval rating among Republicans? Democrats?
Independents?

• In a cluster random sample, on the other hand, there is usually no interest in
comparing the clusters themselves. Clustering is used because it makes sampling
easier, especially if carrying out the survey or study involves extensive observation
(as in Example 4.7).

• Cluster random samples are common in polling individuals in a large metropolitan
city, for example. City blocks or neighborhoods can act as clusters. Investiga-
tors then only need to visit the clusters that were randomly selected (instead of
spreading them out over the whole city).
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Terminology: A systematic random sample arises when individuals are selected at
a pre-determined increment. For example,

• every 10th customer

• every 100th web site visitor

• every 5th student

• every 6th airline passenger (for “enhanced screening”), etc.

Example 4.8. Suppose I wanted to select a systematic random sample of students from
this class using the following sampling frame (which I have).

Student Code
Abherdine 1

Albert 2
Anderson 3

...
...

Yell 158
Zhang 159

Zynkowski 160

A systematic random sample could select the 5th student on the list, the 15th, the 25th,
and so on. The last student sampled would be the 155th student on the list. This would
give a systematic sample of 16 students. Every tenth student is sampled.

Discussion: Elaborate sample surveys may use more than one type of probability sam-
ple. For example, suppose we wanted a representative sample of all SC adults (4 million).
We could accomplish this in stages:

• Stage 1: Treat the 46 counties in SC as clusters and take a SRS of counties (clusters
could also be chosen systematically).

• Stage 2: Within each selected county, take a stratified random sample of individuals
(e.g., by sex, race, political affiliation, etc.).

This design would involve using multiple probability sampling methods.

References:
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5 Experiments, Good and Bad

5.1 Introduction and examples

Important: Here is an excerpt from Moore and Notz (pp 88):

“Observational studies passively collect data. We observe, record, or measure,
but we don’t interfere. Experiments actively produce data. Experimenters
actively intervene by imposing some treatment in order to see what happens.”

This passage explains succinctly the difference between observational studies and exper-
iments. Here is the specific language we use with experiments:

• The individuals under study in an experiment are called subjects.

• A treatment is a specific experimental condition applied to the subjects (e.g.,
drug, method of instruction, etc.).

• A response variable is a variable that measures an outcome or result of a study.

• An explanatory variable is a variable that we think explains or causes changes
in the response variable.

Example 5.1. Does aspirin reduce the rate of heart attacks? The Physicians’ Health
Study Research Group (1989) summarized the results of an experiment involving 22,071
male physicians (aged 40+). One of the goals was to investigate whether taking aspirin
reduces the risk of heart attack. This experiment was performed in the 1980s and the
aspirin component ended in 1995 (there was a second component we will discuss later).

• 11,037 physicians were assigned to take aspirin (325 mg every other day)

• 11,034 physicians were assigned to take a placebo.

Physicians were randomly assigned to either the aspirin or placebo group. The experi-
ment was double-blinded.

• Subjects −→ physicians

• Treatment −→ aspirin/placebo

• Response variable −→ heart attack? (1 = Yes; 0 = No)

• Explanatory variables −→ aspirin/placebo (treatment), age, smoking history, dia-
betes status, family history, cholesterol level, blood pressure, alcohol use, exercise
frequency, BMI.
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Results: Here were the results from the experiment:

• 139 out of 11,037 physicians (1.26%) receiving aspirin had a heart attack

• 239 out of 11,034 physicians (2.17%) receiving placebo had a heart attack.

These results, even when adjusting for the other explanatory variables, were determined
to be statistically significant. In plain English, this means the difference between
the treatment groups (aspirin/placebo) was so large that it was likely not explained by
random chance.

Discussion: There were many limitations to this study.

• Researchers mailed invitation letters to all male physicians between 40 and 84 years
of age who lived in the US and who were registered with the American Medical
Association (in 1981). There were 261,248 letters mailed. The response rate was

22, 071

261, 248
≈ 0.084 (or 8.4%).

The sample had a mix of convenience and voluntary response aspects.

• What about younger male doctors? Doctors who were not registered with the
AMA?

• The study did not include female doctors.

• What about the general public? Doctors probably lead healthier lifestyles (on
average) than others.

Discussion: In Example 1.1, Cox et al. (2015) summarized a study where one of the
research questions was:

• Does treating premature infants with caffeine increase the chances of developing
necrotizing enterocolitis?

In an 18-month period during 2008-2009, there were 615 infants admitted to the neonatal
intensive care unit at Palmetto Richland Hospital in Columbia, SC.

• 35 out of 137 patients (26%) receiving caffeine developed NEC

• 10 out of 478 patients (2%) not receiving caffeine developed NEC.

Was this an experiment? No. Infants were never “assigned” the caffeine treatment in
advance. Investigators merely observed what happened by retrospectively examining
electronic health records for patients admitted to the NICU. This was an observational
study.
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Example 5.2. Sex education for adolescents. Jemmott et al. (2010) summarize the
results of an experiment performed with 662 black students (6th/7th grade) recruited
from 4 public schools that serve low-income communities in the northeast US. The study
took place during 2001-2002. Students were randomly assigned to one of five different
instruction programs:

1. Abstinence only (8 hours)

2. Safe sex instruction (8 hours); discussed condom use, STIs, etc.

3. Comprehensive (abstinence and safe sex/STI discussions; 8 hours)

4. Comprehensive (abstinence and safe sex/STI discussions; 12 hours)

5. Health promotion (8 hours); discussed general health practices (control group).

Students were followed for 24 months and self-reported sexual activity during this time.

• Subjects −→ students

• Treatment −→ educational program (A, SS, C-8, C-12, Control)

• Response variable −→ sexual intercourse during follow-up period? (1 = Yes; 0 =
No)

• Explanatory variables −→ educational program (treatment), sex, age, living ar-
rangement, previous sexual history.

Results: Students in the abstinence only treatment group were least likely to participate
in sexual intercourse in the 24-month follow-up period. The results were statistically
significant. This means the results for the abstinence only group were so different than
the other groups that this difference was likely not explained by random chance.

Limitations: There were many limitations to this study.

• Self-reported data can be inaccurate (especially on sensitive topics). However, it is
not possible for the investigators to monitor the children and actively record sexual
activity themselves.

• The sampling design was a convenience sample. The investigators made announce-
ments in assemblies, classrooms, and lunchrooms (i.e., locations where students are
“easiest to recruit”).

• The study included black students only.

• The study included only students from low-income communities in one geographic
region of the US.
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Example 5.3. Does withholding feed from pigs prior to slaughter reduce the incidence
of salmonella? An experiment in North Carolina was carried out to investigate this
question. Pigs who were exposed to salmonella prior to slaughter were randomly assigned
to one of three treatment groups:

1. Feed withheld 0 hours prior to slaughter

2. Feed withheld 12 hours prior to slaughter

3. Feed withheld 24 hours prior to slaughter.

After slaughter, each pig’s cecum (part of the large intestine) was cut open and tested
for salmonella. There were two competing theories on the impact feeding would have:

1. Slaughtermen may not lacerate the entrails of lighter pigs as often. Contamination
of the cecum would be minimized and therefore the percentage of salmonella cases
would be smaller for lighter pigs.

2. The stress from feed withdrawal on the pigs themselves may increase the excretion
of salmonella by the pigs. Therefore, the percentage of salmonella cases would be
larger for lighter pigs.

• Subjects −→ pigs

• Treatment −→ feeding withdrawal schedule (0 hours, 12 hours, 24 hours)

• Response variable −→ salmonella detected in cecum? (1 = Yes; 0 = No)

• Explanatory variables −→ feeding withdrawal schedule (treatment), sex, initial
weight, different marketing groups.

Results: The percentages of cases where salmonella was detected were similar among
the three treatment groups (60%, 64%, and 67%, respectively). These small differences
were not statistically significant. In other words, the differences in the percentages
among the three treatment groups could have arisen simply by random chance (and thus
neither of the proposed theories was supported).

Limitations: There were some limitations to this study.

• The sampling design was a convenience sample. Investigators worked with a pig
development nursing site to carry out their experiment and they sampled all of the
pigs at that location.

• Therefore, it is hard to know whether the results would change if the investigators
included pigs from other nurseries.

• The investigators excluded underweight and overweight pigs.
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5.2 Randomized comparative experiments

Terminology: A randomized comparative experiment is an experiment that com-
pares two or more treatment groups. Randomization is used to assign subjects to one of
the treatment groups.

Terminology: Randomization is the use of impersonal chance to assign subjects to
treatment groups.

• This produces groups of subjects that should be “similar on average” before we
apply the treatments.

Outline
Sample subjects from population

↓
Randomize subjects to treatments

↓
Record data on each subject

↓
Analyze data

↓
Make statement about the differences between/among treatments.

• If investigators assigned subjects to treatment groups in a biased way, then this
would destroy the experiment. We could not say if a treatment difference was due
to the treatments or due to the biased assignment.

Remark: Examples 5.1-5.3 are examples of randomized comparative experiments.

• In Example 5.1, there are two treatment groups (aspirin, placebo).

• In Example 5.2, there are five treatment groups (A, SS, C-8, C-12, Control).

• In Example 5.3, there are three treatment groups (0 hrs, 12 hrs, 24 hrs)

In each experiment, subjects (i.e., physicians, students, and pigs, respectively) were
randomly assigned to one of the treatment groups.

Example 5.4. Suppose we wanted to compare taking STAT 110 online and taking
STAT 110 in this large lecture in-class format. In a randomized comparative experiment
with 320 students, we could randomly assign 160 students to my online section. The
remaining 160 students would take my in-class section.

• This experiment would be terribly difficult to implement in practice. Getting USC
administration approval would be difficult, and recruiting 320 students to partici-
pate probably would be more difficult.
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• Randomizing students to the different course formats would make the two groups
similar on average. This would be preferred.

• However, in real life, students sign up for the format that is best for them.

• If we did not use randomization, this would create the presence of a lurking vari-
able: student preparation/background.

• Do the backgrounds of students who sign up for online and in-class sections differ
systematically in some way? If we did not do a randomized comparative experiment,
then any differences we saw in the treatment group outcomes (e.g., final exam score,
etc.) could be attributed to this.

• In other words, the course format and student preparation/background explanatory
variables are confounded.

Terminology: A causal diagram is a diagram which shows how different explanatory
variables have a causal influence on the response variable.

Remark: Example 5.4 illustrates the value of randomization. When we randomly
assign subjects to the different treatments, we create groups of subjects which are “sim-
ilar on average.” This mitigates the impact of lurking variables and allows us to assess
causality more effectively.

That is, does exposing subjects to different treatments cause a change in the
response?

PAGE 36



STAT 110: CHAPTER 5 JOSHUA M. TEBBS

This is why randomized comparative experiments are considered to be the gold standard
in statistics. In observational studies, it is much harder to “block out” the effects of
lurking variables (more on this later).

Summary: Here is the logic behind randomized comparative experiments:

• Randomization produces groups of subjects that should be “similar on average” in
all respects before we apply the treatments.

• Comparative design exposes the treatment groups to similar conditions other than
the treatment they receive.

• Therefore, differences in the response variable (usually a group average or propor-
tion) must be due to the effects of the treatments.

5.3 Practical considerations

Terminology: A placebo is a “dummy treatment” with no active effect on the response.
In a comparative experiment, the control group may receive a placebo or an existing
treatment (historical control). For example, to evaluate the effectiveness of a new drug
or intervention, we may use a randomized comparative experiment with two groups:

• new drug/intervention versus placebo

• new drug/intervention versus an existing one.

A control group is used as a baseline for comparison.

Remark: The use of a control group helps to control the effects of lurking variables. For
example, Moore and Notz (pp 91) describe a one-track experiment where patients with
chronic migraine are given the drug fremanezumab. A one-track experiment uses only
one treatment group. That is,

All patients −→ fremanezumab.

• If patients respond favorably to the drug (e.g., fewer headaches, less severity, etc.),
we can’t say if it is due to the drug or the due to a placebo effect. Some patients
will respond favorably to any treatment or simply get better on their own.

• Therefore, if this effect is real, then we should include a second group (a control
group) that receives a placebo. This will then balance out and make the two groups
(fremanezumab/placebo) comparable.

Silberstein et al. (2017) summarize the results of a randomized comparative experi-
ment with two doses of fremanezumab and a placebo. In other words, patients in the
experiment were randomly assigned to one of three treatment groups:
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1. Receive fremanezumab quarterly

2. Receive fremanezumab monthly

3. Receive placebo.

Patients in both the fremanezumab groups experienced a reduction in the number of
headache days and migraine severity. These results were judged to be statistically
significant. In other words, the differences between the two groups (fremanezumab
quarterly versus placebo, fremanezumab monthly versus placebo) were so large that they
probably were not due to random chance.

Terminology: We say an experiment is blinded if the subjects do not know which treat-
ment they are receiving. An experiment is double-blinded if neither the investigators
nor the subjects know which treatment they are receiving.

• Blinding and double-blinding are used to eliminate the effects of lurking variables.

• If the patients know which treatment they are receiving, then this might affect their
willingness to participate in the experiment. Those in the placebo group may lose
interest and drop out.

• Double-blinding is used to eliminate a biased assignment of subjects to the treat-
ments. For example, a physician with a financial stake (e.g., research funding, etc.)
may assign healthier patients to the new drug/intervention group with the hope
they will show more favorable results.

• A randomized, double-blinded comparative experiment is “the holy grail” in med-
ical research.

Discussion: The placebo effect can be real! Aseffi and Garry (2003) summarized
the results of a randomized comparative experiment involving college students to study
the effects of memory when consuming alcohol. In the experiment, 148 students were
randomly assigned to two treatment groups:

1. Drinking vodka and tonic

2. Drinking tonic only.

However, the experiment did not use blinding. Students were informed what group they
were assigned to.

• In reality, both groups were drinking tonic only!

• Afterwards, students were shown a sequence of slides depicting a crime. The re-
sults showed that participants who believed they were intoxicated were more “sug-
gestible” and made “worse eyewitnesses” than those who thought they were sober.
Moreover, students who thought they were drinking vodka even behaved drunk,
displaying physical signs of intoxication.
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Terminology: We say the differences observed in a study (an observational study or an
experiment) are statistically significant if they are likely not due to random chance.

Illustration: Consider Example 5.4 which hypothetically compares two groups of stu-
dents taking STAT 110 in different formats:

1. STAT 110 online

2. STAT 110 in-class lecture.

Suppose that, in reality, the two groups of students are similar in every way (making
them comparable without lurking variables) and suppose the classes are taught in the
same way except for class format.

Scenario 1: On-line section: 82% class average; In-class section: 83%.

• Is there a difference between the two groups? Yes.

• However, it is small and it could therefore have easily arisen “by random chance”
(e.g., due to the effects of random assignment, inherent differences among students
even if the groups are similar on average, etc.).

• Not statistically significant.

Scenario 2: On-line section: 67% class average; In-class section: 83%.

• Is there a difference between the two groups? Yes.

• The difference is quite large. It could have arisen by random chance but it is not
likely. This large difference is more likely to have arisen from the difference between
the class formats.

• Statistically significant.

Q: How do we determine if the results of a study are statistically significant or not?
A: This is what STAT 201, STAT 205, and STAT 206 are all about (as well as other
statistics courses). Statistical methods like confidence intervals and hypothesis tests
are used to determine statistical significance. We will touch on these topics only briefly
at the end of this course.

Discussion: Moore and Notz (pp 97) pose the following questions:

• Do children who are bullied suffer depression as adults?

• Do doctors discriminate against women suffering from heart disease?

• Are e-cigarettes safe?
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Unfortunately, we cannot use a randomized comparative experiment in instances such
as these. We can not “assign” children to be bullied, subjects to be women, or stu-
dents to smoke e-cigarettes. We can still perform comparative studies, but they will be
observational like the NEC study in Example 1.1.

Terminology: An observational study is retrospective if it uses information on events
that have taken place in the past. For example, we could

• ask adult patients if they were bullied as a child.

• ask women with heart disease if they have ever experienced discrimination on the
basis of sex or gender.

• ask students if they have ever smoked e-cigarettes.

In each of these instances, we could still do a comparative study. For example, we could
group adult patients retrospectively according to their bullying status, that is,

1. Experienced bullying as a child

2. Did not experience bullying as a child.

We could then record the percentage of depression cases for the two groups and compare
them. However, if subjects were not randomized to the two groups, then there is no
guarantee the groups will be similar to begin with. Therefore, any such comparison
would be obscured by lurking variables which make the groups dissimilar.

• In other words, bullying status (bullied/not) will be confounded with all of the
other explanatory variables which make the two groups dissimilar to begin with.

– sex/gender; sexual orientation

– genetic information; e.g., if parents had depression, etc.

– experienced maltreatment as a child

– experienced depression as a child

– probably many, many others.

• We could determine that the difference in the percentage of depression cases be-
tween the two groups is statistically significant! However, we have no way of know-
ing if this is due to the effect of bullying or if it is due to all of the other explanatory
variables we could not control for.

– Remember, the beauty of randomization in comparative experiments is that
it makes the treatment groups “similar on average” before the treatments are
applied.

– Therefore the effect of lurking variables is “balanced out” between/among all
treatment groups.
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• This is why so many observational studies (even if they are comparative in nature)
cannot be replicated. The effects of the lurking variables may be too great. There-
fore, if the study was performed again with a new sample of subjects, the results
could change.

Reality: Assessing causality in observational studies is difficult! There are usually
too many confounding variables. This is why randomized comparative experiments are
preferred.

Q: If the goal is to establish a causal relationship between an explanatory variable
(e.g., bullying status) and a response variable (e.g., depression/not), can an observational
study still be useful? Can anything be done to remove or mitigate the effects of lurking
variables? In other words, can observational studies be “salvaged?”
A: Yes, but the statistical methods needed to do so can be complex. Causal inference
is an area of statistics dedicated to this question. There are two main approaches:

1. Regression adjustment

2. Matching explanatory variables.

Regression adjustment adjusts for the effects of lurking variables by including them in
a regression model. Matching is used to make the groups “more similar” by intentionally
including subjects in different groups whose explanatory variables match each other.
Unfortunately, for either approach to be useful, investigators have to know beforehand
all of the possible lurking variables! If any important ones are missed, then the groups
being compared are still dissimilar in some systematic way. In this case, the sword of
Damocles likely awaits despite the investigators’ best efforts.
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6 Experiments in the Real World

6.1 Introduction

Terminology: The three basic principles of experimental design are:

1. Randomization: the use of impersonal chance to assign subjects to treatment
groups.

2. Replication: using enough subjects in each treatment group to reduce chance
variation in the results.

3. Control: removing the effects of lurking variables and ensuring all subjects are
treated similarly.

Here is the importance of each principle:

• Randomizing subjects to different treatment groups is our best hope to make the
groups “similar on average.” In other words, if there are lurking variables (e.g.,
sex/gender, race, etc.), then their effects will be shared equally by all treatment
groups. This puts the groups on a level playing field before the treatments are
administered.

• After the experiment is over and all the data are in, presumably we will want to
make a statement about how the treatment groups compare. For example,

– Does aspirin reduce the chance of heart attack when compared to placebo?

– Which method of instruction is most effective at reducing the incidence of
sexual intercourse during the follow-up period?

– When should feed be withdrawn to reduce the transmission of salmonella
during slaughter?

In practice, answering these questions starts with an assessment of statistical
significance. Are the differences we see between/among the groups so large that
they would likely not be due to random chance? Using enough subjects (replication)
helps us to make this type of assessment. The more subjects we use, the better our
chances of finding differences between/among the groups when they truly exist.

• The third principle, control, is the most difficult to maintain especially when an
experiment involves human subjects. As Moore and Notz put it, “Treating subjects
exactly alike is hard to do.”

Remark: We start with an example where things aren’t all that hard. When the subjects
are inanimate objects or even living things we can control easily (e.g., plants, rats, pigs,
etc.), maintaining a high degree of control is easier.
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Example 6.1. An engineer wants to compare the drying times of three brands of paint
(Brands A, B, and C). She has 30 small wooden boards. Each board will be randomly
assigned to one of the three brands of paint (10 boards per brand). The boards will then
be painted using an automated system, and the drying time (in minutes) for each board
will be recorded by the engineer.

• Subjects −→ boards

• Treatment −→ brands of paint

• Response variable −→ drying time (in minutes).

We could use R to perform the randomization. Label each board using 1, 2, ..., 30.

> boards = seq(1,30,1)

> sample(boards,30,replace=F)

19 29 5 26 3 10 23 13 17 9︸ ︷︷ ︸
assign to Brand A

27 1 21 28 25 30 20 14 16 11︸ ︷︷ ︸
assign to Brand B

22 2 18 7 15 6 12 8 24 4︸ ︷︷ ︸
assign to Brand C

The important thing is that we are using impersonal chance to assign subjects (boards) to
treatments (brands of paint). We also see how replication is being used in this experiment.
The engineer is using 10 boards per treatment group. This gives her more information
about the brands of paint and their drying times than had she used 2 or 3 boards per
group. Averaging a larger number of measurements per group reduces chance variation.

Q: What are possible lurking variables in this experiment? Are there any ways the
engineer could introduce lurking variables herself?

6.2 Clinical trials

Definition: A clinical trial is a comparative experiment that studies the effectiveness
of administering medical treatments to human subjects. A clinical trial is the clear-
est method of determining whether a new drug or intervention has a postulated effect.
Clinical trials can generally be broken down into four phases:

• Phase I. Very small number of subjects. The goal is to establish the correct dosing
amount and the correct dosing frequency.

• Phase II. Small number of subjects. The goal is to get preliminary information
about the efficacy of the drug or intervention. Positive trials then move to the next
phase.
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• Phase III. Large number of patients. This is a large, carefully designed randomized
comparative experiment evaluating the effects of the drug or intervention against
placebo or the standard treatment. These experiments usually involve thousands
of patients from all over the US (or the world).

• Phase IV. This is the last phase to determine if the new drug/intervention can be
administered to the general public and which groups of patients would benefit the
most. Side effects and safety are closely monitored.

The web sites www.clinicaltrials.gov and www.centerwatch.com summarize the re-
sults and findings from recent clinical trials. Here is an example:

Example 6.2. Scher et al. (2012) published results from a phase III trial of enzalutamide
for the treatment of metastatic prostate cancer. This international, randomized, double-
blind, placebo-controlled study enrolled 1,199 men who had been previously treated with
chemotherapy.

• Subjects received enzalutamide 160mg daily (as four 40mg capsules) or placebo.

• The data showed enzalutamide exhibited a statistically significant benefit in overall
survival compared to placebo.

– Men treated with enzalutamide had a median survival of 18.4 months (95%
confidence interval, >17.3 months) compared to 13.6 months (95% confidence
interval, 11.3-15.8 months) for men treated with placebo.

• The drug was well tolerated. The most frequent adverse events were fatigue, diar-
rhea, and hot flush. Seizure was reported in less than 1% of patients treated with
enzalutamide.

Remark: In the absence of a well-designed clinical trial, it is easy for anecdotal infor-
mation about the benefit of a drug or therapy to become accepted. This can be serious
and costly.

• In the 1970s, laetrile was rumored to be a “wonder drug” for cancer patients even
though there was no evidence of biological activity.

• People were convinced there was a conspiracy in the medical community to keep
the treatment from them.

• In 1982, a clinical trial with 175 patients (conducted at the Mayo Clinic) showed
that nearly every patient experienced negative outcomes. Cancer tumors actually
increased in size and some patients experienced cyanide poisoning.

• The National Institutes of Health evaluated the evidence separately and concluded
that clinical trials of laetrile showed no effect against cancer.
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More recently, during the pandemic, there were disputes about the effects of hydroxy-
chloroquine and ivermectin as drug therapies to treat patients with covid-19. Reis et
al. (2022) reported how over 60 clinical trials were performed to study the effects of
ivermectin with no definitive conclusion reached. Some studies showed statistically sig-
nificant results while others did not. The authors’ study did not show a benefit from
taking ivermectin in terms of reducing the percentage of hospital admissions. Here is a
summary from their abstract:

“A total of 3515 patients were randomly assigned to receive ivermectin (679
patients), placebo (679), or another intervention (2157). Overall, 100 patients
(14.7%) in the ivermectin group had a primary-outcome event, as compared
with 111 (16.3%) in the placebo group (relative risk, 0.90; 95% Bayesian
credible interval, 0.70 to 1.16).”

In other words, was there a difference in the percentage of patients who were admitted
to the hospital? Yes. However, this difference was not statistically significant; it could
have arisen just by random chance.

Remark: Because clinical trials involve human subjects, there are important ethical
issues that arise. For example, is it ethical to purposely withhold enzalutamide from pa-
tients suffering from advanced prostate cancer? Data and research ethics will be discussed
in Chapter 7.

6.3 Common problems in experiments

Remark: Just as we saw with sample surveys and their potential problems (Chapter 4),
there are many ways experiments can go horribly wrong. Most of these have to do with
working with human subjects.

• If an experiment has any chance of providing insight on causality, then it is critical
all subjects are treated alike except for the treatments.

• If subjects in different treatment groups are treated differently, this could introduce
lurking variables which are confounded with the treatment. Blinding is a useful
technique to avoid this when the experiment involves human subjects.

– Blinding: the subject does not know which treatment s/he is receiving

– Double blinding: neither the subject nor the investigator knows which treat-
ment the subject is receiving.

Blinding can mitigate the placebo effect, a phenomenon which says subjects will re-
spond to any treatment, even if it confers no biological or psychological effect. We
already saw this in Aseffi and Garry (2003) where students displayed noticeable signs of
intoxication despite drinking no alcohol (see Chapter 5). Moore and Notz (pp 113-114)
give more examples:
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• 42% of balding men maintained or increased their amount of hair when taking an
innocuous substance designed to look like hair gel.

• 13/13 patients broke out in a rash after receiving a solution not containing poison
ivy (they were told it did).

Main point: If there is a placebo effect in any experiment, then we want this effect to be
the same in all treatment groups. Blinding therefore becomes critical. If subjects knew
which treatment they were receiving, this might create imbalance among the groups. In
this case, the placebo effect would be confounded with the effect of the treatment.

Note: Double blinding is used to remove possible bias caused by the investigators in
charge of the experiment. If an investigator has a vested interest in a particular treatment,
s/he may introduce bias by treating different subjects differently. For example, subjects
taking the “real” treatment may get more attention or better care. This creates an
unwanted lurking variable.

Remark: It might not be possible to blind subjects in an experiment. For example,
in Example 5.4, students would obviously know if they are taking the online version of
STAT 110 or my in-class version. Elsewhere, if an individual is assigned to a treatment
group which takes a standard drug and an experimental radiation intervention in a cancer
clinical trial (versus the other group which only receives the drug), then blinding may not
be possible. Subjects would have to report to additional appointments where radiation
is administered.

Terminology: Undercoverage can be a problem in experiments. In any experiment,
subjects are first sampled from a larger population. Recall the outline for randomized
comparative experiments:

Outline
Sample subjects from population

↓
Randomize subjects to treatments

↓
Record data on each subject

↓
Analyze data

↓
Make statement about the differences between/among treatments.

If the sampling design is biased (e.g., convenience, voluntary response, etc.), then we are
systematically excluding certain individuals from participating. For example,

• a sociology experiment involves USC students but excludes students majoring in
the hard sciences
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• a clinical trial examines different nutrition methods for newborns but underrepre-
sents mothers of certain races

– see also Example 3 in Moore and Notz (pp 114-115) for a further discussion
of minority underrepresentation in clinical trials

• an agricultural experiment compares different treatments for Ovine Johne’s disease
(in sheep) but includes only certain breeds.

Investigators want their conclusions to apply to an appropriate population of interest. If
certain groups are not represented fairly, conclusions could be biased, or, at best, limited
to only those groups studied.

Terminology: Non-adherence occurs when subjects do not follow the treatment reg-
imen outlined by the investigator. For example, patients in a clinical trial might take
their treatment at incorrect times or take an incorrect dose.

• Phase I clinical trials are designed to establish the correct dosing schedule and
dosing amount. The success of the subsequent phases depends on this.

Some patients may not take the treatment at all or provide incorrect self-reported data
(e.g., underreporting their pill count, etc.). This is non-adherence. Protocol inclusion
criteria and pre-interviews can be useful in determining which patients are most likely to
adhere to the specified treatment plan.

Terminology: Dropouts are subjects who begin the experiment but do not complete
it. Especially when dealing with humans, some subjects may decide that they no longer
want to participate in the study.

• Did they drop out for a reason? This may be due to undesirable side effects, lack
of interest, or some other factor.

• Dropouts can cause serious bias if the reason is due to the treatment itself. If
subjects drop out randomly (e.g., move away, etc.), then this may not cause large
problems.

Terminology: Lack of realism occurs when we can not generalize the results of an
experiment to a larger population. This can happen when an experiment is performed
in very controlled settings that ultimately may not emulate real life.

• An agricultural experiment performed in a weather-controlled greenhouse setting
may not adequately describe what happens on large farms.

• A psychology experiment subjecting students to irritating stimuli (e.g., to measure
concentration levels, etc.); students know the experiment will be over soon.
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Lack of realism is a common problem in clinical trials. The trials are usually performed
on selected groups of individuals who first must meet strict inclusion criteria and then
receive very careful attention for the duration of the trial. What about individuals who
do not meet the inclusion criteria? If the FDA approves the new treatment, will the
clinical benefit extend to “ordinary patients?”

Terminology: The Hawthorne effect is a change in subjects’ behavior or outcomes
not directly attributable to the treatment received but simply due to the “awareness of
being in an experiment.”

• The “Hawthorne experiments” were designed to study the effect of shop-floor light-
ing on worker productivity at a telephone parts factory in Chicago in the 1920s.

• However, researchers were perplexed to find that productivity improved, not just
when the lighting was improved, but also when the lighting was diminished! In
fact, productivity improved whenever changes were made in other variables such
as working hours and rest breaks.

• The researchers concluded that the worker productivity was not being affected by
the changes in working conditions, but rather by the fact that worker behavior
changed due to an awareness of being watched more closely.

Some believe the Hawthorne effect is an intrinsic lurking variable in any experiment.
However, this belief is not universally accepted.

6.4 Experimental designs

Terminology: In a comparative experiment which uses a completely randomized
design, subjects are assigned to the treatment groups at random. In other words, each
subject is treated as basically “the same in all regards” and then random chance decides
which treatment group they will go to.

Example 6.3. An exercise science major wants to compare different training methods
for powerlifters. He has recruited 60 lifters from the Columbia area. Each lifter will be
assigned at random to one of the three training methods:

1. Bodybuilding training only (less weight; focuses more sustained muscle growth)

2. Powerlifting training only (high-impact heavy lifting only)

3. Bodybuilding and powerlifting training combined.

At the end of the training cycle, each lifter will perform their maximum lift on squat,
bench press, and deadlift. The total weight will be recorded (combining all three lifts).

• Subjects −→ lifters

PAGE 48



STAT 110: CHAPTER 6 JOSHUA M. TEBBS

• Treatment −→ training method

• Response variable −→ total weight among three maximum lifts.

If a completely randomized design is used, then each lifter is treated as being “the same
in all regards” and is simply randomized to one of the three training methods.

Q: What are possible lurking variables here? That is, which variables might have an
influence on the response variable but are not related to the training method?

• sex

• body weight

• years of experience lifting

• others?

Of course, the beauty of randomization is that the effects of all lurking variables should
be “averaged out” among the three treatment groups. However, if we can identify ob-
vious lurking variables beforehand, why not use a different experimental design which
acknowledges them? Stay tuned!

Remark: In Example 6.3, the three treatment groups were created on the basis of a
single variable: training method. In other completely randomized designs, the treatment
groups can be created by cross-classifying two or more variables. The following example
illustrates this.

Example 6.4. In the Physician’s Health Study (Example 5.1, notes), we discussed how
physicians were randomly assigned to take either aspirin or placebo. Although this is
true, I only told you half the story. Another goal of the study was to determine if taking
beta carotene reduces the incidence of cancer. Therefore, there were two variables used
to form the treatment groups: aspirin use and beta carotene use. Here were the four
groups:

1. Aspirin + beta carotene

2. Aspirin placebo + beta carotene

3. Aspirin + beta carotene placebo

4. Aspirin placebo + beta carotene placebo.

Each physician was assigned to one of these four treatment groups at random. That is,
a completely randomized design was used. When the investigators wrote their seminal
paper in 1989, the effects of beta carotene were not yet determined. However, the aspirin
effect was so overwhelming that investigators could conclude statistical significance before
the trial ended.
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Terminology: In the language of experiments, a block is a group of subjects that are
known (or believed) to be similar in some way. Blocks are created with the expectation
that subjects in one block may respond differently to the treatment than subjects in
another block.

Terminology: In a comparative experiment which uses a randomized block design,
the subjects are first grouped into different blocks. Then, within each block, subjects are
assigned to the treatments at random.

• This is called “restricted randomization.” The investigator randomizes subjects to
treatments within each block after they have been formed.

Importance: Blocking is a form of control. It is used to mitigate the effects of lurking
variables.

• By separating subjects into different blocks and then randomizing subjects to treat-
ments within each block, you are removing the effects of the blocking variable.

• Completely randomized designs do not do this. The effect of the blocking variable
is merely “averaged over” by using randomization. One is then left to hope that the
effect of the blocking variable is the same in each treatment group (not a guarantee).

• Therefore, blocking allows the researcher to compare the treatment groups more
efficiently.

Example 6.3 (revisited). An obvious blocking variable in the powerlifting example is
sex. Men generally lift heavier weight than women, so men may respond to the treatments
differently than women. Therefore, if we were to “block on sex” beforehand, we would
first separate the 60 lifters into two groups:

• Block 1: Female lifters

• Block 2: Male lifters.

In a randomized block design, the investigator would first randomize each female lifter
to one of the three training methods (bodybuilding, powerlifting, combined). This would
then be repeated for lifters in the male block. If the goal is to compare the training
methods, this design removes the effects of sex as a potential lurking variable.

Example 6.5. In the adolescent sex education experiment (Example 5.2, notes), 662
6th/7th-grade students were assigned to one of five sex education instruction methods
(A, SS, C-8, C-12, Control). However, a completely randomized design was not used.
The investigators created four blocks by cross-classifying the students’ grade and sex.
Here were the blocks:

• Block 1: 6th grade/M
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• Block 2: 6th grade/F

• Block 3: 7th grade/M

• Block 4: 7th grade/F.

Within each block separately, students were then randomly assigned to one of the five
instruction methods (A, SS, C-8, C-12, Control). This was a randomized block design.
If the goal is to compare the instruction methods (in terms of the incidence of sexual
intercourse during the follow-up period), this design removes the effects of both grade
and sex as potential lurking variables.

Example 6.6. Uhuri et al. (1998) considered whether using xylitol would reduce ear
infection episodes in children at daycare centers. Children were recruited from 34 daycare
centers in Oulu, Finland. There were a total of 857 healthy children who participated.
A randomized block design was used. Here were the two blocks:

• Block 1: Children who could chew gum

• Block 2: Children who could not chew gum.

Chewing gum status is obviously closely related to age (i.e., younger children may not be
able to chew gum yet). Within each block, children were randomly assigned to receive
xylitol or placebo.

• In Block 1, xylitol was administered in gum form. In Block 2, xylitol was adminis-
tered in syrup form.

Children were followed for a 3-month period. After the experiment ended, the authors
concluded,

“The occurrence of [ear infection episodes] during the follow-up period was
significantly lower in those who received xylitol syrup or gum, and these chil-
dren required antimicrobials less often than did controls.”

There were some potential limitations in this study. There were more dropouts recorded
for the xylitol treatment group than for the control group in both blocks. This might
temper the authors’ conclusions (especially if children dropped out for reasons due to
taking xylitol). The form of the medication (gum/syrup) may also be a lurking variable.
Not all children are being treated equally.

Example 6.7. An ophthalmologist would like to assess the clinical effect of a new eye
drop for pink eye. She recruits 20 patients who have pink eye in both eyes. For each
patient,

• the new eye drop is applied to one eye
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• the standard eye drop is applied to the other eye

• which drop goes in which eye is determined at random for each patient (e.g., by
flipping a fair coin, etc.).

The response variable (measured on each eye) is the time until the infection is eradicated.

Q: What is different about this experimental design?
A: Each subject receives both treatments.

Terminology: A matched pairs design compares two treatments. Each subject in
the experiment receives both treatments.

Remark: Matched pairs experiments are common in studies where the subjects have
“natural pairs” which can be observed; e.g., eyes, ears, arms, etc. They are also common
in twins studies (especially involving identical twins), where one twin is exposed to one
experimental condition and the other twin is exposed to the other condition.

Discussion: Matched pairs experiments are useful because they remove the effects of
lurking variables which make different subjects different. Because each subject receives
both treatments, the investigator is allowed to compare the treatments under perfectly
homogeneous conditions.

• In our pink eye example, suppose Joe takes the new eye drop and Jim takes the
standard eye drop.

• Do we get to see the response variable (time to infection eradication) for each
treatment? Yes. One on Joe, and one on Jim.

• However, these measurements also incorporate every biological variable that makes
Joe and Jim different people. In other words, the difference between the two re-
sponses contains

– information on how the treatments differ

– additional variation that exists because Joe and Jim aren’t the same person.

If the latter source of variability is large, this could hinder our ability to assess how
the treatments compare.

• Matched pairs designs eliminate this extra source of variability because treatment
comparisons are made on the same person.

Example 6.7. Pre-test/post-test studies. An accounting student wants to examine the
effectiveness of a new accounting training course taught to undergraduate students. She
has 100 students who will take the training course.

• Each student will take a pre-test to measure initial knowledge about the subject
matter.
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• Each student will take the training course.

• Each student will take a post-test (after completing the course) to measure knowl-
edge about the subject matter.

The difference between the pre- and post-test scores serves as a measure of training
effectiveness. Each student is measured under two conditions: before the training course
is completed and after. Therefore, this is a matched pairs design.

• It is important to keep track of which student is which so you can “pair up” the
scores; i.e., to “match” the post-test score with the correct pre-test score.

• If this is not done, then you cannot analyze the data correctly−there is no way of
knowing where the “pairs” are.

Discussion: In a sense, matched pairs experiments are a special type of randomized
block design. Each subject serves as its own block. Remember, blocking is a form of
control, that is, to control the effects of lurking variables which may be confounded
with the treatment. Matched pairs experiments not only control the effects of lurking
variables, they remove them completely.

Remark: We have discussed matched pairs experiments in the context where each sub-
ject receives both treatments. However, “matching” or “finding pairs” of subjects could
be done with different subjects. As Moore and Notz (pp 120) put it,

“Choose pairs of subjects that are as closely matched as possible. Assign one
of the treatments to each subject in a pair by tossing a coin....”

In our pink eye example, while Joe and Jim are different subjects, suppose they are the
same age, the same weight, have the same dietary habits, have nearly identical health
backgrounds, have the same eye characteristics, etc. Could we now think of Joe and Jim
as a “pair,” where Joe receives one eye drop and Jim receives the other? We haven’t
removed all lurking variables (Joe and Jim are still different people), but maybe most
of the important ones have been removed by matching. This would certainly be better
than using a completely randomized design, where subjects are assigned to the treatment
groups randomly without any matching at all.
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7 Data Ethics

7.1 Introduction

Discussion: We now live in a time where data are everywhere. It used to be that data
were exclusively numerical values, like birth weights and IQ scores, or categorical values
(e.g., 1 = had heart attack; 0 = not), and statistical science progressed in the last century
by developing appropriate methods to analyze these types of data. Today, “data” can
take on many new forms, for example,

• texts and social media posts,

• digital images, video, and audio,

• geospatial maps,

• notes in electronic health records,

among other forms that are constantly emerging in the “data science age.” Because all
fields use data in some form or another, researchers must know how to use them. In fact,
convincing data are required for researchers to substantiate or to confirm their ideas. If
the data refute their ideas, then they run the risk of being less productive and perhaps
even marginalized by their peers.

From a researcher’s perspective, often the ultimate goal of a study (e.g., survey, ob-
servational study, experiment, etc.) is to demonstrate that a research hypothesis is
supported by the data and the resulting statistical analysis. Here are some examples:

• “Administering caffeine to premature infants increases the risk of NEC.”

• “American voters’ opinions on gay marriage are changing.”

• “Abstinence-only sex education is preferred for at-risk youths.”

• “Genes PLEKHA8, PRR25, FBXL13, VPS54, SLFN5, SNCAIP, and TGM1 are
associated with autism development.”

• “Excessive use of smart phones leads to insomnia and other sleep disorders.”

• “HIV patients with dental insurance provided by Medicaid are more likely to have
unmet dental needs than those with private insurance.”

• “Common core math provides high school students with the skills they need to be
successful in the workforce and in college.”

• “Whites who live in the South are in favor of harsher penalties for Hispanic and
black criminals.”
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• “Eating more cereal increases the chances of having a male child.”

Obtaining empirical evidence for one’s research hypothesis is usually mandatory for pub-
lishing, which serves as a measuring stick for success and accomplishment in academics
and paves the way for future success. Perhaps because of this, there are some researchers
who violate basic ethical principles when carrying out a research experiment or observa-
tional study. Some examples of this include

• cheating on the use of randomization during sampling or treatment assignment

• retaining only those data which are favorable to one’s hypothesis

• faking the data all together.

This chapter deals with data ethics. I identify three individuals who committed blatant
academic fraud by manipulating and fabricating data. Interestingly, Moore and Notz (pp
136) remark,

“Neither will discuss those few researchers who, in the pursuit of professional
advancement, publish fake data. There is no ethical question here−faking data
to advance your career is just wrong.”

Although I understand their reluctance to discuss such examples, I believe it is important
(for you) to see and expose academic fraud when it is obvious.

7.2 Unethical behavior with data: Three examples

Example 7.1. The Duke-Potti cancer research scandal. Dr. Anil Potti’s cancer re-
search at Duke University in the mid-2000s was viewed to be revolutionary. His research
was based on the theory that the best chemotherapy drug treatment could be uniquely
matched to an individual tumor’s DNA. Therefore, instead of viewing cancer patients
as one group of individuals and developing general treatment strategies, an individual’s
treatment plan could be targeted specifically to that individual’s cancer. This is the idea
behind “personalized medicine.”

• Initial data, results, and conclusions supported Potti’s theory and were published
in top medical journals. Of course, funding and accolades started to pour in to
Potti, his mentor, and Duke University.

• Drs. Kevin Coombs and Keith Baggerly, biostatisticians at MD Anderson Cancer
Center in Houston, found basic problems with the data used to make Potti’s con-
clusions. An anonymous source pointed out a misrepresentation of Potti’s academic
credentials on federal grant applications.
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• It was ultimately determined the data collected by Potti and his research colleagues
had been manipulated. Patient data supporting Potti’s groundbreaking approach
were retained. Those that did not were altered to support the theory.

• Patients were assigned cancer treatments that had no effect or made things worse.
Potti “resigned” from Duke, his research career destroyed.

Example 7.2. The LaCour-gay marriage debacle. An aspiring academician in political
science, PhD student Michael LaCour (UCLA) undertook a large experimental study
under the direction of Dr. Donald Green (a political scientist at Columbia). The study
involved political canvassing of registered voters in California, trying to persuade voters
to change their opinions of gay marriage. This study was done before gay marriage
became legal in California and elsewhere.

• The hypothesis proposed by LaCour was that gay canvassers could have more
impact on changing the opinions of voters than straight canvassers.

• The data LaCour “collected” demonstrated this hypothesis was supported over-
whelmingly. LaCour and Green (2014) appeared in Science. News outlets discussed
the findings extensively; LaCour was offered an academic position at Princeton.

• A few months after publication, there were questions raised about who funded the
study (no sources were provided). The whistle blower was another graduate student
at UCLA who had discussed the work with LaCour.

• The whistle blower also demonstrated statistically that Lacour’s published results
matched a theoretical model “a little too perfectly.” It was suggested Lacour’s data
had been completely fabricated. Also, the reported response rates were “extraor-
dinary.”

• LaCour could not successfully defend his data sets nor did he provide them for
others to see; he said they had been “destroyed.” This prevented anyone from
being able to reproduce his findings.

• In the light of these anomalies, Green asked Science to retract the publication.
Princeton soon after rescinded its offer of employment to LaCour.

Example 7.3. The Stewart retractions. In 2023, Dr. Eric Stewart was fired from Florida
State University for fabricating data in a number of high-impact publications. Stewart’s
work focused on race relations in criminal justice. He was an established researcher who
received millions of dollars in federal grants.

• One of Stewart’s PhD students, Justin Pickett was responsible for bringing the
allegations to light. He started to notice problems with the reporting of data in
Stewart’s existing work.
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• Pickett pointed out one of their joint articles claimed the study was based on 1,184
respondents, but that there were actually only 500. It also hand-picked data from
91 counties as opposed to including the full 326 studied. Upon discovery, Pickett
and the other co-authors immediately asked for the article to be retracted.

• The response rates from sample surveys cited in Stewart’s existing work were un-
realistic, often in excess of 60%. Remember the Pew response rate (Chapter 4) of
only 8%? In one instance, Stewart said his “friends from graduate school” helped
him performed the surveys.

• Pickett (2020) performed a statistical analysis which demonstrated decimal place
digits reported in Stewart’s other articles violated “Benford’s Law,” an established
probability law for how unaltered digits 0-9 should appear. The conclusion was the
decimal place digits had to have been changed.

• One of the reasons cited in Dr. Stewart’s termination letter was “extreme negligence
in basic data management with the presence of no backup of the data.” Stewart
never provided coauthors with the data which could reproduce the articles’ analyses.

7.3 Basic principles

Reality: Many observational studies and experiments involve human subjects. There-
fore, a host of ethical issues need to be considered before a study or experiment can be
performed (or even approved).

Terminology: The organization that carries out the study must have an institutional
review board (IRB) that reviews the study and gives its approval. An IRB’s primary
mission is to protect subjects from possible harm.

• In 1974, the US Congress established the National Commission for the Protection
of Human Subjects of Biomedical and Behavioral Research to develop guidelines
for human subjects research (as part of the National Research Act).

– The Act required the establishment of an IRB for all research funded by the
federal government.

– For clinical trials, these were later modified to require IRB approval for all
drugs or products regulated by the Food and Drug Administration.

• IRBs must have multiple members with expertise relevant to safeguarding the rights
and welfare of the subjects.

– At least one member should be a scientist, one a non-scientist, and at least one
must be unaffiliated with the institution/organization. Expertise in bioethics
is also included.
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– An IRB should be made up of individuals with diverse racial, gender, and
cultural backgrounds.

• IRBs approve human research studies that meet specific prerequisites.

– The risks to the study participants are minimized.

– The selection of study participants is equitable (when appropriate).

– Informed consent is obtained and documented for each participant.

– The privacy of the participants and confidentiality of the data are protected.

• Federal grant agencies like NSF and NIH require IRB approval before research
grants get funded. Publications must identify the IRB who approved the study. For
example, in our NEC paper, we write, “This study was approved by the Palmetto
Health Institutional Review Board.”

Terminology: The term informed consent means that subjects must agree in advance
to being included in the study.

• Subjects must be told the purpose of the study and what the possible risks are.

• This itself can present ethical questions:

– Who can give informed consent? What if the study involves young children?
mentally challenged subjects? patients in a coma?

– Are there some instances where the informed consent requirement can be
“overlooked?”

Example 7.4. In Moore and Notz (pp 147-148), your authors describe a criminiology
experiment involving domestic abuse calls answered by police. At the scene, police officers
randomize each offender to one of two groups with different actions:

1. Arrest the offender and hold overnight in jail.

2. Warn the offender and release.

The researchers then visit the victim later to inquire about incidents of recidivism (i.e.,
if the offender has re-offended).

Q: Did the offenders give informed consent to be included in this study?

Definition: Confidentiality is the protection of information provided by subjects and
the assurance that information about individual respondents cannot be derived from the
statistics reported.

• Researchers may report averages or percentages for groups (perhaps one you are
in), but they can not reveal individual information about you; e.g., your income,
your answers to survey questions, etc.
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Definition: Anonymity means that subjects are anonymous. Subjects’ identities are
not known to any researcher involved with the study.

• The randomized response survey method (Chapter 4) is an example where an in-
dividual’s responses are anonymous. However, the researchers will still probably
have identifying information on the subjects.

• Complete anonymity is a rarity in statistical studies. An exception might be online
polls, but those are often useless.

7.4 Ethics in clinical trials

Discussion: A clinical trial involves giving treatments to human subjects. In most trials,
patients are assigned to take a new treatment or some type of control treatment (e.g.,
placebo, standard treatment, etc.). Are clinical trials ethical?

• Although a new treatment could benefit the patient, there are also potential risks
associated with it. Patients are therefore subjected to potential harm.

• If a new treatment is suspected to be better, can we justify ethically assigning some
patients not to get it?

Here is a quote from Dr. Charles Hennekens, director of the Physician’s Health Study
(Example 5.1):

“There’s a delicate balance between when to do or not do a randomized trial.
On the one hand, there must be sufficient belief in the agent’s potential to
justify exposing half the subjects to it. On the other hand, there must be
sufficient doubt about its efficacy to justify withholding it from the other half
of subjects who might be assigned to placebos.”

Terminology: There should be genuine uncertainty about which treatment might be
superior for each individual patient. This is known as equipoise.

• This means that no known superior alternative treatment is available for each
patient.

• Equipoise provides the principled basis for medical research involving patients ran-
domly assigned to different treatments.

• It is accepted that clinical trials are ethical in this setting of uncertainty.

Terminology: Because of the amount invested in clinical trials and ethical concerns,
large Phase III clinical trials are monitored by an independent committee called a Data
Safety Monitoring Board (DSMB). This group meets periodically throughout the
trial and makes recommendations on whether the trial should be modified or stopped.
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• The overall responsibility of the DSMB is to ensure the safety and well-being of
patients enrolled in the trial.

• The DSMB will generally have members with diverse backgrounds including clini-
cians, epidemiologists, biostatisticians, data managers, and ethicists.

• DSMB members should have no conflict of interest with the studies they are mon-
itoring; e.g., no financial holdings, no family member conflicts, etc. All discussions
of the DSMB are confidential.

• The specific responsibilities of the DSMB include

– protocol/manuscript review

– interim reviews (study progress, quality and safety, efficacy and benefit)

– early administrative analyses (recruitment/entry criteria, design assumptions,
quality and timeliness of data collection)

– design modifications (entry criteria, treatment dose, sample size adjustments).

Example 7.5. The Untreated Syphilis Study at Tuskegee grossly violated the equipoise
principle among other ethical guidelines. This study started in 1932 in Macon County,
Alabama and involved 600 black men: 399 with syphilis and 201 who did not have the
disease. The purpose of the study was to see how the disease progressed in black men.

• Participants’ informed consent was not collected. Researchers told the men they
were being treated for “bad blood,” a local term used to describe several ailments,
including syphilis, anemia, and fatigue. In exchange for taking part in the study,
the men received free medical exams, free meals, and burial insurance.

• By 1943, penicillin was the treatment of choice for syphilis and becoming widely
available, but the participants in the study were not offered treatment.

• In 1972, a whistle-blower and an AP news story led to creating a panel to review
the study. The study was ended.

• In 1974, the National Research Act was passed by the US Congress.

• In 1976, the US government agreed to a $10 million settlement, lifetime medical
benefits, and burial services to all living participants. These benefits were later
extended to the participants’ wives and children.

References:

Lacour, M. and Green, D. (2014). When contact changes minds: An experiment on
transmission of support for gay equality. Science 346, 1366–1369. This article was
retracted on May 28, 2015.

Pickett, J. (2020). The Stewart retractions: A quantitative and qualitative analysis.
Econ Journal Watch 17, 152–190.
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8 Measuring

8.1 Introduction

Discussion: Statistics is the science that deals with data. As such, we need to know
where data come from. To set our ideas, let’s reconsider the NEC/caffeine study in
Example 1.1 (notes). There were many variables recorded for each infant in the study;
here are five of them:

• Gestational age (measured in weeks)

• Birth weight (measured in grams)

• Time to discharge (measured in days)

• Nutrition type (Breastmilk, Fluids, Formula, TPN)

• NEC (1 = Yes, 0 = No).

Here is what part of the NEC data set looks like (copied from my Excel file):

Infant Gestational age Birth weight Time to discharge Nutrition type NEC
1 34 2402 25 Breastmilk 0
2 25 755 107 Fluids 1
3 33 2059 33 Formula 0
...

...
...

...
...

...
615 31 1401 72 Fluids 0

Terminology: We measure a variable on an individual (subject) when we assign a
number or category to the variable. We use an instrument to make a measurement.
Quantitative variables have measurements with units attached to them. The measure-
ments of all variables are called data.

Q: What instruments were used to measure the five variables above?

• Gestational age −→ ultrasound

• Birth weight −→ scale

• Time to discharge −→ calendar

• Nutrition type −→ determined by attending obstetrician

• NEC −→ x-ray (reveals if there is an irregular gas pattern in the intestine).
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Discussion: For some variables, different instruments could be used. For example,
take gestational age. Measuring this variable exactly involves a determination of when
conception took place. Ultrasound is widely regarded as the most accurate and reliable
instrument to do this. However, other instruments could be used:

• self-reported menstrual/intercourse history

• clinical observation (after birth); e.g, by measuring head circumference, birth
weight, and other physical characteristics.

These instruments are generally regarded to be biased (inaccurate) and unreliable.

8.2 Measurement error and misclassification

Terminology: Measuring quantitative variables perfectly is not always possible. There
are two sources of measurement error:

• Bias

• Random error.

We can always think of the measurement of a quantitative variable as follows:

Measured value = True value + Bias + Random error.

• We would like to know the true value of the variable for an individual. This isn’t
always attainable.

• A measurement process has bias if it systematically overstates or understates the
true value.

– Bias usually arises from the instrument used to make the measurement.

• A measurement process has random error if repeated measurements on the same
individual give different results.

– If random error is small, we say the measurement process is reliable.

– Perfect reliability arises when the random error component is 0; i.e., repeated
measurements on the same individual are exactly the same.

Example 8.1. Do NOT read this example ahead of time (i.e., before we do it in class).
See next page.
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Instructions: In 30 seconds, read the following passage and count the number of “F’s.”

“THE NECESSITY OF TRAINING FARM HANDS FOR FIRST CLASS FARMS IN
THE FATHERLY HANDLING OF FARM LIVESTOCK IS FOREMOST IN THE MINDS
OF EFFECTIVE FARM OWNERS. SINCE THE FOREFATHERS OF THE FARM
OWNERS TRAINED THE FARM HANDS FOR FIRST CLASS FARMS IN THE FA-
THERLY HANDLING OF FARM LIVESTOCK, THE FARM OWNERS FEEL THEY
SHOULD CARRY ON WITH THE FORMER FAMILY TRADITION OF TRAINING
FARMHANDS OF FIRST CLASS FARMS IN THE EFFECTIVE FATHERLY HAN-
DLING OF FARM LIVE STOCK, HOWEVER FUTILE, BECAUSE OF THEIR BELIEF
THAT IT FORMS THE BASIS OF EFFECTIVE FARM MANAGEMENT EFFORTS.”

Number of F’s on 1st reading:
Number of F’s on 2nd reading:
Number of F’s on 3rd reading:

• Did your answers systematically underestimate or overestimate the true number of
F’s? This is bias.

• Did your answers change from reading to reading? This is random error.

Example 8.2. Using an electronic sphygmomanometer at home while at rest, I measured
my systolic blood pressure (SBP) ten times. Here were the measurements (units = mm
Hg):

131 127 128 132 129 132 134 129 128 130

What are possible sources of bias in this measurement process? Is there random error?
Remember the general idea:

Measured value = True value + Bias + Random error.

Consider the three hypothetical scenarios:

1. My true SBP is 130. In this case, there does not appear to be much (any?) bias.
All the measurements hover around this value (5 below, 5 at or above).

2. My true SBP is 120 (“normal”). In this case, the measurement process is positively
biased. It is systematically reporting SBP measurements that are larger than this.

3. My true SBP is 140. In this case, the measurement process is negatively biased.
It is systematically reporting SBP measurements that are smaller than this.

Q: How do we quantify reliability?
A: We can calculate the variance of repeated measurements on the same individual.
We can do this “by hand” or we can use R.
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Remark: We will discuss the variance in more detail in Chapter 11. For now, here are
the steps to calculate it by hand in Example 8.2 and elsewhere.

1. Find the average of all the measurements.

2. Take each measurement and subtract the average. Square the difference.

3. Add up the squared differences in Step 2.

4. Divide the sum in Step 3 by n−1 (i.e., one less than the number of measurements).

Illustration: Let’s calculate the variance of the SBP measurements in Example 8.2:

Step 1: The average is

131 + 127 + 128 + 132 + 129 + 132 + 134 + 129 + 128 + 130

10
=

1300

10
= 130

Step 2: Calculate each difference and square it:

131− 130 = 1 =⇒ 12 = 1
127− 130 = −3 =⇒ (−3)2 = 9
128− 130 = −2 =⇒ (−2)2 = 4
132− 130 = 2 =⇒ 22 = 4
129− 130 = −1 =⇒ (−1)2 = 1
132− 130 = 2 =⇒ 22 = 4
134− 130 = 4 =⇒ 42 = 16
129− 130 = −1 =⇒ (−1)2 = 1
128− 130 = −2 =⇒ (−2)2 = 4
130− 130 = 0 =⇒ 02 = 0

Step 3: Add up the squared differences:

1 + 9 + 4 + 4 + 1 + 4 + 16 + 1 + 4 + 0 = 44

Step 4: Divide the sum by one less than the number of measurements:

variance =
44

9
≈ 4.89.

Note: Instead of performing hand calculation (like above), you can use R to calculate
this quickly:

> sbp = c(131,127,128,132,129,132,134,129,128,130) # enter the measurements

> mean(sbp) # calculates the average in Step 1

[1] 130

> var(sbp) # calculates the variance

[1] 4.888889
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Interpretation: A measurement process that has small variance is said to be reliable.

• The smaller the variance, the more reliable the measurement process is.

• A measurement process is perfectly reliable if there is no random error. This
happens when repeated measurements on the same individual are all the same.

To illustrate the last point, suppose my 10 SBP measurements were

130 130 130 130 130 130 130 130 130 130

In this case, the variance would be 0. There is no random error.

Discussion: Can a quantitative variable like SBP be measured perfectly? Yes, but only
when there is no bias and no random error. Remember the general idea:

Measured value = True value + Bias + Random error.

• Removing bias can be difficult. Bias usually arises from the instrument used
to make the measurement. Removing bias might mean a different instrument is
needed.

• Removing random error (i.e., attaining perfect reliability) can also be difficult.
One way to reduce random error is to average several measurements on the same
individual. For example, in Example 8.2, the average was

131 + 127 + 128 + 132 + 129 + 132 + 134 + 129 + 128 + 130

10
=

1300

10
= 130.

Reporting the average 130 as my SBP would be more reliable than reporting 10
separate measurements for SBP. “Averaging reduces variation” is a well-known
statistical principle.

Terminology: We say that a categorical variable measurement is misclassified if the
wrong category has been given for an individual.

Example 8.3. The State Hygienic Laboratory at University of Iowa tests thousands of
residents each year for chlamydia. Here are some of the variables they record on each
individual:

• Sex (M/F)

• Whether contact with an STD infected partner occurred in the last 3 months: 1 =
yes; 0 = no

• Presence of symptoms (e.g., painful ejaculation, painful urination, painful menstru-
ation, etc.): 1 = yes; 0 = no

• Chlamydia diagnosis: 1 = positive; 0 = negative.
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Among the variables in this example, contact with an STD infected partner and the
chlamydia diagnosis could be misclassified.

• Contact: Measurements of this variable are self-reported. Therefore, individuals
could lie about sexual contacts if they are embarrassed. Also, the individual re-
porting may not be aware of the STD status of their partner(s). They could have
also lost track of what happened in the three-month time frame.

• The SHL uses the Aptima Combo II Assay to perform the chlamydia test. This
test is not perfect, so some diagnoses will be misclassified.

– An individual could be positive, but the test is negative: False negative

– An individual could be negative, but the test is positive: False positive.

8.3 Counts versus rates

Example 8.4. The following table lists the number of sports-related injuries treated in
US hospital emergency rooms in 2001, along with an estimate of the number of partici-
pants (in thousands) in the sports:

Sport # Injuries # Participants Rate
Basketball 646,678 26,000 24.7
Bicycle riding 600,649 54,000 11.1
Base/softball 459,542 36,000 12.7
Football 453,684 13,000 34.1
Soccer 150,449 10,000 15.0
Swimming 130,362 66,200 2.0
Volleyball 129,839 22,600 5.7
Roller skating 113,150 26,500 4.3
Weightlifting 86,398 39,200 2.2
Fishing 84,115 47,000 1.8
Horse riding 71,490 10,100 7.1
Skateboarding 56,435 8,000 7.1
Ice hockey 54,601 1,800 30.3
Golf 38,626 24,700 1.6
Tennis 29,936 16,700 1.8
Ice skating 29,047 7,900 3.7
Water skiing 26,633 9,000 3.0
Bowling 25,417 40,400 0.6

Q: How should different sports be compared in terms of ER injuries?
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A: If we use the number of injuries (a count), then we would conclude that

• riding a bicycle is more dangerous than football? fishing is more dangerous than
ice hockey?

Note: Here is how injury rate (Rate) was computed:

Rate =
# Injuries

# Participants
.

Because the number of participants is recorded in thousands, the injury rate is the number
of injuries per 1000 participants. For example,

• The injury rate for bicycle riding is 11.1 injuries per 1000 participants.

• The injury rate for football is 34.1 injuries per 1000 participants.

Dividing by the number of participants (i.e., calculating a rate) puts these figures on a
common scale, thereby facilitating a fairer comparison.

Discussion: Using counts instead of rates can be very misleading when comparing two
or more groups, for example,

• “Bicycle riding results in more ER visits than football.”

• “Professor Tebbs gave the fewest number of A’s among all STAT 110 professors.”

• “The number of annual firearm deaths in Texas (2823) is larger than in Vermont
(69).”

– These counts are based on 2014 data from the National Center for Health
Statistics (part of the CDC).

– The rate of annual firearm deaths per 100,000 inhabitants, however, is very
close: 10.6/100,000 (Texas) versus 10.3/100,000 (Vermont).

– Using a rate paints a clearer picture of how the two states compare.

Example 8.5. Then-candidate Donald Trump, during the Republican presidential pri-
mary in 2016, made the claim,

“We got the highest vote count in the history of the Republican Party.”

This statement is true. The previous record was held by President George W. Bush:

• 2000: President Bush: 11.5 million votes

• 2015: President Trump: 13.3 million votes.
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However, this statement is also misleading for the following reasons:

1. The population of the US in 2000 was 282 million. In 2015, it was 325 million!
That is 43 million more residents in 2015, many of whom are eligible voters.

2. President Trump also holds the dubious record of having the largest number of
votes against him during a Republican presidential primary, barely eclipsing John
McCain in 2008.

Main point: When comparing two or more groups of individuals, it is safer to use a
rate or a percentage. Comparing counts can be misleading because the size of the groups
being compared can be very different.

8.4 Measurement validity

Remark: Some variables correspond to physical properties that are clear-cut, and the
variables themselves are easy to measure:

• Birth weight (in grams)

• Whether a physician has a heart attack (1 = yes; 0 = no)

• Monthly rainfall at CAE (in inches)

• Maximum hurricane wind speed (in mph)

• Distance travelled (in miles).

Some variables are more ambiguous and can be more difficult to measure:

• intelligence

• college readiness

• human personality

• quality of a musical performance.

Definition: A measurement is said to be valid if it accurately represents the intended
variable. How would you rate the validity of these measurements?

• IQ test score −→ intelligence?

• SAT score −→ college readiness?

• personality test −→ human personality?

• attendance −→ quality of a musical performance?

PAGE 68



STAT 110: CHAPTER 8 JOSHUA M. TEBBS

Discussion: We can clearly come up with measurements that are not valid. For example,
measurements of height and weight are not valid measures of intelligence. The number of
followers you have on Instagram or TikTok is not a valid measure of your college readiness.
Whether or not you like Five Guys doesn’t tell me much about your personality. A senior
music major may perform a flawless solo in a graduation performance with three people
in attendance.

Remark: The problem with variables like intelligence, college readiness, and personality,
which are common in the social sciences, education, management, and elsewhere, is that
it’s not always clear what they really mean.

• Measuring physical characteristics on human subjects (e.g., height, weight, eye
color, etc.) identify precisely the property being measured.

• Measuring social and psychological properties is more ambiguous. For example, as
Moore and Notz put it,

“If we can’t agree on exactly what intelligence is, we can’t agree on how
to measure it.”

Definition: A measurement is said to have predictive validity if it can be used to
predict success on tasks that are related to the property being measured.

Discussion: Take “college readiness” and think about the following two questions:

1. Is SAT score a valid measurement of college readiness?

2. Do SAT scores help to predict whether USC students will graduate within 6 years?

The first question is hard to answer and even controversial. The second question is not.
Data on graduation rates overwhelmingly show students with higher SAT scores have
higher graduation rates on average. Therefore, SAT score may not be entirely valid
when measuring college readiness, but it does have predictive validity in determining
graduation status.

Note: Assessing validity and predictive validity is done for groups of individuals as a
whole; not specific individuals. There are always exceptions. We all know individuals
who had lousy SAT scores who went on to graduate from college. Similarly, I also know
students who had exceptional SAT scores but dropped out after the first year.

Exercise: In Example 8.3, which variable has better predictive validity in assessing
chlamydia status? Remember the diagnosed status from the assay is not always correct.

1. if an individual had more than one sexual partner within the last 3 months (yes/no)

2. the number of sexual partners an individual had within the last 3 months (quanti-
tative).
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9 Do the Numbers Make Sense?

9.1 Introduction

Example 9.1. Dr. Joel Best, in the introduction of his book Damned Lies and Statistics,
recalls a statistic a student cited in his 1994 PhD dissertation:

“Every year since 1950, the number of American children gunned down has
doubled.”

The author, Craig Sautter, published part of his dissertation in the academic journal
Phi Delta Kappan in 1995; the title of the article was “Standing Up to Violence.” This
statistic was used in his article. A number of other articles have cited Mr. Sautter’s
article (just do a quick Google search).

Discussion: The problem with this statement is that it’s absolutely ridiculous. Suppose
in 1950 there was one child “gunned down” in the US. If Sautter’s claim was correct,
here are the number of children that would be “gunned down” in subsequent years:

Year # Year # Year # Year # Year #
1950 1 1959 512 1968 262,144 1977 134,217,728 1986 68,719,476,736
1951 2 1960 1,024 1969 524,288 1978 268,435,456 1987 137,438,953,472
1952 4 1961 2,048 1970 1,048,576 1979 536,870,912 1988 274,877,906,944
1953 8 1962 4,096 1971 2,097,152 1980 1,073,741,824 1989 549,755,813,888
1954 16 1963 8,192 1972 4,194,304 1981 2,147,483,648 1990 1,099,511,627,776
1955 32 1964 16,384 1973 8,388,608 1982 4,294,967,296 1991 2,199,023,255,552
1956 64 1965 32,768 1974 16,777,216 1983 8,589,934,592 1992 4,398,046,511,104
1957 128 1966 65,536 1975 33,554,432 1984 17,179,869,184 1993 8,796,093,022,208
1958 256 1967 131,072 1976 67,108,864 1985 34,359,738,368 1994 17,592,186,044,416

Therefore, when Mr. Sautter defended his dissertation in 1994, astonishingly, there were
over 17 trillion children “gunned down” in the US that year. Dr. Best calls this the
“worst social statistic ever.”

Exercise: Let’s carefully diagnose Mr. Sautter’s statement:

• 1965: 32,768 children “gunned down.” In 1965, the FBI identified only 9,960 crim-
inal homicides in the entire country (including all people).

• 1975: ≈ 33.5 million. This is more than the number of children living in the US
(about 25.4 million in 1975).

• 1978: ≈ 268 million. This exceeds the population of the United States (about 222
million in 1978).

• 1983: ≈ 8.5 billion. This exceeds the population of the world (about 4.7 billion in
1983).
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• 1987: ≈ 137 billion. This exceeds the human population throughout all of history
on Earth (about 110 billion).

• 1994: ≈ 17.5 trillion. This is 27 = 128 times larger than the previous number!

Doubling numbers increase exponentially fast−much faster than what Mr. Sautter prob-
ably thought. But using the phrase “doubling each year” conveys that gun violence is a
big problem, and this was probably his intended goal. Interestingly, Mr. Sautter (when
pressed) later amended his claim to

“The number of American children killed each year by guns has doubled since
1950.”

This figure was taken from the Children’s Defense Fund, a “non-profit” 501(c) social
action organization in Washington DC (whose 2021 assets were listed at $58 million).
This amended statement is actually plausible, but we learned in the last chapter that
counts are not always a valid measurement when comparing two groups (US in 1950
versus US in 1994).

• The US population increased dramatically from 1950 to 1994 (152.3 million to 262.1
million). This is a 72.1% increase.

• A doubling of the number of gun deaths among children outpaces population
growth, but not by a huge amount−certainly not by the amount Mr. Sautter
wanted his audience to believe.

9.2 Percentage changes

Remark: Percentage changes are commonly reported in the media and elsewhere. For
example,

• “In comparing the 2022-2023 and 2023-2024 academic years, tuition rates at private
universities increased by about 5%. The costs of in-state and out-of-state tuition
and fees at public universities also rose, by nearly 4% and 1.4%, respectively.”

• “U.S. crude oil production fell by 7.4% in 2020, the largest annual decrease on
record.”

• Recognition of this fact may explain the 123% increase in ADHD prevalence among
adults reported between 2007 and 2016.

To calculate a percentage change from one time period to the next, use this formula:

percentage change =
amount of the change

starting value
× 100%.

PAGE 71



STAT 110: CHAPTER 9 JOSHUA M. TEBBS

Example 9.2. In 1950, the US population was 152.3 million. In 1994, it was 262.1
million. Calculate the percentage change in the US population between 1950 and 1994.

percentage change =
262.1 million − 152.3 million

152.3 million
× 100%

=
109.8 million

152.3 million
× 100%

= 0.721× 100%

= 72.1%.

Between 1950 and 1994, the US population increased by 72.1%.

Example 9.3. The number of undergraduate students attending USC (Columbia cam-
pus only) in January 2023 was 25,606. In January 2024, it was 26,968. Calculate the
percentage change between these two time periods.

percentage change =
26,968 students − 25,606 students

25,606 students
× 100%

=
1,362 students

25,606 students
× 100%

= 0.053× 100%

= 5.3%.

The number of undergraduate students attending USC (Columbia campus only) increased
by 5.3% between January 2023 and January 2024.

Example 9.4. In 2019, the US annual oil crude production was 12.2 million barrels per
day (b/d). In 2020, it was 11.3 million barrels per day. Calculate the percentage change
between these two time periods.

percentage change =
11.3 million b/d − 12.2 million b/d

12.2 million b/d
× 100%

=
−0.9 million b/d

12.2 million b/d
× 100%

= −0.074× 100%

= −7.4%.

This corresponds to a 7.4% decrease in the US annual oil crude production between 2019
and 2020.

Remark: Percentage changes can be positive (an increase) or negative (a decrease).
How large can a percentage increase be? Can a percentage increase exceed 100%?

Example 9.5. In 2021, AmStat News reported the following,

“The number of statistics and biostatistics bachelor’s degrees awarded in 2020
increased 474% since 2010, capping what can justifiably be termed the decade
of statistics.”
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Here is where the 474% figure comes from:

• Number of STAT/BIOS degrees awarded in 2010: 861

• Number of STAT/BIOS degrees awarded in 2020: 4942.

The percentage change is

4942 degrees − 861 degrees

861 degrees
× 100% =

4081 degrees

861 degrees
× 100%

= 4.74× 100%

= 474%.

Note: A quantity can increase by any amount between two time periods.

• A 100% increase just means the quantity has doubled.

• A 200% increase means the quantity has tripled.

• A 300% increase means the quantity has quadrupled, and so on.

On the other hand, a quantity cannot decrease by more than 100%. Once a quantity
loses 100% of its value, there is nothing left.

Example 9.6. An advertisement for a new product says that it

“reduces heartburn by 300%.”

No it doesn’t. Once heartburn has been reduced by 100%, there is no more heartburn.
There may be a percentage decrease when comparing subjects who take the product and
those who don’t, but it does not exceed 100%.

9.3 Developing a “number sense”

Remark: We are bombarded on a daily basis by statistics and numbers, and many
people believe the numbers they see without question. Developing a “number sense” is
a phrase your authors use to have you ask if the numbers do make sense. Answer these
questions before you believe what is being said:

1. What didn’t they tell us?

2. Are the numbers consistent with each other?

3. Are the numbers plausible?

4. Are the numbers too good to be true?

5. Is the arithmetic right?

6. Is there a hidden agenda?
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Example 9.7. Hobart and William Smith Colleges (in New York) reported that their
students’ SAT scores have jumped 20 points since 2006.

• In 2006, they instituted an optional-SAT-reporting policy in its admissions.

• Lower scores were less likely to be reported.

• A 20-point increase may not be surprising even if there was no change in incoming
student quality.

Example 9.8. Based on July 2019 data, the Bureau of Labor Statistics (BLS) calculates
the unemployment rate at 3.7%. Let’s look at how this is calculated:

• The number of citizens in the civilian labor force (persons classified as employed or
unemployed) is 163,351,000.

• The number of unemployed persons is 6,063,000.

Therefore, the official July 2019 unemployment rate is

6, 063, 000

163, 351, 000
≈ 0.037 (or 3.7%).

In July 2019, the number of American adults (aged 18 and over) was about 255,000,000.
Therefore, the total number of citizens in the civilian labor force (163,351,000) excludes
about 92 million adults:

• military, government employees, the retired, the disabled, persons not actively look-
ing for work, underemployed, discouraged workers, etc.

How the BLS measures the unemployment rate depends on very precise definitions that
the US government uses. These definitions are usually not provided when citing a figure
like 3.7%.

Example 9.9. According to the FBI,

“over 26% of home burglaries take place between Memorial Day and Labor
Day.”

This statistic was used in an advertisement for a home security system.

• There are 14 weeks between Memorial Day (end of May) and Labor Day (beginning
of September). There are 52 weeks in a year.

14

52
≈ 0.27 (or about 27%).

This figure is consistent with burglaries happening at basically the same rate all year.
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Example 9.10. The Census Bureau once gave a simple test of literacy in English to
a random sample of 3400 people. The New York Times printed some of the questions
under the headline,

“113% of adults in US failed this test.”

The embarrassing thing is that this must have passed multiple editors, all of whom missed
it or didn’t know it was wrong.

Example 9.11. An article in Organic Gardening magazine made the claim,

“the US Interstate Highway System spans 3.9 million miles and is wearing
out 50% faster than it can be fixed. Continuous road deterioration adds $7
billion yearly in fuel costs to motorists.”

• The distance from Charleston to Seattle is 3,000 miles. Therefore, 3.9 million is
the equivalent of making 650 round trips between these two cities.

• Actual length of US Interstate Highway System = 47,856 miles.

I don’t have much faith in the $7 billion annual price tag claim, but it sure sounds big.
The “wearing out percentage” also sounds alarming.

Example 9.12. An article in the November 3, 2009 issue of The Guardian reported
that,

“50 percent of obese people earn less than the national average income.”

The intended meaning here is that obese people are discriminated against in the work-
force. However, if the population distribution of incomes is approximately symmetric
(e.g., a normal distribution), then this is exactly what one would expect for all people
in the workforce. In other words, this claim is actually entirely consistent with “no
discrimination.”

Example 9.13. Poll results for the survey question: “Do you approve of the current
bond measure?”

Results: 52% Yes; 44% No; 15% Undecided.

These percentages add up to 111%. Oops.

Remark: Instead of Moore and Notz’s 6 questions, Dr. Best’s recommended questions
to ask are simpler. I like these better too.

1. Who created this statistic?

2. Why was this statistic created?

3. How was this statistic created?
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Discussion: Here are additional examples from Dr. Best:

1. A child advocate tells Congress that 3,000 children per year are lured with internet
messages and then kidnapped.

2. Tobacco opponents attribute over 400,000 deaths per year to smoking.

3. Anti-hunger activists say that 31 million Americans regularly face hunger.

Statistics like these are usually pushed by individuals who have an agenda. For exam-
ple, when I did a little background reading on the “31 million” statistic for hunger (a
September 8, 2000 article in the Pittsburgh Post-Gazette), I found out that the following
instances were classified as hunger:

• food insecurity, meaning that a household has limited or uncertain access to nutri-
tious food

• declining food stamp use.

Therefore, the definition of what it means to be “hungry” is misleading, at best. Of
course, saying a big number like “31 million” has more impact. This brings more attention
to the problem, which inevitably leads to this statistic being used over and over again
(an example of what Dr. Best calls a mutant statistic).

DLS: Dr. Best writes this compelling excerpt, which summarizes the overall theme of
this chapter:

“Innumeracy−widespread confusion about basic mathematical ideas−means
that many statistical claims about social problems don’t get the critical atten-
tion they deserve. This is not simply because an innumerate public is being
manipulated by advocates who cynically promote inaccurate statistics. Often,
statistics about social problems originate with sincere, well-meaning people
who are themselves innumerate; they may not grasp the full implications of
what they are saying. Similarly, the media are not immune to innumeracy; re-
porters commonly repeat the figures their sources give them without bothering
to think critically about them.”

And further,

“The result can be a social comedy. Activists want to draw attention to a
problem [e.g., gun violence, homelessness, etc.]. The press asks the activists
for statistics....knowing that big numbers indicate big problems....The activists
produce a big estimate, and the press....simply publicizes it. The general
public−most of us suffering from at least a mild case of innumeracy−tend
to accept the figure without question.”
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10 Graphs, Good and Bad

10.1 Graphs for categorical data

Recall: A variable is a characteristic that we measure on each individual.

• Categorical −→ places individuals into one of several groups or categories

• Quantitative −→ assumes numerical values which have a physical meaning.

Example 10.1. Recall the necrotizing enterocolitis (NEC) study in Example 1.1 (notes).
One of the variables recorded for each infant was nutrition type. Here are the possible
categories for this variable:

• Breastmilk

• Fluids (mostly sugars and salts)

• TPN (total parental nutrition; contains all essential fluids and electrolytes)

• Formula.

Nutrition type is categorical because the “values” listed above identify categories. In my
Excel file which contains these data, the following codings are used:

1 = Breastmilk; 2 = Fluids; 3 = TPN; 4 = Formula.

These codings are numerical, but they do not have a physical meaning. They simply
keep track of which category is which.

Definition: The distribution of a variable (categorical or quantitative) tells us

(a) what values the variable can have

(b) how often it has these values.

An easy way to show the distribution of data for a categorical variable is to construct a
table. Here is the table for nutrition type in Example 10.1:

Category Breastmilk Fluids TPN Formula Total
Count 237 60 265 43 605

Proportion 0.39 0.10 0.44 0.07 1
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Figure 10.1: Necrotizing enterocolitis data. Bar graphs of nutrition type for 605 infants.
Left: Counts. Right: Proportions.

Note: There were 615 infants in the study, but nutrition type was not recorded for 10
of the infants (i.e., these values were “missing”). The table on the last page shows the
distribution for the infants whose data are not missing. Therefore, the proportions are
calculated as

Proportion =
Count

605

and are rounded to 2 digits. Note that the proportions in the categories add up to 1.
This is a requirement in any distribution for a categorical variable.

Graphs: There are two graphs which display the distribution of a categorical variable:
a bar graph and a pie chart. A bar graph can use either counts or proportions.

• Figure 10.1 above shows the bar graphs for nutrition type in Example 10.1. The
only difference in the figures is the scale used for the vertical axis.

• Figure 10.2 (next page) shows the pie chart for nutrition type. Recall there are 360
degrees in a circle. Therefore, the angles formed in pie chart are

Breastmilk: 0.39× 360 = 140.4 degrees

Fluids: 0.10× 360 = 36.0 degrees

TPN: 0.44× 360 = 158.4 degrees

Formula: 0.07× 360 = 25.2 degrees.

R does all the work, so we don’t have to calculate these angles ourselves. Note the
degrees above do add up to 360.
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Figure 10.2: Necrotizing enterocolitis data. Pie chart of nutrition type for 605 infants.

Discussion: Both bar graphs and pie charts can be used to show the distribution of
data measured on a categorical variable (like nutrition type). However, remember the
data in Example 10.1 come from a sample of infants. Therefore, the graphs we have
shown are for the sample, and these are “estimates” of the analogous graphs for the larger
population. Recall this is the idea behind statistical inference.

Remark: Pie charts are only used when the category proportions add to 1 (i.e., the
angles add to 360 degrees). However, bar graphs can be used when this is not true, as
the next example shows.

Example 10.2. Here are the percentage of residents who have a bachelor’s degree in
(what I consider to be) the 10 southern states:

State Percent State Percent
Alabama 27.4 Arkansas 25.3
Florida 33.2 Georgia 34.6

Louisiana 26.5 North Carolina 34.9
Mississippi 24.8 South Carolina 31.5
Tennessee 30.5 Virginia 41.8

Note that these percentages do not add to 100 percent. However, we can still use a bar
graph to display these percentages.
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Figure 10.3: Percentage of residents with a bachelor’s degree. These data were taken
from the American Community Survey in 2021.

Remark: This type of bar graph is used to compare the different states; it is not used
to show any type of distribution. The two bar graphs in Figure 10.3 list the same
percentages; the one on the right just lists the percentages in descending order. This is
easier to visualize.

Example 10.3. The National Center for Health Statistics (NCHS) keeps track of the
leading causes of death in the United States. Moore and Notz (pp 214) display data on
2015 deaths taken from a NCHS annual report; I have reproduced this graph on the next
page.

• This graph shows information on two categorical variables: cause of death and age
group.

• Age (in years) is a quantitative variable. However, the authors have dichotomized
it into four age categories, thereby creating a categorical variable:

– age 1-24 years

– age 25-44 years

– age 45-64 years

– age 65 and older.

• The five “leading causes” of death are shown in each age group. Leading causes
in one age group will not necessarily be leading causes in another group. A sixth
category is included in each age group showing “other causes.”
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10.2 Graphs for quantitative data measured over time (time
series data)

Note: It is common to observe quantitative data that are measured at regular intervals
over time. For example,

• Daily gas prices (in dollars)

• Monthly sales (in dollars)

• Daily high temperatures (in deg F)

• Number of home runs hit each year in MLB

• Number of tuberculosis cases per month in the United States.

Each of these variables is quantitative, and we can observe the values of each variable at
each time period (e.g., each day, each month, each year, etc.). Data that are observed
over time are called time series data.
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Figure 10.4: USC enrollment data. Number of students enrolled at USC (Columbia
campus) in the fall semester during 1954-2023.

Example 10.4. I recorded the number of students enrolled at USC during the fall
semester each year from 1954 to 2023 (Columbia campus only; undergraduate and grad-
uate students combined). These data are available from the USC Office of Institutional
Research, Assessment, and Analytics. Here is part of the data set:

Year # Students
1954 4,906
1955 4,849
1956 4,907

...
...

2021 35,376
2022 35,587
2023 36,548

The variable is the number of students enrolled at USC (Columbia campus) in the fall
semester. This is a quantitative variable and it is measured each year, starting in 1954
and ending in 2023. There are a total of 70 observations. This is an example of a time
series data set.
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Terminology: Figure 10.4 is an example of a line graph, which is also known as a
time series graph. This graph shows how the values of a quantitative variable (like
enrollment counts) change or evolve over time. Here are some observations:

• We see a general increase in enrollment over time (from 1954 to 2023). This is
called a trend.

• Upon closer inspection,

– there is an increasing trend in enrollment between 1954-1970

– enrollment stays fairly flat between 1970-2000

– there is another increasing trend between 2000 and 2023.

Remark: In general, look for these three characteristics when examining data over time
in line graphs.

• Overall trend. A trend is a long-term increase or decrease over time.

• Seasonal variation. These are patterns which repeat themselves over time; e.g.,
each week, each month, each year, etc.

• Sharp deviations. These are unusual observations that deviate greatly from the
overall pattern.

Example 10.5. The course STAT 520 is called “Time Series and Forecasting.” Whenever
I teach this course, I ask the students to do an end-of-the-semester project where they
carefully analyze a time series data set of their choice. Here are four data sets taken from
projects the last time I taught the course (in Fall 2013):

1. Airline mile data. Number of air miles (in 1000s) traveled by passengers in the US
each month (Jan 1996-May 2005)

2. Home run data. Number of home runs hit by the Boston Red Sox each year (1909-
2010)

3. Earthquake data. Number of earthquakes measuring ≥7.0 on the Richter Scale
observed worldwide each year (1900-1998)

4. Supreme Court data. Percentage of cases granted review by the US Supreme Court
each year (1926-2004).

Exercise: Line graphs for the data sets are shown in Figure 10.5 and Figure 10.6 (next
two pages). Interpret what characteristics you see in each time series using the terminol-
ogy defined above.
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Figure 10.5: Top: Airline mile data. Bottom: Home run data.
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Figure 10.6: Top: Earthquake data. Bottom: Supreme Court data.
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Figure 10.7: Number of TB cases. Left: Yearly data (1953-2022). Right: Monthly data
(Jan 2000-Dec 2009).

Example 10.6. Tuberculosis (TB) is a bacterial infection that can spread through the
lymph nodes and bloodstream to any organ in your body. It is most often found in the
lungs. Most people exposed to TB never develop symptoms, because the bacteria can live
in an inactive form in the body. However, if the immune system becomes compromised,
TB bacteria can become active and ultimately fatal.

• Figure 10.7 (above) shows line graphs of TB case counts.

– The graph on the left shows yearly counts between 1953-2022.

– The graph on the right shows monthly counts between Jan 2000-Dec 2009.

• The line graph for the yearly counts shows a sharp decreasing trend over time,
which is attributed to many factors, including improvements in living and social
conditions and effective treatment.

• The line graph for monthly counts shows the downward trend over the 10-year
span, but it also shows the seasonal pattern within each year. Monthly case counts
generally repeat the same pattern each year.

Remark: The real value of modeling time series data is to make predictions about
what will happen in the future. For example,

• How many TB cases will be seen in the US next month? next year?

• How many students will be enrolled at USC in Fall 2025? Fall 2030?

For a given time series, statistical models can extract information about what has hap-
pened in the past and predict future values in the series that have yet to be seen.
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10.3 Examples of bad and misleading graphs

Example 10.7. In March 2014, Fox News displayed this graph on one of its nightly
programs:

Q: Why is this graph misleading?
A: The height of the second bar is about 2.7 times larger than that of the first bar.
However, if we calculate the percentage change in enrollment between the two time
periods, we get

percentage change =
amount of the change

starting value
× 100%

=
7,066,000-6,000,000

6,000,000
× 100%

=
1,066,000

6,000,000
× 100%

≈ 0.178× 100%

= 17.8%.

So, the March 31 enrollment is only a 17.8% increase when compared to the enrollment
on March 27. However, the difference in heights (2.7) corresponds to a 170% increase
between the two time periods! This is almost 10 times larger than the actual percentage
increase.
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Example 10.8. In August 2018, New York Times Magazine displayed this graph in one
of its articles about the Trump administration:

Q: Why is this graph misleading?
A: This is one of the worst graphs I have ever seen.

• As in Example 10.7, the heights are completely distorted. For example, 24 Trump
judges confirmed is a 60% increase when compared to President Obama at the same
time during his presidency (15). That is,

percentage change =
24− 15

15
× 100% = 60%.

However, the height of the gavels suggests this is about a 400% increase (the Trump
gavel is about 5 times higher).

• And what’s with the gavels to begin with? This is a classic example of chart junk.
All gavels do in this graph is distract the reader from what the data actually say.
This is likely the intended goal−to target innumerate readers.

• The text and the confirmed judge counts are intentionally kept small to hide rel-
evant information. Innumerate readers likely focus on the height of the “Trump
gavel” only.

• A much better graph of these data is shown in Figure 10.8 (next page).
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Figure 10.8: Number of appellate court judges confirmed during first term.

Example 10.9. Is global warming real or not? We won’t answer this question in this
example, but we will show two different graphs of the same data that reveal different
impressions. The National Weather Service records the annual average global surface
temperature (in deg F) during 1875-2023. Figure 10.9 shows two graphs of these same
data. The graphs are different only in that they use different vertical axis scales.

• The top figure uses a range of 35 to 70 deg F on the vertical axis. Doing this greatly
compresses the data in the figure and results in a lot of “wasted space.” The effect
of this is the time series looks relatively flat over time.

• The bottom figure uses a range of 48 to 56 deg F on the vertical axis. This range
better corresponds to where the smallest and largest observations in the time series
actually are. An increasing trend starting around 1960 is now evident.

• By changing the scales, you can greatly alter the visual impression of the data.
Unfortunately, this is a common tactic the media and others use to distort and
suppress information. As Moore and Motz put it,

“Because graphs speak so strongly, they can mislead the unwary.”
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Figure 10.9: Annual average global surface temperature (in deg F) from 1875-2023.
Different vertical axis scales are used.
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11 Displaying Distributions with Graphs

11.1 Introduction

Recall: The distribution of a variable (categorical or quantitative) tells us

(a) what values the variable can have

(b) how often it has these values.

In Chapter 10, we talked about bar graphs and pie charts. These are the two most
common graphs used to show the distribution of a categorical variable (e.g., nutrition
type, sex/gender, race, political affiliation, etc.). Recall that categorical variables are
variables whose values simply denote category membership.

Note: Different graphs are used to show the distribution of quantitative data, which is
the topic of this chapter. Here are the three we will use:

• histogram

• stemplot

• boxplot (Chapter 12).

We have already seen an example of a histogram in Chapter 1, when we showed the
distribution of birth weights (in grams) for 615 premature infants in the NEC-caffeine
observational study. This histogram is also shown in Figure 11.1 (next page).

11.2 Histograms

Remark: Close inspection of Figure 11.1 shows that a histogram can be constructed by
knowing two things: the intervals selected on the horizontal axis and the counts on the
vertical axis.

• The intervals on the horizontal axis are also called classes or bins. All intervals
are of the same width. In Figure 11.1, the intervals are 0-500 grams, 500-1000
grams, 1000-1500 grams, and so on. Each datum belongs to exactly one interval.

• The counts on the vertical axis count the number of observations that fall in each
interval. For example,

– there are 11 infants whose birth weight is between 0-500 grams,

– there are 79 infants whose birth weight is between 500-1000 grams,

– there are 92 infants whose birth weight is between 1000-1500 grams, and so
on.
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Figure 11.1: Necrotizing enterocolitis data. Histogram of birth weights for 615 infants.

These counts can be converted to proportions by division. Recall there are 615 infants
shown in Figure 11.1. Therefore,

• the proportion (percentage) of infants whose birth weights are between 0 and 500
grams is

11

615
≈ 0.017 (or 1.7%).

• the proportion (percentage) of infants whose birth weights are between 500 and
1000 grams is

79

615
≈ 0.128 (or 12.8%).

• the proportion (percentage) of infants whose birth weights are between 1000 and
1500 grams is

92

615
≈ 0.150 (or 15.0%).

Note: If we did this calculation for all intervals in Figure 11.1, then the proportions
would add up to 1 (i.e., the percentages would add up to 100%).
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Figure 11.2: Necrotizing enterocolitis data. Histograms of birth weights for 615 infants.
Left: Interval width = 100 grams; Right: Interval width = 2000 grams.

Q: When we are constructing a histogram, how should we choose the intervals and their
widths?
A: There is no “right answer” to this question, but there are certainly bad ways to choose
the intervals. For example, Figure 11.2 above shows what would happen if we chose the
interval widths to be

• 100 grams; i.e., the intervals are 0-100 grams, 100-200 grams, 200-300 grams, and
so on. This is the figure shown on the left.

• 2000 grams; i.e., the intervals are 0-2000 grams, 2000-4000 grams, and 4000-6000
grams. This is the figure shown on the right.

The figure on the left has excessive granularity while the figure on the right is highly
uninformative. Neither figure does a good job at displaying the distribution of the birth
weights. When you are constructing your own histograms, you want to avoid both of
these extremes and select intervals that are “just right.” Typically, what I do first is use
the default selections for intervals that R determines, as I did in Figure 11.1. If I don’t
like R’s selections (because the graph doesn’t look right), I will tell R which intervals to
try next. Iterating to the final histogram usually involves trial and error.

Important: Constructing histograms is easy. Interpreting them is more important. The
first thing we should remember is statistical inference.

• Histograms are used to show the distribution of data recorded for a quantitative
variable (like birth weight).
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Figure 11.3: Necrotizing enterocolitis data. Histogram of birth weights for 615 infants.
An estimate of the population density curve has been added.

• If the data we have are from a sample, and if the sample is representative of the
population, then the histogram presents “an impression” of the distribution of the
variable in the entire population.

• Therefore, by interpreting characteristics we see in the histogram (for the sample),
we are interpreting “what might be going on” in the larger population of individuals.

Terminology: If a histogram is prepared for a sample of quantitative data, and if this
sample is representative of a larger population, then the histogram is “approximating” a
smooth curve that describes all individuals in this population. We call this smooth curve
a population density curve.

• The population density curve is a mathematical model which describes the distri-
bution of the variable (e.g., birth weights, etc.) for all individuals in the population.

• R will calculate an estimate of the population density curve using the data in the
sample. It’s only an estimate because it is determined from the sample.
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• Figure 11.3 (previous page) shows an estimate of the population density curve for
the birth weight data in the NEC-caffeine study.

– The curve approximates the distribution we see in the histogram. In mathe-
matical language, the curve is a function.

– Note that the vertical axis scale has changed in Figure 11.3. This has been
done automatically (by R) to ensure that the area under the population density
curve estimate is equal to 1.

• Population density curves will be discussed more in Chapter 13. The normal
distribution is the most common population density curve.

Interpretation: We will focus on the following four characteristics when we examine
and describe histograms in words:

1. Center: Where does the center of the distribution fall approximately? You can
think of this as the point where the histogram would balance.

2. Variability: How much variation is in the distribution? How spread out is it? What
is the range of possible observations?

3. Shape: What type of shape does the distribution have? Is it symmetric or skewed
(right/left)? Does it have a single peak or multiple peaks?

4. Deviations (from the overall pattern): Are there observations that fall outside the
overall pattern of the distribution? These observations are called outliers.

Remark: In Chapter 12, we will present numerical summaries of “center” and “variabil-
ity.” We will also describe how to classify an observation as an outlier or not.

Discussion: Let’s interpret the histogram in Figure 11.1 (or in Figure 11.3) in terms of
our four characteristics:

• Center: The center of the birth weight distribution is around 2250 grams.

• Variability: All of the birth weights are between 0 and 6000 grams.

• Shape: This distribution has a single peak (around 1750 grams) and is slightly
skewed to the right.

• Deviations: There are no obvious outliers.

Example 11.1. A researcher was interested in studying the eating habits of elementary
school children. Her research team measured the body mass index (BMI) of n = 328
fourth-grade children sampled from public schools in Augusta, GA. An individual’s BMI
is calculated as follows:

BMI =
weight (kg)

[height (m)]2
.
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Figure 11.4: Childhood obesity study. Histogram of BMI data for 328 fourth-grade
students in Augusta, GA. Right: An estimate of the population density curve has been
added.

BMI is a quantitative variable. Here are the CDC guidelines for interpreting what BMI
means for 10-year-old children (the approximate age of those in fourth grade):

≤ 14.5: Underweight; 14.5-19.5: Healthy; 19.5-21.5: Overweight; ≥ 21.5: Obese.

Interpretation: Here is how we would interpret the histogram in Figure 11.4 in terms
of our four characteristics:

• Center: The center of the BMI distribution is around 20.

• Variability: Almost all of the BMI observations are between 12.5 and 35.

• Shape: This distribution has a single peak (around 16-17) and is skewed to the
right.

• Deviations: The BMI observation larger than 40 is an outlier.

Note: Figure 11.4 (right) shows the same histogram but with an estimate of the popu-
lation density curve added.

• The histogram corresponds to the 328 fourth-grade students in the sample.

• The population density curve serves as a mathematical model for all fourth-grade
children in the population.
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Figure 11.5: IQ data (simulated). Left: Histogram of IQ scores for a sample of n = 2200
Americans. Right: An estimate of the population density curve has been added.

Example 11.2. The Wechsler Adult Intelligence Scale (WAIS) is an IQ test. A recent
version of this test was administered to a sample of n = 2200 Americans (aged 16-90). I
don’t have access to the data (for confidentiality reasons) so I simulated what the scores
might look like given the summary information which was available. The histogram of
the simulated IQ score data is shown in Figure 11.5.

Interpretation: Here is how we would interpret the histogram in Figure 11.5 in terms
of our four characteristics:

• Center: The center of the IQ score distribution is around 100.

• Variability: Almost all of the IQ scores are between 50 and 150.

• Shape: This distribution has a single peak (around 100) and is symmetric.

• Deviations: There are no obvious outliers.

Note: Figure 11.5 (right) shows the same histogram but with an estimate of the popu-
lation density curve added.

• The histogram corresponds to the 2200 Americans in the sample.

• The population density curve serves as a mathematical model for all Americans
(aged 16-90) in the population.
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Figure 11.6: Summer Olympics data. Long-jump distances for 40 male athletes.

Example 11.3. Figure 11.6 displays the long-jump distances (in meters) for 40 male
athletes participating in the 2012 Summer Olympics in London. There were 42 male
athletes, but 2 were disqualified. The longest jump for each athlete is shown.

Interpretation: Here is how we would interpret the histogram in Figure 11.6 in terms
of our four characteristics:

• Center: The center of the long-jump distance distribution is around 7.6 meters.

• Variability: Almost all of the long-jump distances are between 6.8 and 8.2 meters.

• Shape: This distribution has a single peak (around 7.9 meters) and is skewed to
the left.

• Deviations: There is an outlier around 6.5 meters.

Remark: In this example, the histogram does not really correspond to a sample taken
from a larger population. This histogram is constructed using all long-jump athletes who
qualified for the Summer Olympics in 2012. I would argue it doesn’t make sense to regard
these 40 athletes as “coming from a larger population.” Therefore, it is not appropriate
to construct a population density curve.
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Figure 11.7: Old Faithful geyser data. The time between eruptions recorded on 272
occasions.

Example 11.4. The histogram in Figure 11.7 shows the time between eruptions (in
minutes) of the Old Faithful geyser in Yellowstone National Park, USA. This time was
recorded on 272 occasions.

Interpretation: Here is how we would interpret the histogram in Figure 11.7 in terms
of our four characteristics:

• Shape: This distribution has a double peak−one peak around 55 minutes and
another around 80 minutes. This is an example of a bimodal distribution.

• Center: The center of the distribution is around 70 minutes, but this assessment
might be misleading because the distribution is bimodal.

• Variability: All of the times are between 40 and 100 minutes.

• Deviations: There are no obvious outliers.

Remark: What Figure 11.7 shows is that there are two different types of eruptions−one
which happens more quickly and one which takes longer. There could be an excellent
geological reason for this. I don’t know why this would happen, but the histogram brings
it to our attention.
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11.3 Stemplots

Remark: For smaller data sets, a stemplot can be used to show the distribution of
quantitative data.

• Stemplots show the distribution while retaining the numerical values in the data
set. Histograms do not show the exact value of each datum (the data are grouped
together in the histogram intervals).

• The idea is to separate each datum into a stem and a leaf.

– Stems are plotted on the leftmost column.

– Leaves are plotted on the right side in ascending order.

Example 11.5. Here are the final exam scores from an undergraduate course I taught
when I was at Oklahoma State University. There were n = 66 students.

95 98 93 91 95 90 90 96 98 89 93 92 88 79 91 83 85 90 81 87 79 87

88 83 86 80 77 81 81 78 79 82 78 76 79 76 73 81 78 84 70 71 77 65

69 70 63 77 74 82 69 74 67 44 63 70 57 63 51 52 22 57 47 54 52 76

For these data, an obvious choice for the stem and leaf portions is

• Stem: 10’s digit; e.g., “98” −→ “9”

• Leaf: 1’s digit; e.g., “98” −→ “8”.

> stem(final.exam)

2 | 2

3 |

4 | 47

5 | 122477

6 | 3335799

7 | 00013446667778889999

8 | 01111223345677889

9 | 0001123355688

Interpretation: Here is how we would interpret the stemplot above in terms of our four
characteristics:

• Center: The center of the score distribution is somewhere between 75 and 80.

• Variability: Most of the scores are between 44 and 98.

• Shape: This distribution has a single peak (around 79) and is skewed to the left.

• Deviations: There is an outlier at 22.
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Figure 11.8: OSU data. Final exam scores for 66 undergraduate students.

Remark: It can be instructive to see the histogram and stemplot for the same data.

> stem(final.exam,scale=2)

2 | 2

2 |

3 |

3 |

4 | 4

4 | 7

5 | 1224

5 | 77

6 | 333

6 | 5799

7 | 0001344

7 | 6667778889999

8 | 0111122334

8 | 5677889

9 | 00011233

9 | 55688
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12 Describing Distributions with Numbers

12.1 Introduction

Recall: In the last chapter, we learned about two graphical displays for quantitative data:
histograms and stemplots. We also adopted the practice of interpreting distributions of
quantitative data in terms of these four characteristics:

1. Center: Where does the center of the distribution fall approximately? You can
think of this as the point where the histogram (or stemplot) would balance.

2. Variability: How much variation is in the distribution? How spread out is it? What
is the range of possible observations?

3. Shape: What type of shape does the distribution have? Is it symmetric or skewed
(right/left)? Does it have a single peak or multiple peaks?

4. Deviations (from the overall pattern): Are there observations that fall outside the
overall pattern of the distribution? These observations are called outliers.

Remark: “Center” and “variability” are two important characteristics of a distribution.
They are so important that we use numerical summaries to describe them. This chapter
introduces these numerical summaries for quantitative data.

• We will illustrate calculations “by hand” for small data sets.

• For larger data sets, we will do our calculations in R. This is how calculations would
be done in real life.

12.2 The five-number summary and boxplots

Example 12.1. Non-small cell lung cancer (NSCLC) is the most common type of lung
cancer in the world, accounting for about 85% of all cases. A study in Japan examined
a small group of NSCLC patients who had been treated with gefitinib and erlotinib (two
cancer drugs). Here are the times until treatment failure (TTF, in months) for a sample
of n = 14 patients:

0.8 7.5 13.4 1.4 0.5 68.9 16.1 20.4 15.6 4.2 2.4 8.2 5.3 14.0

“Treatment failure” could mean disease progression, informative dropout (e.g., experi-
enced an adverse reaction, etc.), or death.
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Ordered data: Here are the TTF data, ordered from smallest to largest. When calcu-
lating the five-number summary, you always order the data first.

0.5 0.8 1.4 2.4 4.2 5.3 7.5︸ ︷︷ ︸
lower half

8.2 13.4 14.0 15.6 16.1 20.4 68.9︸ ︷︷ ︸
upper half

Terminology: The median M of a data set is the middle ordered value.

• Therefore, half of the data are smaller than the median, and half of the data are
larger.

• The median is one numerical summary of the “center” of a distribution.

Calculation: The median of the TTF data (above) is

M =
7.5 + 8.2

2
= 7.85.

Terminology: The first quartile Q1 is the median of the lower half of a data set. The
third quartile Q3 is the median of the upper half.

Calculation: The quartiles of the TTF data (above) are

Q1 = 2.4

Q3 = 15.6.

Terminology: The five-number summary is a numerical summary consisting of 5
numbers:

Minimum ←− smallest observation

Q1 ←− first quartile

M ←− median

Q3 ←− third quartile

Maximum ←− largest observation.

Calculation: The five-number summary for the TTF data (above) is

Minimum = 0.5

Q1 = 2.4

M = 7.85

Q3 = 15.6

Maximum = 68.9.
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Implementation in R:

# Enter data

TTF = c(0.8,7.5,13.4,1.4,0.5,68.9,16.1,20.4,15.6,4.2,2.4,8.2,5.3,14.0)

> sort(TTF) # order data from low to high

[1] 0.5 0.8 1.4 2.4 4.2 5.3 7.5 8.2 13.4 14.0 15.6 16.1 20.4 68.9

> median(TTF) # median

[1] 7.85

> quantile(TTF,type=2) # 5-number summary

0% 25% 50% 75% 100%

0.50 2.40 7.85 15.60 68.90

Note: As the R output above indicates, another name for Q1 is the 25th percentile.
Another name for the median M is the 50th percentile. Another name for Q3 is the
75th percentile. In other words,

• approximately 25% of the data are less than or equal to Q1.

• approximately 50% of the data are less than or equal to M .

• approximately 75% of the data are less than or equal to Q3.

Remark: The term “percentile” is commonly used when indicating a specific location
on a distribution. For example, if you scored in the 75th percentile (third quartile) on
an exam, then

• you did better than 75% of the students who took the exam (your score was higher
than theirs)

• you did worse than 25% of the students who took the exam (they had a higher
score than you).

Terminology: A boxplot is a graphical display for quantitative data that uses the
five-number summary.

• A central box spans the quartiles (from Q1 to Q3).

• A solid line marks the median M .

• Lines extend from the box to the minimum and maximum observations.

The boxplot for the TTF data is shown in Figure 12.1 (next page).
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Figure 12.1: Boxplot of the TTF data in Example 12.1.

Terminology: The interquartile range (IQR) measures the variability (spread) in the
middle 50% of a distribution of quantitative data. It is calculated as

IQR = Q3 −Q1.

Calculation: The IQR for the TTF data is

Q1 = 2.4

Q3 = 15.6 =⇒ IQR = 15.6− 2.4 = 13.2.

Note: The IQR can be used to identify outliers in a data set. A common rule of thumb
is to classify an observation (Obs) as an outlier if

Obs < Q1 − 1.5(IQR) or if Obs > Q3 + 1.5(IQR).

That is, if an observation is

• 1.5(IQR) below the first quartile −→ outlier on the low side

• 1.5(IQR) above the third quartile −→ outlier on the high side.
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Figure 12.2: Boxplot of the TTF data in Example 12.1. The outlier “68.9” is identified.

Q: Are there any outliers in the TTF data set?
A: Let’s calculate the cutoffs:

Q1 − 1.5(IQR) = 2.4− 1.5(13.2) = −17.4

Q3 + 1.5(IQR) = 15.6 + 1.5(13.2) = 35.4.

Therefore,

• any TTF observation less than −17.4 months would be classified as an outlier on
the low side. This cutoff doesn’t make sense because TTF is positive.

• any TTF observation greater than 35.4 months would be classified as an outlier on
the high side. The observation “68.9” is an outlier.

Exercise: Physicians measured the concentration of calcium (in nM) in blood samples
from 15 healthy patients. Here are the data:

95 112 122 88 66 104 90 110 100 122 126 102 122 96 135

(a) Calculate the five-number summary for these data and prepare a boxplot.
(b) Are there any outliers in this data set?
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Figure 12.3: Concentration of arsenic (in ppb) in ground water for 102 wells in Texas.

Example 12.2. Arsenic (As) is a chemical element found naturally in ground water.
Excessive levels may result from contamination caused by hazardous waste or industries
that make or use arsenic. The histogram and boxplot in Figure 12.3 show the distribution
of arsenic concentrations (in parts per billion, ppb) for a sample of n = 102 water wells
in Texas. The data set for these observations is online.

Analysis: With a large data set like this, it is easier to do the calculations in R. The
five-number summary is shown below:

> quantile(arsenic,type=2) # 5-number summary

0% 25% 50% 75% 100%

0.8 2.9 7.1 12.0 73.5

The median As concentration in the data set is 7.1 ppb. This is a numerical summary
of the “center” of the distribution. Fifty percent of the wells in the sample have an As
concentration below this value; 50% of the wells have an As concentration above.

Q: Are there any outliers in this data set?
A: Let’s first calculate the interquartile range:

IQR = Q3 −Q1 = 12.0− 2.9 = 9.1.

Now, let’s calculate the cutoffs:

Q1 − 1.5(IQR) = 2.9− 1.5(9.1) = −10.75

Q3 + 1.5(IQR) = 12.0 + 1.5(9.1) = 25.65.
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Therefore,

• any As concentration less than −10.75 ppb would be classified as an outlier on
the low side. Again, this cutoff doesn’t make sense because As concentration is
positive.

• any As concentration greater than 25.65 ppb would be classified as an outlier on
the high side. There are multiple observations larger than this:

> arsenic[arsenic>25.65]

[1] 63.0 73.5 28.0 28.1 62.1

These five As concentrations would be classified as outliers using our 1.5(IQR) rule
of thumb.

Example 12.3. The Survey of Study Habits and Attitudes (SSHA) is a psychological
test designed to measure the motivation, study habits, and attitudes toward learning of
college students. A university gives the SSHA to random samples of female and male
first-year students:

Female
154 109 137 115 152 140 154 178 101
103 126 126 137 165 165 129 200 148

Male
108 140 114 91 180 115 126 92 169 146
109 132 75 88 113 151 70 115 187 104

The female sample included 18 students. The male sample included 20 students. The
data set for these observations is online. Which group had a larger median score?

Analysis: This is an example where we have two groups that we would like to compare
(a common goal in observational studies and randomized comparative experiments). It
is easy to calculate the median score for each group:

> median(female)

[1] 138.5

> median(male)

[1] 114.5

It is more interesting to compare both groups in terms of their overall distributions. This
can be done visually by plotting the boxplots for each sex side-by-side; see Figure 12.4.

• Which sample has more variability (spread) in its scores?

• What is the shape of each distribution?
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Figure 12.4: SSHA test scores for 18 female and 20 male students. The female score at
200 has been declared an outlier by the 1.5(IQR) rule.

Discussion: What do these two samples say about the populations of all female and
male first-year students at this university?

• This is a question dealing with statistical inference.

• That is, we are trying to use the information in the samples to make a statement
about the larger populations.

Remark: We can also use side-by-side boxplots for more than two groups. For example,
Figure 12.5 shows the distributions of birth weights in the NEC study (in Example 1.1)
for each nutrition type.

• We have already looked at the histogram of all the birth weights in Figure 11.1.
Recall there were 615 infants in the study, and the histogram shows the birth
weights for all of them.

• The new insight gleaned from Figure 12.5 is that we can examine the distribution
of birth weight separately for each nutrition group.

• In essence, we are looking at how the distribution of one variable (birth weight)
changes depending on the value another variable (nutrition type).
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Figure 12.5: NEC data. Boxplots of birth weight (in grams) by nutrition type.

12.3 Mean and standard deviation

Definition: With a set of observations x1, x2, ..., xn, the mean x (pronounced “x-bar”)
is calculated as

x =
x1 + x2 + · · ·+ xn

n
=

∑
x

n
.

In other words, the mean is the average of the n observations x1, x2, ..., xn.

• The symbol ∑
is the capital Greek letter “sigma.” It simply means “add.”

• Physically, the mean x is the precise balancing point of a distribution of observa-
tions (e.g., it is the point where a histogram would balance).

• Like the median M , the mean x is a numerical summary of the “center” of a
distribution.
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Figure 12.6: Clay model data. Depth of the deepest indentation (in mm) for a sample of
n = 10 clay models. The mean x = 41.0 is identified with a solid circle.

Example 12.4. The US Army recently commissioned a study to assess how deeply a
bullet penetrates ceramic body armor. A cylindrical clay model was layered under an
armor vest. Projectiles were then fired, causing indentations in the clay. The deepest
indentation in the clay model was measured as an indication of survivability. Here are
the deepest indentations (measured in millimeters, mm) for a sample of n = 10 clay
models:

22.6 25.9 34.9 35.6 45.4 46.5 47.7 49.4 50.7 51.3

The sum of the observations is∑
x = 22.6 + 25.9 + 34.9 + 35.6 + 45.4 + 46.5 + 47.7 + 49.4 + 50.7 + 51.3 = 410.0.

Therefore,

x =

∑
x

10
=

410.0

10
= 41.0.

The mean indentation is 41.0 mm.
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Implementation in R:

# Enter data

indentation = c(22.6,25.9,34.9,35.6,45.4,46.5,47.7,49.4,50.7,51.3)

> mean(indentation)

[1] 41

Definition: With a set of observations x1, x2, ..., xn, the standard deviation s is

s =

√∑
(x− x)2

n− 1
.

• The standard deviation can be interpreted as “an average distance from the mean.”

– In other words, each observation is a certain distance from the mean. The
standard deviation measures the average distance for all observations.

• Therefore, the standard deviation is a numerical summary of the variability in a
distribution.

• The standard deviation is the square root of the variance. Recall we used the
variance of a set of observations (on the same measurement method) to assess
instrument reliability in Chapter 8.

• The table below shows how the standard deviation is calculated for the clay model
data in Example 12.4; see also Figure 12.7 (next page).

Individual Observation Squared distance from the mean
1 22.6 (22.6− 41.0)2 = (−18.4)2 = 338.56
2 25.9 (25.9− 41.0)2 = (−15.1)2 = 228.01
3 34.9 (34.9− 41.0)2 = (−6.1)2 = 37.21
4 35.6 (35.6− 41.0)2 = (−5.4)2 = 29.16
5 45.4 (45.4− 41.0)2 = (4.4)2 = 19.36
6 46.5 (46.5− 41.0)2 = (5.5)2 = 30.25
7 47.7 (47.7− 41.0)2 = (6.7)2 = 44.89
8 49.4 (49.4− 41.0)2 = (8.4)2 = 70.56
9 50.7 (50.7− 41.0)2 = (9.7)2 = 94.09
10 51.3 (51.3− 41.0)2 = (10.3)2 = 106.09∑

(x− x)2 = 998.18

Therefore,

s =

√∑
(x− x)2

n− 1
=

√
998.18

9
≈
√

110.91 ≈ 10.5.

The standard deviation is 10.5 mm.
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Implementation in R:

# Enter data

indentation = c(22.6,25.9,34.9,35.6,45.4,46.5,47.7,49.4,50.7,51.3)

> sd(indentation)

[1] 10.53133
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Figure 12.7: Clay model data. Each observation is shown. A dotted vertical line is shown
at x = 41.0.

Interpretation: Here are some things to keep in mind when interpreting the standard
deviation.

• The standard deviation is a numerical summary of the variability in a distribution.
It is the most commonly used number to do this.

– The larger the standard deviation, the more variability in the distribution.

– The smaller the standard deviation, the less variability in the distribution.

• Q: What is the smallest possible value the standard deviation can be? Look at the
picture above. When is there “no variability” among the 10 observations?
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• A: The smallest the standard deviation can be is 0. This happens when all of the
observations are the same.

# Enter data

indentation = c(41,41,41,41,41,41,41,41,41,41)

> sd(indentation)

[1] 0

• The variance is defined as

s2 =

∑
(x− x)2

n− 1
.

The standard deviation is the square root of the variance.

– The variance also measures the variability in a distribution. However, it is
measured in squared units (not the original units of the data).

– This is less meaningful if, for example, the data are measured in dollars,
months, points, etc.

• The standard deviation is measured in the original units of the data.

– For example, the clay armor indentation data in Example 12.4 are measured
in millimeters (mm). The standard deviation is also measured in millimeters.

• Other statistics books introduce the variance first; then the standard deviation.
Moore and Notz did use the variance to assess instrument reliability in Chapter 8,
but they do not use it in this chapter.

Example 12.5. Researchers performed an experiment to compare the living environ-
ments of mice after receiving radiation. There were 181 mice in the experiment, all of
which received a radiation dose of 300 r at the age of 5-6 weeks. After radiation, mice
were randomized to

• Group 1: Conventional laboratory environment (99 mice)

• Group 2: Germ-free environment (82 mice).

The response variable measured on each mouse was the time until death (in days). Figure
12.8 shows side-by-side boxplots of the distributions of death times for both environments.
The data set for these observations is online.

(a) Which environment has a larger mean time until death?
(b) Which environment has a larger standard deviation?
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Figure 12.8: Mice data. Time to death (in days) for different environments.

We perform all the calculations in R. Here are the means for both environments:

> mean(conventional)

[1] 456.596

> mean(germ.free)

[1] 582.561

Therefore, the germ-free environment has a larger mean time to death. This makes sense;
the mice live longer on average in a sterile environment. Here are the standard deviations
for both environments:

> sd(conventional)

[1] 195.9897

> sd(germ.free)

[1] 254.4978

Therefore, the times until death are more variable for the germ-free environment than
for the conventional environment.
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12.4 Choosing numerical descriptions

Summary: We have talked about two numerical descriptions of distributions of quanti-
tative data: (a) the five-number summary and (b) the mean and standard deviation.

Q: Which numerical description should we use?
A: It depends on what the shape of the distribution is. It also depends on if there are
any outliers in the data set.

Discussion: Let’s revisit the TTF data in Example 12.1. I have ordered the data from
low to high:

0.5 0.8 1.4 2.4 4.2 5.3 7.5 8.2 13.4 14.0 15.6 16.1 20.4 68.9

Here are the median and mean for the data:

> median(TTF)

[1] 7.85

> mean(TTF)

[1] 12.76

Q: Why is the mean larger?
A: It is largely due to the outlier 68.9.

Let’s remove the outlier and calculate the median and mean again:

0.5 0.8 1.4 2.4 4.2 5.3 7.5 8.2 13.4 14.0 15.6 16.1 20.4

Here are the median and mean now:

> median(TTF)

[1] 7.5

> mean(TTF)

[1] 8.45

Remark: Outliers can have a big impact on the value of the mean.

• Outliers on the high side will increase the mean.

• Outliers on the low side will decrease the mean.

On the other hand, outliers will usually have a small impact on where the median is
(if it has an impact at all). This makes sense because the median ignores the extreme
observations on each side. We say that the mean’s value is sensitive to outliers.
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Illustration: Suppose I record the annual starting salary (in $1000s) for 5 USC gradu-
ates:

44 47 52 58 61

The median is 52. If the starting salaries were

44 47 52 58 350

the median would still be 52. We say that the median’s value is resistant to outliers.

Observation: The value of the standard deviation s is also sensitive to outliers. This
makes sense because one uses the mean x to calculate the standard deviation. If the
mean is sensitive to outliers, the standard deviation’s value will be too. Here are the
values of the standard deviation for the two data sets above:

> salary = c(44,47,52,58,61)

> round(sd(salary),1)

[1] 7.2

> salary = c(44,47,52,58,350)

> round(sd(salary),1)

[1] 134.2

The outlier “350” has increased the standard deviation substantially.

Q: What’s the main point?
A: When we provide numerical descriptions of “center” and “variability,” we should
choose the description that accounts for the shape of the distribution and is resistant to
outliers. This means

• when the shape of the distribution is approximately symmetric with no outliers,
use the mean as a description of the “center” and use the standard deviation as a
description of the “variability.”

• when the shape of the distribution is heavily skewed and/or has extreme outliers,
use descriptions in the five-number summary:

– use the median as a description of the “center”

– use the IQR as a description of the “variability” (recall IQR describes the
variation in the middle 50% of the distribution).

• Always graph your data first to see what the shape of the distribution is and
to determine if any outliers are present. This will inform you which numerical
description to use.
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Figure 12.9: Concentration of arsenic (in ppb) in ground water for 102 wells in Texas.

Example 12.2 (continued). Figure 12.9 shows the distribution of arsenic (As) con-
centrations (in ppb) for a sample of n = 102 water wells in Texas. Which numerical
description should we use to measure the “center?” Here are the median and mean:

> median(arsenic)

[1] 7.1

> mean(arsenic)

[1] 9.7

This distribution is heavily skewed right and has extreme outliers. The median is a better
numerical description of the “center” of the distribution. What about “variability?” The
standard deviation is

> sd(arsenic)

[1] 11.5

However, we know the standard deviation will be sensitive to the outliers on the high
side (i.e., they will inflate its value). It is better to report the IQR as a description of
the variation of the middle 50% of the distribution:

IQR = Q3 −Q1 = 12.0− 2.9 = 9.1.

The IQR’s value is not influenced by the outliers (i.e., it is resistant to them).
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13 Normal Distributions

13.1 Introduction

Example 13.1. A biologist is studying green sea turtles inhabiting the Grand Cayman
Islands. One variable of interest is the length of the turtle’s curved shell. He catches a
sample of n = 76 turtles and measures the length of each shell (in cm). A histogram of
these observations is shown below. The data set for these observations is online.

Curved shell length (in cm)
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Figure 13.1: Turtle data. Shell lengths for a sample of n = 76 green sea turtles.

Review: We are accustomed to describing four characteristics of a quantitative distri-
bution (center, variability, shape, and deviations). From the last chapter, we now have
numerical summaries that can assist us with this description.

1. We have two numerical summaries of the center of the distribution:

> mean(shell)

[1] 54.54

> median(shell)

[1] 56.79

The median is a better measure of the center here because the distribution is skewed to
the left and there are possible outliers.
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2. We have two numerical summaries of the variability of the distribution:

> quantile(shell,type=2)

0% 25% 50% 75% 100%

9.34 47.61 56.79 64.85 77.34

> sd(shell)

[1] 13.68

• The middle 50% of shell length distribution is between 47.61 and 64.85 cm. The
IQR is

IQR = Q3 −Q1 = 64.85− 47.61 = 17.24 cm.

• The standard deviation gives the average distance of each observation to the mean.
The average distance here is 13.68 cm.

3. Overall shape: This distribution has a single peak slightly below 60 cm and is skewed
to the left.

4. Let’s calculate the cutoffs for outlier detection:

Q1 − 1.5(IQR) = 47.61− 1.5(17.24) = 21.75

Q3 + 1.5(IQR) = 64.85 + 1.5(17.24) = 90.71.

Therefore,

• any shell length less than 21.75 cm would be classified as an outlier on the low side.
There are two turtles in the sample satisfying this:

> shell[shell<21.75]

[1] 17.65 9.34

• any shell length greater than 90.71 cm would be classified as an outlier on the high
side. There are no outliers on the high side.

Important: The histogram in Figure 13.1 shows the distribution of the shell lengths for
the 76 turtles in the sample.

• Recall: A population density curve is a smooth curve that approximates the his-
togram; see Figure 13.2 (next page).

• What is a reasonable description of the population in this example?

• If the sample of turtles is representative of this population, then the population
density curve serves as a mathematical model for the distribution of shell lengths
for all turtles in the population.
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Curved shell length (in cm)
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Figure 13.2: Turtle data. Shell lengths for a sample of n = 76 green sea turtles. An
estimate of the population density curve has been added.

13.2 Population density curves

Terminology: Population density curves are curves that describe the distribution of
a quantitative variable for all individuals in a population. Any population density curve
has these three properties:

1. the curve is non-negative (i.e., it must reside above the horizontal axis).

2. the total area under the curve is 1 (or 100%).

3. the area under the curve over a given range represents the proportion of individ-
uals in the population that fall in that range.

• You can also interpret this area as the probability a single individual in the
population falls in that range.

• We will discuss probability in Chapters 17-18.

PAGE 121



STAT 110: CHAPTER 13 JOSHUA M. TEBBS

5 10 15 20 25 30 35 40

0.
00

0.
02

0.
04

0.
06

0.
08

BMI

Po
pu

la
tio

n 
de

ns
ity

 c
ur

ve

Figure 13.3: Population density curve for the BMI of fourth-grade children in Augusta,
GA.

Example 13.2. Figure 13.3 shows the population density curve for the BMI of fourth-
grade children in Augusta, GA. The CDC guidelines for interpreting BMI for 10-year-old
children (the approximate age of those in fourth grade) are given below:

≤ 14.5: Underweight; 14.5-19.5: Healthy; 19.5-21.5: Overweight; ≥ 21.5: Obese.

Q: What proportion of the population falls in each category?
A: We determine this by finding the area under the curve. See Figure 13.4 (next page).

• the proportion of fourth-grade children in Augusta who are underweight is 0.085.

• the proportion of fourth-grade children in Augusta who are at a healthy weight is
0.389.

• the proportion of fourth-grade children in Augusta who are overweight is 0.179.

• the proportion of fourth-grade children in Augusta who are obese is 0.347.
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Figure 13.4: Population density curve for the BMI of fourth-grade children in Augusta,
GA. The proportions of underweight, healthy, overweight, and obese students are shown.
Note that the proportions (areas) add to 1. R was used to determine these areas.
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Figure 13.5: Examples of density curves for quantitative variables. The horizontal axis
gives the range of possible values for the variable.

Remark: Just like histograms, population density curves come in all shapes. Figure
13.5 shows population density curves that are symmetric, skewed, and bimodal.

• The mean for a population density curve is the point on the horizontal axis where
the curve would balance; think of this as “the center of gravity.”

• The median for a population density curve is the point on the horizontal axis
which divides the area under the curve in half; i.e., 50% of the area is above the
median; 50% is below.

• The mode for a population density curve is the point on the horizontal axis where
the curve is at its highest value.
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Q: For population density curves, how do the mean and median compare?
A: It depends on the shape of the distribution. If the population density curve is

• symmetric −→ mean and median are equal

• skewed right −→ mean is greater than the median

– outliers on the high side increase the value of the mean

• skewed left −→ mean is less than the median

– outliers on the low side decrease the value of the mean.

Recall: The value of the mean is sensitive to unusually high or low observations (the
median is not). Therefore, the mean will move in the direction of these observations.

Notation: The notions of “center” and “variation” remain important with population
density curves. We use the following notation:

• The mean for a population density curve is denoted by µ.

• The standard deviation for a population density curve is denoted by σ.

The table below summarizes the differences in notation for “sample” and “population:”

Sample Population
Histogram Density curve

Mean x µ
Standard deviation s σ

PAGE 125



STAT 110: CHAPTER 13 JOSHUA M. TEBBS

Q: Why do we use different notation for histograms and population density curves?
A: Histograms show the distribution for a sample of individuals. Population density
curves describe all individuals in the population.

• The sample mean x and sample standard deviation s are calculated from the sample
of individuals. They are statistics.

• The population mean µ and population standard deviation σ describe the entire
population. They are parameters.

13.3 Normal distributions

Remark: The normal distribution is the most common population density curve. A
normal distribution is described by two numbers:

• the population mean µ

• the population standard deviation σ.

The mean measures where the center is. The standard deviation measures how “spread
out” the distribution is. Normal distributions are symmetric and have a single peak in
the middle. They have a “bell-shaped” appearance.
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Mathematics: There is a function f(x) that describes the normal distribution mathe-
matically. It is given by

f(x) =
1√
2πσ

e−
1
2(x−µσ )

2

.

The good news is that we will never use this formula. However, it is insightful to note
that the normal density curve is a function and has a specific mathematical form. If
nothing else, we see the function depends on the mean µ and the standard deviation σ.

Recall: For any population density curve,

• the area under the curve over a given range represents the proportion of individ-
uals in the population that fall in that range.

Q: How do we find areas under the normal density curve?
A: This is what we investigate the rest of this chapter.

13.3.1 Standard scores

Terminology: The standard score for any observation x is calculated as follows:

z =
observation−mean

standard deviation
=
x− µ
σ

.

Here are some facts about standard scores:

• A standard score z indicates how many standard deviations an observation x falls
above or below the mean µ.

– If a standard score z < 0, then x is below the mean µ.

– If a standard score z > 0, then x is above the mean µ.

• Standard scores are unitless (i.e., they have no units attached to them). This
makes standard scores useful if we want to compare observations from different
populations, as shown in the next example.

Example 13.3. SAT mathematics scores follow a normal distribution with mean 500
and standard deviation 100. ACT mathematics scores follow a normal distribution with
mean 18 and standard deviation 6.

• Steve scored a 650 on the SAT mathematics exam.

• David scored a 21 on the ACT mathematics exam.

Q: Who did better?
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Figure 13.6: SAT and ACT mathematics score distributions. Left: SAT. Right: ACT.
In each distribution, the population mean is identified with a solid circle. The symbol
“×” identifies the student’s exam score.

A: We can answer this by calculating each student’s standard score:

• Steve’s standard score is

z =
observation−mean

standard deviation
=

650− 500

100
= 1.5.

Interpretation: Steve’s SAT score is 1.5 standard deviations above the mean.

• David’s standard score is

z =
observation−mean

standard deviation
=

21− 18

6
= 0.5.

Interpretation: David’s ACT score is 0.5 standard deviations above the mean.

• Both standard scores are positive, so Steve and David both did better than the
mean. However, Steve did better than David because his standard score is larger.
See Figure 13.6 above.

Exercise: Alex got a 400 on the SAT mathematics exam. What is his standard score?
Ben got a 18 on the ACT mathematics exam. What is his standard score? Write an
interpretation of each standard score. Who did better?
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Figure 13.7: Normal distribution with mean µ = 0 and standard deviation σ = 1.

13.3.2 68-95-99.7 Rule

68-95-99.7 Rule: For any normal distribution, approximately

• 68% of the observations will be within one standard deviation of the mean

• 95% of the observations will be within two standard deviations of the mean

• 99.7% (or almost all) of the observations will be within three standard deviations
of the mean.

Remark: In any normal distribution, it would be very unusual for an observation to be
more than 3 standard deviations away from the mean (i.e., either 3 standard deviations
below the mean or 3 standard deviations above).

• Translation: Standard scores z < −3 or z > 3 are highly unlikely.

• From the 68-95-99.7 Rule, only about 0.3% of the observations will be more than 3
standard deviations from the mean. As a decimal, this is 0.003 (or 3 out of 1000).
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Figure 13.8: Normal distribution with mean µ = 125 and standard deviation σ = 15.

Example 13.4. The World Health Organization uses a normal distribution with mean
µ = 125 and standard deviation σ = 15 to describe the systolic blood pressure (SBP,
measured in mm Hg) of American males (aged 18 and over). This population density
curve is shown above.

(a) Form intervals 1, 2, and 3 standard deviations from the mean. Interpret.
Solution: Our calculations are:

One standard deviation: µ− σ = 125− 15 = 110 and µ+ σ = 125 + 15 = 140

Two standard deviations: µ− 2σ = 125− 30 = 95 and µ+ 2σ = 125 + 30 = 155

Three standard deviations: µ− 3σ = 125− 45 = 80 and µ+ 3σ = 125 + 45 = 170

These intervals are interpreted as follows:

• About 68% of American males have SBP between 110 and 140 mm Hg.

• About 95% of American males have SBP between 95 and 155 mm Hg.

• About 99.7% of American males have SBP between 80 and 170 mm Hg.
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In-class exercises: Use the 68-95-99.7 Rule. Draw a picture in each part.

(b) What percentage of American males have a SBP of 95 mm Hg or lower?

(c) What percentage of American males have a SBP of 140 mm Hg or higher? This is
regarded as “high blood pressure.”

(d) What percentage of American males have a SBP between 95 and 140 mm Hg?
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13.3.3 Finding any area under the normal density curve

Remark: In Example 13.4, we used the 68-95-99.7 Rule to determine what areas were
needed in parts (b), (c), and (d); see the previous page. We could do this because

• in part (b), 95 mm Hg is exactly two standard deviations below the mean; i.e.,

z =
observation−mean

standard deviation
=

95− 125

15
= −2.

• in part (c), 140 mm Hg is exactly one standard deviation above the mean; i.e.,

z =
observation−mean

standard deviation
=

140− 125

15
= 1.

Important: When the standard scores are ±1, ±2, or ±3, we can use the 68-95-99.7
Rule to determine areas under the normal density curve.

Q: What percentage of American males have SBP below 100 mm Hg?
A: The standard score of 100 mm Hg is

z =
observation−mean

standard deviation
=

100− 125

15
≈ −1.7.

Therefore, we cannot use the 68-95-99.7 Rule to answer this question! We need additional
assistance−either from R or from Table B in Moore and Notz.

Remark: As the example above shows, we might want to do a normal distribution
calculation with standard scores that are not ±1, ±2, or ±3. How do we do this?

Calculating normal areas using R:

• To find the area to the left of an observation x, do the following:

1. Calculate the standard score z.

2. Use the R command pnorm(z).

• To find the area to the right, use 1-pnorm(z) instead.

Note: For the standard score z = −1.7 (above), we have

> pnorm(-1.7)

[1] 0.0446

Interpretation: About 4.46% of American males have SBP below 100 mm Hg. See
Figure 13.9 (next page).
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Figure 13.9: Normal distribution with mean µ = 125 and standard deviation σ = 15.
The area to the left of 100 mm Hg is shown shaded.

Calculating normal areas using Moore and Notz’s Table B (see next page):

• To find the area to the left of an observation x, do the following:

1. Calculate the standard score z.

2. Find the standard score z on Table B and read off the percentage.

3. Table B gives percentages. To convert the percentage to a decimal, divide by
100.

• To find the area to the right, take the percentage listed and subtract it from
100%.

Q: What percentage of American males have SBP above 130 mm Hg? Use Table B.
A: The standard score of 130 mm Hg is

z =
observation−mean

standard deviation
=

130− 125

15
≈ 0.3.
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Figure 13.10: Normal distribution with mean µ = 125 and standard deviation σ = 15.
The area to the right of 130 mm Hg is shown shaded.

Reading off Table B, the corresponding percentage is 61.79%.

• This is the percentage of American males who have SBP below 130 mm Hg.

• Therefore, the percentage of American males who have SBP above 130 mm Hg is

100%− 61.79% = 38.21%.

In R (which reports decimals; not percentages),

> 1-pnorm(0.3)

[1] 0.3821

Q: What percentage of American males have SBP between 100 and 130 mm Hg?
A: Recall that

• the percentage of American males with SBP below 100 mm Hg is 4.46%.

• the percentage of American males with SBP above 130 mm Hg is 38.21%.
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Figure 13.11: Normal distribution with mean µ = 125 and standard deviation σ = 15.

Therefore, the percentage of American males with SBP between 100 and 130 mm Hg is

100%− 4.46%− 38.21% = 57.33%.

See Figure 13.11 above.

Recall: The area under any population density curve is 1 (or 100%).

Example 13.5. For a population of runners, the time it takes to complete the New
York Marathon (in minutes) is normally distributed with mean µ = 250 and standard
deviation σ = 40. Use this distribution to answer the questions below:

(a) What percentage of runners will finish the marathon in less than 180 minutes?
(b) What percentage of runners will take at least 310 minutes to complete the marathon
(i.e., take longer than 310 minutes)?
(c) What percentage of runners will finish the marathon between 180 and 310 minutes?

The population density curve is shown in Figure 13.12 (next page). Use Table B.
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Figure 13.12: Normal distribution with mean µ = 250 and standard deviation σ = 40.

Solutions:
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14 Describing Relationships: Scatterplots and Cor-

relation

14.1 Introduction

Remark: In the last three chapters, we have examined various aspects of quantitative
distributions:

• graphical displays: histograms, stem plots, boxplots

• numerical summaries: mean/median, standard deviation, five-number summary

• population density curves, normal distributions.

A common theme in each example was that we were looking at one quantitative variable;
e.g., birth weights, arsenic concentrations, turtle shell lengths, systolic blood pressure,
marathon times, etc. Our goal was to examine the distribution−both graphically and
with numerical summaries−for one quantitative variable.

Preview: In most experiments and observational studies, investigators are interested in
more than one variable. For example,

• BMI and the number of calories consumed at school-provided lunches

• SAT score and first-year college GPA

• amount of state-level funding (dollars spent per student) and high school graduation
rates

• daily Google stock returns and daily Walmart stock returns

• MLB team winning percentage and total team salary (in dollars).

In each of these examples, investigators might want to know if there is a relationship
between the two variables. For example, are certain values of one variable usually associ-
ated with certain values of the other? If so, how strong is the relationship? Investigators
might also want to build statistical models which formally describe the mathematical
relationship between the variables; this forms the basis for a statistical method called
regression (Chapter 15).

14.2 Scatterplots

Example 14.1. Manatees are large, slow-moving creatures found along the coast of
Florida. Many manatees are injured or killed by boats. The table on the next page shows
the number of boats registered in Florida (in thousands) and the number manatees killed
each year between 1977 and 2018.
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Table 14.1: Manatee data. Number of Florida boat registrations (thousands) and man-
atees killed by boats during 1977-2018.

Year Boats Manatees Year Boats Manatees Year Boats Manatees
1977 447 13 1992 679 38 2007 1027 73
1978 460 21 1993 678 35 2008 1010 90
1979 481 24 1994 696 49 2009 982 97
1980 498 16 1995 713 42 2010 942 83
1981 513 24 1996 732 60 2011 922 88
1982 512 20 1997 755 54 2012 902 82
1983 526 15 1998 809 66 2013 897 73
1984 559 34 1999 830 82 2014 900 69
1985 585 33 2000 880 78 2015 916 86
1986 614 33 2001 944 81 2016 931 106
1987 645 39 2002 962 95 2017 944 111
1988 675 43 2003 978 73 2018 951 124
1989 711 50 2004 983 69
1990 719 47 2005 1010 79
1991 681 53 2006 1024 92

Analysis: There are two quantitative variables in this example: the number of boat
registrations (in thousands) and the number of manatees killed by boats. Figure 14.1
(next page) shows distributions of each variable separately.

• Histograms show distributions while ignoring the time aspect.

• Line graphs show how the values of each variable change over time.

Limitation: These displays consider only one variable at a time. They do not show how
the two variables are potentially related.

Definition: A scatterplot is a graphical display that shows the relationship between
two quantitative variables measured on the same individuals.

• The values of one variable appear on the horizontal axis; the values of the other
variable appear on the vertical axis.

• Scatterplots give a visual impression of how the two variables behave together.

Manatee data: Figure 14.2 shows the scatterplot for the manatee data in Table 14.1.
This graph shows a positive linear relationship between the two variables. As the
values of one variable increase, so do the other’s values and the relationship is linear (i.e.,
a straight line) in form.
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Number of boat registrations (in thousands)
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Figure 14.1: Manatee data. Top: Number of boat registrations in Florida (in thousands).
Bottom: Number of manatees killed by boats.
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Figure 14.2: Manatee data. Scatterplot of the number of boat registrations in Florida
(in thousands) and the number of manatees killed by boats.

Example 14.2. Elementary school performance in Florida is based on a standardized
exam called the Florida Comprehensive Assessment Test (FCAT). The authors of a study
published in Journal of Educational and Behavioural Statistics examined the relationship
between

x = percentage of students below the poverty level

y = average FCAT reading score

for a sample of n = 22 Florida elementary schools. A scatterplot of these observations is
shown in Figure 14.3 (next page). The data set for these observations is online.

Analysis: There are two quantitative variables in this example: the percentage of stu-
dents below the poverty level and the average FCAT reading score.

• Figure 14.3 shows a negative linear relationship between the two variables. As
the values of one variable increase, the other variable’s values tend to decrease and
the relationship is linear (i.e., a straight line) in form.

• We use x and y to denote the variables in this example. This is standard notation
and will be used later.
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Figure 14.3: FCAT data. Scatterplot of the percentage of students below the poverty
level (x) and average FCAT reading score (y) for a sample of n = 22 elementary schools.

Remark: Constructing scatterplots is easy. Interpreting them is more important. The
first thing we should remember is statistical inference.

• Scatterplots are used to show the relationship between observations for two quan-
titative variables.

• If the observations we have are from a representative sample (as in Example 14.2),
then the scatterplot presents an impression of the underlying relationship between
the two variables in the population.

• Therefore, by interpreting characteristics we see in the scatterplots, we are inter-
preting what may be “going on” in the larger population of individuals.

• Q: Does the pattern we see in Figure 14.3 generalize to the population of all ele-
mentary schools in Florida?

– This is a question about statistical inference.
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Interpretation: We will focus on the following four characteristics when we examine
and describe scatterplots:

1. Form: Are there straight-line (linear) patterns or curved patterns? Do observations
tend to fall into clusters?

2. Direction: Are the variables positively related or negatively related?

3. Strength: Is the relationship strong, moderate, or weak? See Figure 14.4 (next
page).

• The scatterplot may no display no discernible relationship between the two
variables; e.g., a “random scatter of points.”

4. Deviations from the overall pattern (e.g., outliers, etc.).

Definitions: Two quantitative variables are positively related when an increase in
one variable tends to accompany an increase in the other. They are negatively related
when an increase in one variable tends to accompany a decrease in the other.

• Example 14.1: The number of boat registrations in Florida (x) and the number of
manatees killed by boats (y) are positively related.

• Example 14.2: The percentage of students below the poverty level (x) and the
average FCAT reading score (y) are negatively related.

• In both examples, the variables show a linear (straight-line) relationship, and the
straight-line relationship is strong. There are no outliers in either example.

Notation: As noted earlier, it is common to use the letters x and y to denote the
variables in a scatterplot.

• We use y to denote the response variable in an experiment or observational study.

• We use x to denote an explanatory variable.

• In most contexts, the goal is to determine how the response variable depends on
the explanatory variable; e.g.,

– How does the number of manatee deaths (y) depend on the number of boat
registrations (x)?

– How does the average FCAT reading score (y) depend on the percentage of
students below the poverty level (x)?

• In some examples, it might be difficult to say which variable is which (e.g., height
versus weight or weight versus height?). This is fine. We can still use a scatterplot
to show how the variables are related.
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Figure 14.4: Scatterplots with positive linear relationships. Upper left: Very strong.
Upper right: Moderate-to-strong. Lower left: Weak-to-moderate. Lower right: No linear
relationship (random scatter).
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Figure 14.5: STAT 110 data. Scatterplot of the final exam score (y) and the average
score of the three midterms (x).

Example 14.3. The data in Figure 14.5 show midterm scores and final exam scores for
students in one of my previous STAT 110 classes (I’m not going to tell you which one).
Specifically,

x = average midterm score (out of 3 midterms)

y = final exam score.

Here is how we would interpret the scatterplot in Figure 14.5 in terms of our four char-
acteristics:

• Form: There is a linear (straight-line) relationship between the average midterm
score and the final exam score.

• Direction: The relationship is positive.

• Strength: The linear relationship is strong.

• Deviations: There is possibly one outlier (i.e., the student whose average midterm
score was around 45).
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Remark: Treating x as an explanatory variable and y as a response variable makes sense
in Example 14.3.

• How might a student’s final exam score (y) depend on the student’s average midterm
score (x)?

• Imagine you are a student whose average midterm score is 40. What would you
predict your final exam score to be?

It wouldn’t make (as much) sense to ask these questions with the roles of x and y reversed,
especially if you think about using midterm scores to predict a final exam score.

14.3 Correlation

Goal: Scatterplots give a visual impression of how two quantitative variables are related.
We now wish to summarize relationships numerically.

Definition: The correlation is a number that describes the strength and direction of
the straight-line (linear) relationship between two quantitative variables.

• The correlation is denoted by r.

Formula: For a data set with n individuals, the correlation is computed by

r =
1

n− 1

∑(
x− x
sx

)(
y − y
sy

)
,

where x and y are the sample means and sx and sy are the sample standard deviations.

• Example 4 in Moore and Notz (pp 326) gives an example where r is calculated “by
hand.”

– We will use software (R) to calculate r.

– It is more important to understand how to interpret the value of r (instead of
doing hand calculation).

– Many researchers interpret r incorrectly and confuse “correlation” with “cau-
sation.”

• I do think it is interesting to note the terms

x− x
sx

and
y − y
sy

in the formula are the (sample) standard scores of x and y, respectively.
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Correlation fact #1:

• If two variables (x and y) have a positive linear relationship, then r > 0.

• If two variables have a negative linear relationship, then r < 0.

• Note: r = 0 means that x and y have no linear relationship. We say that “x and y
are uncorrelated.”

Examples are shown on the previous page. Left column: r > 0. Right column: r < 0.

Correlation fact #2: The correlation r is always between −1 and 1; i.e.,

−1 ≤ r ≤ 1.

What happens at the extreme cases?

• If r = 1, then all of the data fall on a straight line with positive slope.

• If r = −1, then all of the data fall on a straight line with negative slope.

• In either case, the relationship between the two variables x and y is perfectly linear.

• Perfect relationships are an extreme rarity with real life data; e.g., see the scatter-
plots in Examples 14.1 and 14.2. There are always sources of variability that make
a relationship not perfect, for example,

– natural sampling variability

– other (lurking) variables that influence how x and y are related.

Illustration: Let’s calculate the correlation in Example 14.1 (manatee data) and Example
14.2 (FCAT data). Scatterplots are shown on the next page.

> cor(boats,manatees) # manatee data (Example 14.1)

[1] 0.92

> cor(poverty,FCAT.reading) # FCAT data (Example 14.2)

[1] -0.92

In both examples, the relationship between the two variables is linear and this relationship
is strong.

• Example 14.1: The number of boat registrations in Florida and the number of
manatees killed by boats are positively related (r = 0.92).

• Example 14.2: The percentage of students below the poverty level and the average
FCAT reading score are negatively related (r = −0.92).
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Figure 14.6: Scatterplots. Left: Manatee data (Example 14.1). Right: FCAT data
(Example 14.2).

Exercise: Examine the scatterplot in Figure 14.5 for the STAT 110 exam data in Ex-
ample 14.3. What do you think the correlation is? Is it positive or negative? Is it closer
to 1 (perfect linear relationship) or closer to 0 (no linear relationship)?

Correlation fact #3: The correlation r is unitless; i.e., there are no units attached to
it.

• The reason this is true is because the standard scores

x− x
sx

and
y − y
sy

are also unitless (Chapter 13).

• This means that you could change the units of your data and it would not change
the value of r. For example,

– changing height measurements in inches to measurements in centimeters

– changing temperature measurements in deg F to measurements in deg C

– changing percentages below the poverty level (Example 14.2) to proportions
below the poverty level.

Statements like this are wrong: “We found a strong positive correlation between the
starting income levels of twins separated at birth (r = 0.82 dollars).”
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Figure 14.7: Left: Scatterplot of the number of boat registrations (in thousands) and the
number of manatees killed by boats. Right: The axes have been switched.

Correlation fact #4: When calculating the correlation r, it makes no difference what
you call x and what you call y. The correlation will be the same.

• In other words, the correlation r ignores the distinction between the explanatory
variable x and the response variable y.

This also makes sense if you look at the formula:

r =
1

n− 1

∑(
x− x
sx

)(
y − y
sy

)
.

If we switch the order of the standard scores, it doesn’t matter because we are multiplying
them together.

> cor(boats,manatees) # Left

[1] 0.92

> cor(manatees,boats) # Right

[1] 0.92

Correlation fact #5: The correlation r measures the strength and the direction of
linear (straight-line) relationships.

• The correlation does not describe a curved relationship, no matter how strong that
relationship is.
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Figure 14.8: Job satisfaction data. Scatterplot of the number of hours worked per week
(x) and employee satisfaction scores (y). A quadratic curve has been added.

Example 14.4. An organizational manager wants to understand the relationship be-
tween the number of hours worked (per week) and his employees’ reported levels of
“satisfaction and happiness.” The manager observes a sample of n = 13 employees. The
data set for these observations is online.

• The scatterplot in Figure 14.8 above shows these two variables are strongly related!
It’s just the relationship is not a straight line.

• Let’s calculate r:

> cor(hours,satisfaction)

[1] -0.05

This illustrates the limitation of correlation in describing relationships. The cor-
relation does not describe curved relationships. It only describes the strength and
direction of linear ones.

Statements like this are wrong: “There is a weak correlation between the number of
hours worked and satisfaction scores (r = −0.05). This suggests the two variables are
not related.”

PAGE 151



STAT 110: CHAPTER 14 JOSHUA M. TEBBS

20 40 60 80

16
0

16
5

17
0

17
5

18
0

Students below poverty level (%)

A
ve

ra
ge

 F
C

AT
 r

ea
di

ng
 s

co
re

20 40 60 80

16
0

16
5

17
0

17
5

18
0

Students below poverty level (%)

A
ve

ra
ge

 F
C

AT
 r

ea
di

ng
 s

co
re

Figure 14.9: FCAT data. Left: Scatterplot of the percentage of students below the
poverty level (x) and average FCAT reading score (y) for a sample of n = 22 elementary
schools. Right: Scatterplot with outlier.

Correlation fact #6: The value of the correlation r is sensitive to outliers. In other
words, observations that don’t follow the overall pattern in a scatterplot can greatly
distort the value of r.

Recall: In Example 14.2, the correlation between the percentage of students below the
poverty level and the average FCAT reading score was r = −0.92.

> cor(poverty,FCAT.reading) # FCAT data (Example 14.2)

[1] -0.92

• Suppose the poverty percentage “90.2” in the original scatterplot (left, lower right
observation) was mistakenly recorded as “9.2.”

• The scatterplot with this error (now, an obvious outlier) is shown above on the
right.

> cor(poverty,FCAT.reading) # with outlier

[1] -0.63

The correlation has changed from r = −0.92 to r = −0.63 as a result of this error.

• This illustrates how the value of r can be highly sensitive to outliers.

Remark: Always plot your data first! Be cautious about misinterpreting the value of r
when outliers are present.
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15 Describing Relationships: Regression, Prediction,

and Causation

15.1 Introduction

Preview: A common practice in the social sciences, public health, education, engineer-
ing, and other areas, is describing the relationship between two quantitative variables.
For example,

• breaking and entering crime rates and motor vehicle theft rates in South Carolina

• percentage of residents with covid vaccination and hospital admissions

• SAT math and SAT reading scores for college-bound seniors

• machine filtration rate and moisture percentage of sewage sludge specimens.

In the last chapter, we learned the correlation r is a number that describes the straight-
line relationship between two variables. In this chapter, we describe straight-line rela-
tionships using regression equations.

Example 15.1. Isolated systolic hypertension, which is an elevation in systolic but not
diastolic blood pressure, is the most prevalent type of hypertension (especially among
the elderly). An observational study investigated the relationship between

x = age (in years)

y = systolic blood pressure (SBP, measured in mm Hg)

in adult males with one or more risk factors for this type of hypertension. There were
n = 30 subjects in the study. The data are shown below.

Subject Age SBP Subject Age SBP Subject Age SBP
1 39 144 11 64 162 21 36 136
2 47 220 12 56 150 22 50 142
3 45 138 13 59 140 23 39 120
4 47 145 14 34 110 24 21 120
5 65 162 15 42 128 25 44 160
6 46 142 16 48 130 26 53 158
7 67 170 17 45 135 27 63 144
8 42 124 18 17 114 28 29 130
9 67 158 19 20 116 29 25 125
10 56 154 20 19 124 30 69 175

A scatterplot of these data is shown in Figure 15.1 (next page).
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Figure 15.1: Hypertension data. Scatterplot of age (x, measured in years) and systolic
blood pressure (y, measured in mm Hg) for n = 30 adult males.

Discussion: Here is how we would interpret the scatterplot in Figure 15.1 in terms of
our four characteristics:

• Form: There is a linear (straight-line) relationship between age and SBP.

• Direction: The relationship is positive.

• Strength: The linear relationship is moderately strong (r = 0.66).

• Deviations: There is an obvious outlier: the 47-year old male whose SBP is 220
mm Hg.

> cor(age,SBP)

[1] 0.66

Definition: A regression line is a straight line that describes how a response variable
y changes as an explanatory variable x changes.

• We often use a regression line to predict the value of y for a given value of x.
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Figure 15.2: Hypertension data. Scatterplot of age and systolic blood pressure for n = 30
adult males. The least-squares regression line is added.

• For example, what SBP would we predict for a male who is 50 years old?

• The least-squares regression line has been added to the scatterplot above.

– Where does this line come from; i.e., what is meant by “least squares?”

– How do we use this line for prediction?

15.2 Regression equations and prediction

Algebra review: Suppose y is a response variable (on the vertical axis) and x is an
explanatory variable (on the horizontal axis). A straight line relating y to x has an
equation of the form

y = a+ bx,

where b is the slope of the line and a is the intercept.

• The slope b is the amount by which the response y changes when x increases by
one unit.
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• In other words, for every one unit increase in x,

– the response y increases by b if b > 0. This is a positive slope.

– the response y decreases by b if b < 0. This is a negative slope.

• The intercept a is the value of y when x = 0. This is where the line intersects
with the vertical axis.

Remark: With real data, like those in Example 15.1, we will never be able to find one
line that fits the data perfectly; i.e., a line that goes through all the points. Why? Think
about all of the sources of variability that are present in Example 15.1:

• biological variables that affect SBP (other than age)

• environmental variables that affect SBP

• genetic variables that affect SBP

• natural sampling variability! This is a sample of 30 males. Different samples would
give different males and hence different observations.

All of these sources of variability make the relationship between age and SBP not perfect.

Q: So, how do we find the equation of the regression line?
A: We find the equation by using the method of least squares.

Definition: The least-squares regression line is the line that makes the sum of the
squares of the vertical distances of the data points from the line as small as possible.

• With the data from Example 15.1, Figure 15.3 shows vertical distances for subjects
whose ages are between 20 and 35.

– Imagine calculating these distances and squaring them for all n = 30 subjects
in the data set.

– Adding the squared distances gives the sum of squared vertical distances.

– The least-squares regression line is the one line that makes this quantity as
small as possible. This is what we mean by “best fit.”

• We will use R to find the equation of the least-squares regression line (the “best-fit
line”).

– Essentially, this boils down to R calculating the slope b and the intercept a
for us.

– The equation of the least-squares regression line is then

y = a+ bx.

This is called a regression equation.
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Figure 15.3: Hypertension data. Five subjects aged 20-35. The least-squares regression
line is shown. Vertical distances from the data points to the line are shown.

Implementation in R:

> # Calculate intercept (a) and slope (b) of least-squares regression line

> fit = lm(SBP~age)

> fit

Coefficients:

(Intercept) age

98.7 0.97

Analysis: This output gives:

a = 98.7

b = 0.97.

The regression equation is

y = 98.7 + 0.97x, or, in other words, SBP = 98.7 + (0.97× age).

This is the line shown in Figure 15.2.
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Figure 15.4: Hypertension data. Scatterplot of age and systolic blood pressure with the
least-squares regression line. The horizontal axis has been extended to age = 0 years. A
dotted vertical line at x = 0 is shown.

Interpretation:

• The slope b = 0.97 is interpreted as follows:

“For a one-year increase in age, we would expect SBP to increase by
0.97 mm Hg.”

• The intercept a = 98.7 is interpreted as follows:

“For a person whose age is x = 0, we would expect SBP to be 98.7 mm
Hg.”

Remark: In most regression problems (including this one), the slope b is the most
important to interpret. It describes how much we can expect the response variable to
increase (or decrease) when the explanatory variable increases by one unit. On the other
hand, the intercept a (i.e., the value of y when x = 0) is usually less meaningful.

• The notion of x = 0 refers to a male subject (in this example) whose age is “0;” a
male subject who has just been born.
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Figure 15.5: Hypertension data. Predicting SBP when age = 50 years.

• Even if this notion is accepted, it is hard to put too much faith in the assertion
that a newborn’s SBP is 98.7 mm Hg based on the data from this study.

• Why? The value x = 0 is well outside the range of the ages of the other subjects
in the study (ages 17-69). Therefore, predicting a newborn’s SBP to 98.7 mm Hg
based on this study is an example of extrapolation.

Prediction: Use the regression equation to predict the SBP for a male subject who is
50 years old.
Solution. First, note that making this prediction makes sense. The age x = 50 falls right
in the middle of the ages included in the study; see Figure 15.5 (above). There is no
extrapolation here.

To make the prediction, simply plug in “50” for “age” in the regression equation:

SBP = 98.7 + (0.97× age)

= 98.7 + (0.97× 50) = 147.2 mm Hg.

The regression equation (model) would predict a 50-year old male to have SBP equal to
147.2 mm Hg.
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Remarks:

• Predictions are best when the regression line fits the data well.

– The better the fit, the better the predictions.

– If a straight line is not a good description of the data, then the predictions
may be bad.

• Extrapolation occurs when we make a prediction using a value of x outside the
range of the x values seen in the study.

– For example, using x = 10 years or x = 90 years in Example 15.1. These
would both be extrapolations.

– For an extrapolated prediction to be accurate, we would have to have faith the
straight-line relationship holds for x values outside the range where we have
observed data.

– This may be difficult or impossible to assess if there is no empirical evidence
(data) to support it.

15.3 Correlation and regression

Remark: Correlation and regression are statistical techniques used with data for two
quantitative variables.

• The correlation r measures the strength and direction of a straight-line relationship
with a single number; e.g., r = 0.92, r = −0.66, etc.

• A regression line describes the relationship with a mathematical equation.

Both correlation and regression can be affected by outliers. We already know this is
true with correlation from the last chapter. The impact of outliers on the least-squares
regression equation depends on where the outliers are.

Illustration: Figure 15.6 (next page) shows the hypertension data in Example 15.1.

• Original data: r = 0.66. Regression equation: SBP = 98.7 + (0.97× age)

• Outlier removed: r = 0.84. Regression equation: SBP = 97.1 + (0.95× age).

Therefore, the correlation increased significantly when we removed the outlier. However,
the regression equation did not change very much (see Figure 15.6).

• Although the outlier is clearly an outlier, it doesn’t influence the regression equation
that much. We would say this observation is not influential.
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Figure 15.6: Hypertension data. Least-squares regression line with (red, solid) and with-
out (blue, dashed) the original outlier.

Illustration: Figure 15.7 (next page) shows the hypertension data in Example 15.1, but
now the outlier has been changed from (47, 220) to (17, 220). That is, this subject’s age
was recorded incorrectly as 17.

• Original data: r = 0.66. Regression equation: SBP = 98.7 + (0.97× age)

• Outlier changed: r = 0.40. Regression equation: SBP = 117.6 + (0.57× age).

Therefore, the correlation decreased significantly when the outlier switched positions. In
addition, the least-squares regression line changed drastically too (see Figure 15.7).

• This outlier changes the regression equation by a large amount. We would say this
observation is influential.

• SBP predictions for younger and older subjects would be impacted heavily. Inter-
estingly, predictions for our 50-year old male would be about the same.

Main point: Outliers have the potential to greatly distort the equation of the least-
squares regression line. Always plot your data first!
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Figure 15.7: Hypertension data. Least-squares regression line with the outlier changed.

Summary: The usefulness of the least-squares regression line for prediction depends on
the strength of the straight-line relationship between the two variables.

• The stronger the straight-line relationship, the more precise the predictions will be.

• The correlation r measures the strength of this relationship.

Definition: In a regression analysis, one way to assess how well a straight line fits the
data is to compute the square of the correlation: r2.

• It has a specific interpretation: r2 gives the proportion of the variation in the
response variable y explained by the straight-line relationship with the explanatory
variable x.

– The larger r2 is, the more variation explained by the regression line (this leads
to more precise predictions).

– Caution: The interpretation above assumes the relationship between x and y
is linear (i.e., a straight-line relationship).

– Therefore, if you calculate r2 when the true relationship between x and y is
not linear (e.g., curved, etc.), then r2 will not make sense.
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Figure 15.8: Hypertension data. Scatterplot of age and systolic blood pressure for n = 30
adult males. The least-squares regression line is added.

Illustration: In Example 15.1, we calculated the correlation to be r = 0.66. The square
of the correlation is

r2 = (0.66)2 ≈ 0.44.

Interpretation: Approximately 44% of the variability in the systolic blood pressure
data is explained by the straight-line relationship with age.

• This means approximately 56% of the variability in the systolic blood pressure data
is explained by other sources:

– biological variables that affect SBP (other than age)

– environmental variables that affect SBP

– genetic variables that affect SBP

– other variables that affect SBP.

Q: When would r2 = 1?
A: This would happen only when all the data fell on a straight line with positive slope
(r = 1) or with negative slope (r = −1).
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Figure 15.9: FCAT data. Scatterplot of the percentage of students below the poverty
level (x) and average FCAT reading score (y) for a sample of n = 22 elementary schools.
The least-squares regression line is added.

Example 15.2 (continuation of Example 14.2). The authors of a study published in
Journal of Educational and Behavioural Statistics examined the relationship between

x = percentage of students below the poverty level

y = average FCAT reading score

for a sample of n = 22 Florida elementary schools. A scatterplot of these observations is
shown in Figure 15.9 (above). The least-squares regression line is superimposed.

Implementation in R:

> # Calculate intercept (a) and slope (b) of least-squares regression line

> fit = lm(FCAT.reading~poverty)

> fit

Coefficients:

(Intercept) poverty

186.7 -0.29
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> cor(poverty,FCAT.reading) # correlation

[1] -0.92

Analysis: This output gives:

a = 186.7

b = −0.29.

The regression equation is
y = 186.7− 0.29x,

or, in other words,

Average FCAT reading score = 186.7− (0.29×% students below poverty level).

Questions:
(a) What would you predict the average FCAT reading score to be for a school with 40%
of its students below the poverty level?
(b) Calculate r2 and interpret what it means.

Solutions. (a) To make this prediction, simply plug x = 40 in the regression equation:

y = 186.7− 0.29x

= 186.7− (0.29× 40) = 175.1.

The regression equation (model) would predict this school’s average FCAT reading score
to be 175.1.

(b) The square of the correlation is

r2 = (−0.92)2 ≈ 0.85.

Interpretation: Approximately 85% of the variability in the average FCAT reading
score data is explained by the straight-line relationship with the percentage of students
below the poverty level.

• This means approximately 15% of the variability in the average FCAT reading score
data is explained by other sources:

– quality of instruction

– school size

– school resources (e.g., after-school programs, etc.)

– other variables that affect average FCAT reading scores.

Remark: We now revisit an example where the value of r2 would have little or no
meaning.
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Figure 15.10: Job satisfaction data. Scatterplot of the number of hours worked per week
(x) and employee satisfaction scores (y). The least-squares regression line and quadratic
curve have been added.

Example 15.3 (continuation of Example 14.4). An organizational manager wants to
understand the relationship between the number of hours worked (per week) and his em-
ployees’ reported levels of “satisfaction and happiness.” The manager observes a sample
of n = 13 employees and records both variables for each employee.

> cor(hours,satisfaction)

[1] -0.05

Figure 15.10 above shows a scatterplot of the observations with

• the least-squares regression line superimposed (dashed line)

• the least-squares quadratic regression curve superimposed (solid curve).

The correlation is r = −0.05, so the square of the correlation is

r2 = (−0.05)2 = 0.0025.

Interpretation: Approximately 0.25% of the variability in the satisfaction score data
is explained by the straight-line relationship with the number of hours worked per week.
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Discussion: Although the previous interpretation is technically correct, it would only
make sense if the true relationship between the number of hours worked per week (x)
and satisfaction scores (y) was linear (i.e., a straight line). This is another reminder
how the correlation r describes straight-line relationships only. The same is true for the
square of the correlation r2.

15.4 Correlation 6= causation

Important: Just because two variables are correlated−even if this correlation is very
strong−this does not necessarily mean there is a causal relationship between the vari-
ables. In other words, we cannot conclude

• “Aging in men causes SBP to increase.” (Example 15.1)

• “An increase in the percentage of students below the poverty level causes average
FCAT reading scores to decline.” (Example 15.2).

This important fact has spawned the well-known statistical aphorism:

“Correlation does not imply causation.”

The correlation r only documents a special type of relationship or association between
two variables: the degree to which the two variables are linearly related. It doesn’t
necessarily have anything to do with causality.

Q: Why?
A: Correlations could be spurious or coincidental.

• A Chicago newspaper reported “there is a strong correlation between the number
of fire trucks at the scene of a fire and the amount of damage that the fire does.”
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– Are these two variables correlated?

x = number of fire trucks

y = damage the fire does (measured in dollars).

Probably, but there is no causal link here. An increase in the number of fire
trucks at the scene of a fire does not cause more damage.

– This is a spurious correlation. The reason these variables are correlated is
because of the presence of a third variable: the severity of the fire.

– Severe fires lead to both more trucks and more damage (common response).

• Some correlations are coincidental. For example, a recent study found a strong
negative correlation between

x = number of lemons imported from Mexico

y = highway fatality rate in the United States.

Does increasing the number of lemons imported from Mexico cause the highway
fatality rate in the US to decline? Probably not.

Important: The best way to determine if a causal relationship between two variables x
and y exists is to perform a randomized comparative experiment.

• It is easy to find spurious and coincidental correlations in observational studies.

• However, these associations are usually not repeatable; i.e., if the study was
performed again, there is no guarantee the same correlation would be found.

• Properly designed experiments control for the effects of lurking variables by block-
ing.

• Establishing causal relationships is much more difficult than simply documenting
an association using the correlation.
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17 Thinking about Chance

17.1 What is probability?

Remark: We are bombarded everyday with numbers describing the chance of something
happening in the future (perhaps to us). For example,

• “The chance of winning the Powerball lottery is 1 in 292,000,000.”

• “Subjects not wearing condoms are 3 times more likely to contract an STD when
compared to subjects who wear condoms regularly.”

• “The chance of dying in a plane crash is about 1 in 11,240 over one’s entire lifetime.
For a car crash, it’s about 1 in 93” (Source: Insurance Information Institute).

• “The ESPN Analytics Match Predictor gives USC a 51.4% chance of beating Oregon
State” (March 30, 2024).

• “There is a 70% chance of rain tomorrow.”

• “The probability Donald Trump will win the Republican nomination is 5%” (Nate
Silver, July 2015).

In some cases, numbers like these come from models based on mathematics or statistics
(which may be trustworthy but not always). In other cases, numbers may arise from
personal feeling or emotion. These can be highly inaccurate. We want to describe prob-
ability in a way that makes sense mathematically so we can have a better understanding
of it means. This will also allow us to understand what probability does not mean.

Definition: Probability is the mathematics of chance. When we talk about chance,
we are usually referring to a phenomenon that is random; i.e., the outcome of the
phenomenon cannot be predicted with certainty.

• Flipping a coin. There are 2 possible outcomes (H, T).

• Rolling a die. There are 6 possible outcomes (1, 2, 3, 4, 5, 6).

• 2024 Presidential election. There are 3 possible outcomes (Biden, Trump, Other).

• 2024 NCAA Basketball Final Four. There are 4 possible outcomes:

– Men: Connecticut, Alabama, Purdue, NC State

– Women: South Carolina, NC State, Iowa, Connecticut.

• Disease diagnosis. There are 2 possible outcomes (positive, negative).
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Figure 17.1: Line graph of the proportion of tails flipped in a series of 1000 flips. A
horizontal line at 0.5 has been added.

Example 17.1. I will flip a fair coin. There are 2 possible outcomes (H, T) and both
outcomes have the same chance of occurring. What is the probability of flipping a T?
Solution. Our simple intuition suggests the answer is 0.5. There are only two outcomes,
each of them is equally likely, and we know one of them must occur.

Simulation: Another way to think about probability is that it’s the proportion of times
a “T” would occur if we flipped the coin many independent times.

• By “independent,” I mean that the outcome on any one flip is not influenced by
the others.

Figure 17.1 shows what could happen if we flipped the coin 1000 times and used a line
graph to plot the proportion of “T” outcomes over the course of the 1000 flips. Not
surprisingly, the proportion of “T” outcomes approaches 0.5 and stays close to it.

Moral: Chance behavior is unpredictable in the short run, but it has a regular and
predictable pattern in the long run. The probability of an outcome refers to what
happens in the long run.
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Figure 17.2: State Hygienic Laboratory data. Line graphs of the proportion of positive
chlamydia cases for females (left) and males (right).

Example 17.2. The State Hygienic Laboratory (SHL) at University of Iowa tests “high-
risk” Iowa residents for chlamydia. What is the probability a female tests positive? a
male tests positive?

Simulation: I used 2013 data collected from the SHL to simulate both probabilities.
These data include

• 26,630 female chlamydia test outcomes

• 7,481 male chlamydia test outcomes.

Figure 17.2 (above) shows the proportion of positive cases over the course of the 2013
calendar year for both sexes. What would we estimate the probability of a positive
chlamydia outcome to be for females? for males?

Summary: Probability describes the proportion of times an outcome would occur in a
very long series of independent repetitions.

• If the probability of an outcome is 0.25 (or 25%), then we would expect the outcome
to occur about 25% of the time over the long run.

• This does not mean the outcome will occur exactly 1 time for every 4 repetitions.
This is a “short run” statement that considers only 4 repetitions.
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Fact: A probability is a number between 0 and 1. It can also be converted to a percentage
(e.g., 0.25 −→ 25%).

• The larger the probability for a particular outcome, the more likely it is to occur.

• The smaller the probability for a particular outcome, the less likely it is to occur.

• Outcomes with probability 1 will always occur. Outcomes with probability 0 will
never occur.

– Can you think of practical examples of these extremes? It’s harder than you
might think!

Example 17.3. Vioxx was introduced by Merck in 1999 as an alternative to naproxen for
treating pain due to osteoarthritis. It was marketed as an anti-inflammatory drug that
would be “as effective” as naproxen but would reduce the incidence of gastrointestinal
complications and pain (which it did). The problem is that it also increased the incidence
of heart attacks. In Merck’s VIGOR study,

• there were 20 heart attacks out of 4,047 patients taking Vioxx.

• there were 4 heart attacks out of 4,029 patients taking naproxen.

If there was really no difference between the heart attack rates for the two drugs, the
probability of an outcome this extreme in favor of Vioxx is about 0.0008, or about 8 out
of 10,000.

Q: Could something like this have happened strictly by chance?
A: Yes, but it is very unlikely because the probability 0.0008 is so small. Merck paid a
big price for it too.

17.2 Probability myths

Review: Probability provides a language to describe the long-term regularity of random
behavior. It does not describe what happens in the “short term.”

Myth 1: The myth of short-term regularity. Probabilities stabilize in the long run; see
Figures 17.1 and 17.2. Some people will confuse this interpretation with what happens
in the short run.

Example 17.4. Consider the following examples:

1. At a roulette wheel, the following colors have been observed in the last 10 plays:

R G B B B B B B B B
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Q: You walk up to the table with this information. What should you bet on the
next play?
A: If the plays are independent, then the previous 10 plays don’t matter (this is
“short-run” thinking). The probability of the outcomes remains the same for each
play:

Red: 18/38 Black: 18/38 Green: 2/38.

Remark: Some people will argue that because the previous 8 plays have been
a “B,” some mysterious “law of probability” must swing the next play back to
a different outcome (R or G). This is an incorrect conjecture about short-term
behavior (i.e., the last 8 plays).

2. I toss a fair coin 10 times. Which outcome looks the most random?

HTHTHTHTHT HHHHHHHHHH HTTHTHTTHH

Remark: Some people will argue the first two outcomes are not random; the first
alternates perfectly and the second one is all heads. In fact, all three outcomes
have the same chance of occurring:(

1

2

)10

=
1

1024
.

3. What does it mean for an outcome to be random? Pick a “random” number
(integer) between 1 and 100.

Remark: If you ask people this question, chances are they will not give a “random”
number. It will be a number that, to them, seems random. True randomness means
that each number between 1 and 100 has the same chance of occurring. Figure 17.4
simulates this exercise for 100,000 repetitions.

4. Growing up in Iowa, I always watched Chicago Cubs games which were announced
by the late Harry Caray. When the Cubs were behind late in the game, Harry
would try to rally the viewers at home by making statements like,

“At bat is Sandburg, who is hitting .250 for the season. He’s 0 for 3
today, so he is due for hit.”

Remark: A batting average can be interpreted as a probability of getting a hit.
This refers to long-term behavior over the course of the entire season; not what
Sandburg will do on the next at bat.

5. Empirical data suggests boys and girls are born at roughly the same proportions
(about 50/50). A couple’s first three children are boys.

Q: What is the probability the next child will be a girl?
A: It is still 0.5. It doesn’t matter what happened on the first three births.

Remark: Having children is like flipping coins or rolling dice. Coins and dice have
no memory. A coin doesn’t know the first 3 flips were tails, and it doesn’t know to
“try to even things out” on the next toss.
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Figure 17.3: Distribution of the proportion of 100,000 randomly selected numbers among
1, 2, ..., 100. This represents what could happen if the process of selecting a “random
number between 1 and 100” was truly random.

Myth 2: The myth of surprising coincidences. Certain outcomes may be unlikely, but this
does not mean they cannot occur. Even outcomes with small probability do occur from
time to time. When “surprising” events occur (especially if they are bad), it is common
to seek out a cause for why they happened. Most of the time, surprising outcomes are
explained by random chance and nothing more.

Example 17.5. Consider the following examples:

1. Winning the lottery twice. Winning any state or national lottery is unlikely. The
probability of winning one twice is incredibly small. However, it can and does
happen.

• In 1986, Evelyn Adams won the NJ state lottery for a second time ($1.5 and
$3.9 million payoffs).

• Robert Humphries (PA) won his second lottery two years later ($6.8 million
total).
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2. The Birthday Problem. Chances are, there are two people sitting in this room with
the same birthday (e.g., April 15). Does this sound surprising? It might, but it
isn’t surprising at all. For n different people (no multiple births), the probability
there will be at least one shared birthday is given in the table below:

n Probability n Probability

2 0.0027 28 0.6544
4 0.0163 30 0.7063
6 0.0404 32 0.7533
8 0.0743 34 0.7953
10 0.1169 36 0.8321
12 0.1670 38 0.8640
14 0.2231 40 0.8912
16 0.2836 50 0.9703
18 0.3469 60 0.9941
20 0.4114 70 0.9991
22 0.4756 80 >0.9999
24 0.5383 90 >0.9999
26 0.5982 100 >0.9999

Interesting: You only need n = 23 people to have the probability of a shared
birthday be at least 0.5 (50%). Most people think you need many more people
than this.

3. The Ohio lottery. On November 18, 2006, Ohio State beat Michigan 42-39 in college
football. This game was of particular interest because OSU was ranked #1 and
Michigan was ranked #2 at the time. The very next day, the Ohio State lottery
number chosen was 4239−identical to the score of the game. A CNN announcer,
when reporting the “anomalous” lottery selection said,

“I’m not a mathematician, but what is the chance of that?”

The probability of the outcome “4239” is 1/10000−the same as any other outcome.
The CNN announcer made a big deal out of something that isn’t. There is also
some “data snooping” going on here. The number 4239 was only on the CNN
announcer’s mind because of the football game the day before. What if the score
of the game had been something else?

4. Streaks. One of the most stunning winning streaks in MLB took place in 2002 when
the Oakland A’s won 20 games in a row, breaking the all-time American League
record. What makes the streak more interesting is that the team consisted of “value
players” only; i.e., players that had been chosen based on statistics not commonly
used in MLB at the time (and few/no superstars). The story behind this team was
the subject of the motion picture blockbuster Moneyball.

Q: What is the probability of a MLB team winning 20 games in a row?
A: This would be difficult to calculate without making restrictive assumptions. It’s
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very small. Based on where the Oakland A’s were that year in terms of overall win-
ning percentage when the streak started, an approximation based on independent
game outcomes is about 1 in 1 million.

Interesting: The 2017 Cleveland Indians won 22 games in a row, setting a new
American League record.

5. Cancer clusters. In 1984, residents of Randolph, MA, counted 67 cancer cases
in their 250 residences. This cluster of cancer cases seemed unusual, especially
because there was a nearby chemical plant (fearing that the water supply had been
contaminated). However, given that cancer was the cause of about 23% of the
deaths in the US at the time, 67 out of 250 cases (about 27%) is not all that
unusual. Random chance emerged as the best explanation.

17.3 The law of averages

Remark: Suppose we observe a simple random sample (SRS) from a population of
individuals. Informally, the law of averages states that

• the sample proportion p̂ will get close to population proportion p when the sample
size gets larger

• the sample mean x will get close to population mean µ when the sample size gets
larger.

Recall: In Chapter 3, we learned when we have a simple random sample (SRS) of
individuals, the sample proportion p̂ will be an unbiased estimate of the population
proportion p.

• “Unbiased estimate” means the sample proportion p̂ will estimate p correctly on
average over many hypothetical random samples.

• Therefore, the law of averages essentially is a statement about what happens to the
variability of p̂ as the sample size n gets larger. Let’s examine this by recalling the
margin of error.

Result: If a SRS is used, the margin of error in the sample proportion p̂ associated
with a 95% confidence level is approximately equal to

margin of error =
1√
n
,

where n is the sample size. This formula is only applicable for a SRS design with
a 95% level of confidence.
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Q: What happens to the margin of error when the sample size increases? Let’s see:

n = 100 =⇒ 1√
100

= 0.10

n = 1000 =⇒ 1√
1000

≈ 0.03

n = 10000 =⇒ 1√
10000

= 0.01

n = 100000 =⇒ 1√
100000

≈ 0.003

n = 1000000 =⇒ 1√
1000000

= 0.001.

Revelation: If the sample proportion p̂ is unbiased, and its variability (margin of error)
tends towards to 0 as the sample size gets larger and larger, then it must get close to the
population proportion p. This is what the law of averages says will happen.

Remark: A similar phenomenon occurs for the sample mean x calculated from an SRS.
It will get close to the population mean µ when the sample size becomes larger and larger.

Example 17.6. In Example 13.4, we described how the World Health Organization
uses a normal distribution with mean µ = 125 and standard deviation σ = 15 to describe
the systolic blood pressure (SBP, measured in mm Hg) of American males (aged 18 and
over).

• This population density curve is shown on the next page (top, left).

• To show how the law of averages works, I used R to simulate SBP observations
from a simple random sample of 10,000 American males from this population dis-
tribution.

• I kept track and updated the sample mean x as each American male was sampled.

• I then prepared a line graph of the sample means x as they were updated. This
graph is on the next page (top, right).

Q: What does the sample mean SBP x get close to as the sample size gets larger and
larger?
A: The population mean µ = 125. This is what the law of averages says should happen.

Important: The law of averages has important implications for statistical inference.
It guarantees that when we observe a simple random sample (SRS) from a population,

• the (sample) statistic p̂ will be a better estimate of the (population) parameter p
when the sample size n gets larger

• the (sample) statistic x will be a better estimate of the (population) parameter µ
when the sample size n gets larger.
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Figure 17.4: SBP for American males. Left: Normal distribution with mean µ = 125
and standard deviation σ = 15. Right: Line graph of sample means x calculated as each
American male is sampled from this population.

17.4 Personal probabilities

Example 17.7. On April 1, 2024, the NCAA basketball final four teams were determined
for both men and women:

• Men: Connecticut, Alabama, Purdue, NC State

• Women: South Carolina, NC State, Iowa, Connecticut.

Based on my knowledge of college basketball, I assigned probabilities to the teams I
thought would win the championship. For the men,

Team Connecticut Alabama Purdue NC State
Probability 0.70 0.08 0.20 0.02

For the women,

Team South Carolina NC State Iowa Connecticut
Probability 0.40 0.10 0.40 0.10

Discussion: The only satisfaction one should get from these tables is that the proba-
bilities add up to 1 for both men and women separately. Other than that, the numbers
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in the tables are based on my personal feeling and judgement. They are not based on
our definition of probability as a “long-run proportion.” Your assignment of probabilities
might be different than mine.

• We cannot assign probabilities in this example by performing the NCAA Final Four
a large number of times and keeping track of the proportion of times a certain team
would win.

• The numbers in the tables are examples of personal probabilities. They are
based on one’s personal feeling about the chance that something will happen.

• Personal probabilities and probabilities determined as “long-run proportions” don’t
always align. The former can be biased by personal feeling or judgement. The
latter is more mathematically satisfying, but not always practical. The Final Four
is played only one time−not a large number of times.

Q: Is a personal probability even a bona fide probability?
A: It might be to you if it’s yours, but probably not otherwise. The real danger of a
personal probability is that we use them to make decisions as we go about our daily life.
If these personal probabilities are based on biased information, then we could end up
making bad decisions.

Remark: Personal probabilities aren’t all bad, and they can be updated as our personal
feeling and judgement change. For example, suppose you woke up this morning with a
sore throat.

• You find out from your social media accounts that “strep throat is going around.”
You assign a personal probability of 0.50 to the outcome you have strep throat.

• You then look in the mirror to see what your throat looks like. Your tonsils appear
to be red and swollen. You update your personal probability to 0.70.

• Later that day, your doctor tells you, “it looks like strep throat but I can’t be sure.”
You update your personal probability to 0.80.

• An in-house strep test at your doctor’s office says you don’t have strep. You update
your personal probability to 0.10.

• A culture is performed on a swab specimen from your tonsils and is negative for
strep bacteria. You update your personal probability to 0.01. Based on this, you
conclude you likely don’t have strep throat.

Remark: As we continue to get more information, our personal feelings change so
personal probabilities change along with it to incorporate that information. This is the
central theme behind Bayesian statistics. This is a framework for how we update prob-
abilities in the presence of new information (data). An important part of this framework
is Bayes’ Rule, which is taught in statistics courses like STAT 201.
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17.5 Probabliity and risk

Example 17.8. Probabilities are often used to characterize risk. One can think of
“risk” as being exposed to danger, harm, or even death. The Insurance Information
Institute reports the lifetime odds of death from different types of accidental causes:

Accident Odds
Drug poisoning/overdose 1 in 43
Motor vehicle 1 in 93
Firearm assault 1 in 208
Exposure to smoke/fire 1 in 1287
Falls from steps/stairs 1 in 1577
Drowning 1 in 5186
Fall from ladder/scaffolding 1 in 7830
Firearm accidental discharge 1 in 9522
Airplane/space transport 1 in 11240
Weather-related storm 1 in 20098
Flood 1 in 45908
Dog bite/attack 1 in 53843
Earthquake 1 in 99120

Remark: Before we get into this table, first note the “odds” of something happening is
not the same as the probability it happens, although many people think these two terms
are synonymous. If the probability of an outcome is p, then the odds of the outcome is

odds =
p

1− p
.

Therefore, if the odds of drug poisoning/overdose is 1 in 43, then

odds =
1

43
=

1/44

43/44
=⇒ p =

1

44
≈ 0.023.

In other words, an odds of “1 in 43” means 1 death for every 43 non-deaths. More
commonly, this would be written as “43 to 1.”

Q: Why are some people scared of flying but not of driving?
A: The chance of dying in an automobile accident is about 120 times greater!

Remark: You are much more likely to die from heart disease (ranks 1st) or cancer (ranks
2nd). Why don’t we worry more about these? The risk of these causes of death is much
greater than those shown above. Shouldn’t our worries and fears align better with the
levels of risk involved? As Moore and Notz put it (pp 418),

“Few of us would leave a baby sleeping alone in a house while we drove off on
a 10-minute errand, even though car-crash risks are much greater than home
risks.”
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18 Probability Models

18.1 Probability models for populations

Terminology: A probability model for a population of individuals is a description
including two things:

• a collection of possible outcomes for individuals in the population

• a probability for each outcome.

Example 18.1. The following table describes a probability model for weight categories
of all American males (aged 18 and over):

Outcome Underweight Healthy Overweight Obese
Probability 0.01 0.32 0.43 0.24

This model lists four outcomes: underweight, healthy, overweight, and obese.

Conceptualization: Imagine observing one American male randomly selected from this
population. The probabilities for each outcome are 0.01, 0.32, 0.43, and 0.24, respectively.
Note these probabilities add up to 1. This is a requirement for any probability model.

Probability rules: For a probability model to be valid, the following must be true:

1. Each probability must be between 0 and 1.

2. All probabilities taken together must add to 1.

3. If two events have no outcomes in common, the probability either event will occur
is the sum of the individual probabilities.

Q: What is the probability an American male randomly selected from the population is
either overweight or obese?
A: We add the probabilities

P (Overweight) + P (Obese) = 0.43 + 0.24 = 0.67.

We use the letter “P” as short for “probability.” The notation

P (Overweight)

is read, “the probability of overweight.” The notation

P (Obese)

is read, “the probability of obese.”
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Example 18.2. The Centers for Disease Control and Prevention uses the following
probability model to describe the acquisition of hepatitis C (HCV) among all American
adults:

Outcome Probability
IVDU 0.60

Unprotected sex 0.25
Transfusion-related 0.05

Occupational 0.03
Other/Unknown ??

This model lists five outcomes: IVDU, unprotected sex, transfusion-related, occupa-
tional, and other/unknown.

Q: What is the correct probability for the outcome “Other/Unknown?”
A: The probabilities taken together must add to 1. Therefore,

0.60 + 0.25 + 0.05 + 0.03 + ?? = 1 =⇒ P (Other/Unknown) = 0.07.

Conceptualization: Imagine observing one HCV-infected American randomly selected
from the population of all HCV-infected Americans. The probabilities for each outcome
are 0.60, 0.25, 0.05, 0.03, and 0.07, respectively.

Example 18.3. In the game of craps, two fair dice are rolled initially to start the game.
There are

6× 6 = 36

different outcomes from rolling the two dice (see next page). Here is a probability model
for the sum of the two faces.

Outcome 2 3 4 5 6 7 8 9 10 11 12

Probability
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

Q: What is the probability of rolling a “7” or an “11?”
A: We add the probabilities

P (rolling a 7 or 11) = P (7) + P (11) =
6

36
+

2

36
=

8

36
≈ 0.22.

Q: What is the probability of not rolling a “7” or an “11?”
A:

P (not rolling a 7 or 11) ≈ 1− 0.22 = 0.78.

Remark: The last calculation is an example of the complement rule in probability:
“The probability an event doesn’t occur is 1 minus the probability it does occur.”
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Recall: Population density curves are curves that describe the distribution of a quan-
titative variable for all individuals in a population. Any population density curve has
these three properties:

1. the curve is non-negative (i.e., it must reside above the horizontal axis).

2. the total area under the curve is 1 (or 100%).

3. the area under the curve over a given range represents the proportion of individ-
uals in the population that fall in that range.

• You can also interpret this area as the probability a single individual in the
population falls in that range.

Revelation: Population density curves are probability models for individuals in a pop-
ulation!

Example 18.4. The distribution of hours of sleep per school night among high-school
seniors is normally distributed with mean µ = 6.6 hours and standard deviation σ = 1.3
hours. This is a probability model for all high-school seniors (the population).

Q: What is the probability a randomly selected high-school senior from this population
sleeps more than 8 hours?
A: This is a “normal calculation” just like we did in Chapter 13.

We first calculate the standard score:

z =
observation−mean

standard deviation
=

8− 6.6

1.3
≈ 1.1.
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Figure 18.1: Left: Normal population density curve with mean µ = 6.6 hours and
standard deviation σ = 1.3 hours. Right: The area to the right of 8 hours is shaded
(this is the probability).

Moore and Notz’s Table B gives the percentage of the population to the left of the
standard score z = 1.1:

Percentage = 86.43% −→ probability of getting less than 8 hours of sleep.

The percentage of the population to to the right of z = 1.1 is

Percentage = 100%− 86.43%

= 13.57% −→ probability of getting more than 8 hours of sleep.

As a probability (between 0 and 1), this is 0.1357; see Figure 18.1 above.

Implementation in R:

> 1-pnorm(1.1)

[1] 0.1357

Note: Normal population density curves are probability models for populations when
the quantitative variable of interest (e.g., hours of sleep per night) follows a normal
distribution.

Exercise: In Example 18.4, find the probability a randomly selected high-school senior
gets less than 4 hours of sleep. You can use the 68-95-99.7 rule to determine this.
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18.2 Probability models for sampling

18.2.1 Sampling distribution of the sample proportion p̂

Example 18.5. During September 28-29, 2016, Rasmussen Reports conducted a na-
tional telephone and online survey using a sample of n = 1000 American adults. Each
participant was asked:

Do you trust the media to accurately fact-check the presidential candidates’
comments?

The survey found 290 of the 1000 adults in the sample answered “Yes” to this question.
In other words, the sample proportion is

p̂ =
290

1000
= 0.29 (or 29%).

Discussion: Suppose the population proportion is p = 0.30. In other words, among
all 255 million American adults (aged 18 and over), suppose that 30% of this population
trusts the media to accurately fact-check presidential candidates.

• Of course, we don’t know if this is correct, but we are just exploring.

• Under the assumption that p = 0.30, we will use simulation to see what sample
proportions p̂ we could get with 1000 Americans sampled.

• We did similar simulations in Chapter 3 assuming a simple random sample (SRS).
We will make the same assumption here.

Results: I used R to simulate 10,000 values of the sample proportion p̂ under the
assumption that p = 0.30. Here are the first 100 sample proportions I got:

> round(sample.prop,2) # round to 2 dp

[1] 0.30 0.28 0.31 0.31 0.28 0.28 0.31 0.30 0.29 0.29 0.31 0.28 0.29 0.30

[15] 0.29 0.28 0.32 0.29 0.29 0.29 0.31 0.32 0.29 0.30 0.30 0.29 0.30 0.28

[29] 0.30 0.31 0.29 0.30 0.28 0.31 0.29 0.29 0.31 0.30 0.32 0.31 0.28 0.30

[43] 0.30 0.29 0.27 0.28 0.31 0.30 0.30 0.29 0.28 0.30 0.30 0.34 0.29 0.30

[57] 0.32 0.29 0.29 0.29 0.29 0.28 0.30 0.28 0.30 0.31 0.31 0.29 0.33 0.31

[71] 0.32 0.29 0.30 0.31 0.30 0.27 0.30 0.32 0.31 0.29 0.31 0.29 0.29 0.30

[85] 0.30 0.30 0.29 0.29 0.31 0.31 0.30 0.32 0.29 0.27 0.30 0.28 0.32 0.32

[99] 0.26 0.27

I used a histogram to show all 10,000 sample proportions p̂ that were simulated; this is
shown in Figure 18.2 (next page).
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Figure 18.2: Sampling distribution of the sample proportion p̂ when n = 1000 and
p = 0.30.

Main point: The value of the sample proportion p̂ will vary from sample to sample. It
therefore makes sense to think about the following question:

“What probability model describes how the sample proportion p̂ behaves?”

Result: Take a SRS of size n from a large population of individuals, where p is the
population proportion. For large samples,

• the sampling distribution of p̂ is described by a normal density curve

• the mean of the sampling distribution is p

• the standard deviation of the sampling distribution is√
p(1− p)

n
.

Illustration: The normal density curve with mean p = 0.30 and standard deviation√
0.30(1− 0.30)

1000
≈ 0.014.

is shown in Figure 18.3 (next page).
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Figure 18.3: Sampling distribution of the sample proportion p̂ when n = 1000 and
p = 0.30. A normal density curve has been superimposed.

Exercise: Use the 68-95-99.7 rule to form intervals 1, 2, and 3 standard deviations from
the mean. Interpret.

Solution. The normal density curve above has mean 0.30 and standard deviation 0.014.
Therefore,

• 68% of the sample proportions p̂ should be within (0.286, 0.314).

– Recall that Rasmussen’s sample proportion p̂ = 0.29 falls in this interval.

– Was this poll result inconsistent with p = 0.30?

• 95% of the sample proportions p̂ should be within (0.272, 0.328).

• 99.7% of the sample proportions p̂ should be within (0.258, 0.342).

Q: Which sample proportion p̂ below would be inconsistent with the hypothesis that the
population proportion is p = 0.30?

(a) p̂ = 0.30
(b) p̂ = 0.28
(c) p̂ = 0.32
(d) p̂ = 0.24
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Figure 18.4: Population density curve for the BMI of fourth-grade children in Augusta,
GA. A simple random sample of n = 25 BMI observations is shown using dark circles.
The sample mean x is shown using a larger red circle.

18.2.2 Sampling distribution of the sample mean x

Example 18.6. Figure 18.4 shows the population density curve for the BMI of fourth-
grade children in Augusta, GA. This density curve is an example of a gamma distribution
and has

µ = 20.1 ←− mean

σ = 4.3 ←− standard deviation.

These are population-level parameters that describe the mean and standard deviation of
all fourth-grade children in the population.

Sample: A simple random sample of n = 25 fourth grade children is observed and the
BMI of each child is determined (see Figure 18.4). Here are the summaries:

> mean(bmi) # sample mean

[1] 20.8

> sd(bmi) # sample standard deviation

[1] 5.1

These are the statistics x and s, respectively, calculated from the sample of 25 children.
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Figure 18.5: Sampling distribution of the sample mean x in Example 18.6 when n = 25.

Discussion: Let’s do another simulation. This time, we will simulate 10,000 samples of
n = 25 children from the population with mean µ = 20.1 and σ = 4.3.

• We assume the gamma distribution in Figure 18.4 is an accurate probability model
for the population of all fourth-grade children in Augusta, GA.

• With each sample, we will calculate the sample mean x.

Results: I used R to simulate 10,000 values of the sample mean x. Here are the first
100 sample means I got:

> round(sample.mean[1:100],1) # round to 1 dp

[1] 20.9 21.3 18.4 19.0 18.8 20.6 21.0 21.1 20.0 19.1 19.3 20.9 19.7 19.2

[15] 20.8 19.3 19.6 18.8 20.0 18.7 19.2 21.4 19.6 19.0 19.3 19.4 19.7 19.0

[29] 20.6 22.0 20.0 19.0 20.2 19.5 20.3 19.0 19.2 20.9 20.3 19.1 20.5 19.9

[43] 19.7 20.7 19.8 19.9 18.9 19.0 20.5 19.6 19.5 18.6 20.6 20.4 19.3 20.6

[57] 20.4 18.8 20.6 19.8 20.1 21.9 20.1 20.6 20.6 21.5 20.5 20.7 22.3 20.0

[71] 20.0 20.3 19.6 19.0 21.0 21.0 18.6 18.9 20.6 19.0 18.8 19.2 19.9 19.6

[85] 20.5 19.6 20.6 19.2 19.3 20.3 19.2 19.5 20.1 20.2 20.9 20.1 19.2 20.5

[99] 20.3 20.0

I used a histogram to show all 10,000 sample means x that were simulated; this is shown
in Figure 18.5 (above).
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Figure 18.6: Sampling distribution of the sample mean x in Example 18.6 when n = 25.
A normal density curve has been superimposed.

Main point: The value of the sample mean x will vary from sample to sample. It
therefore makes sense to think about the following question:

“What probability model describes how the sample mean x behaves?”

Result: Take a SRS of size n from a large population of individuals with mean µ and
standard deviation σ. For large samples,

• the sampling distribution of x is described by a normal density curve

• the mean of the sampling distribution is µ

• the standard deviation of the sampling distribution is

σ√
n
.

Illustration: The normal density curve with mean µ = 20.1 and standard deviation

4.3√
25

= 0.86

is shown in Figure 18.6 (above).
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