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Abstract

Procedures for estimating the parameters of the general class of semiparametric models for
recurrent events proposed by Peña and Hollander (2004) are developed. This class of models
incorporates an effective age function which encodes the changes that occur after each event
occurrence such as the impact of an intervention, it allows for the modeling of the impact of
accumulating event occurrences on the unit, it admits a link function in which the effect of possi-
bly time-dependent covariates are incorporated, and it allows the incorporation of unobservable
frailty components which induce dependencies among the inter-event times for each unit. The
estimation procedures are semiparametric in that a baseline hazard function is nonparametri-
cally specified. The sampling distribution properties of the estimators are examined through a
simulation study, and the consequences of mis-specifying the model are analyzed. The results
indicate that the flexibility of this general class of models provides a safeguard for analyzing
recurrent event data, even data possibly arising from a frailty-less mechanism. The estimation
procedures are applied to real data sets arising in the biomedical and public health settings, as
well as from reliability and engineering situations. In particular, the procedures are applied to
a data set pertaining to times to recurrence of bladder cancer and the results of the analysis are
compared to those obtained using three methods of analyzing recurrent event data.

Key Words and Phrases: Correlated inter-event times; counting process; effective age process;
EM algorithm; frailty; intensity models; model mis-specification; sum-quota accrual scheme.

1 Introduction

Recurrent events occur in many settings such as in biomedicine, public health, clinical trials, en-

gineering and reliability studies, politics, economics, sociology, actuary, among others. Examples
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of recurrent events in the biomedical and public health settings are the re-occurrence of a tumor

after surgical removal in cancer studies, epileptic seizures, drug or alcohol abuse of adolescents,

outbreak of a disease such as encephalitis, recurring migraine headaches, hospitalization, move-

ment in the small bowel during fasting state, onset of depression, nauseous feeling when taking

drugs for the dissolution of cholesterol gallstones, recurrence of caries, ulcers or inflammation in

an oral health study, and angina pectoris for patients with coronary disease. Some other specific

biomedical examples of recurrent events are described in Cook and Lawless (2002). In the engi-

neering and reliability settings, recurrent events could be the breakdown or failure of a mechanical

or electronic system, the discovery of a bug in an operating system software, the occurrence of a

crack in concrete structures, the breakdown of a fiber in fibrous composites, among others. Non-life

insurance claims, traffic accidents, terrorist attacks, the Dow Jones Industrial Average decreasing

by more than 200 points on a trading day, change of employment, among many others, are but a

few examples of recurrent phenomena in other settings.

There are currently several models and methods of analysis used for recurrent event data.

See for example Hougaard (2000), Therneau and Hamilton (1997), and Therneau and Grambsch

(2000) for some current approaches to analyzing recurrent event data. However, as pointed out

in Peña and Hollander (2004), there is still a need for a general and flexible class of models that

simultaneously incorporates the effects of covariates or concomitant variables, the impact on the unit

of accumulating event occurrences, the effect of performed interventions after each event occurrence,

as well as the effect of latent or unobserved variables which, for each unit, endow correlation among

the inter-event times. In recognition of this need, Peña and Hollander (2004) proposed a general

class of models for recurrent events which satisfies the above requirements. This class of models will

be described in Section 2. The current paper deals with inference issues, specifically the estimation

of parameters, for this new class of models. However, we limit the scope of this paper to examining

the finite-sample properties through simulation studies of the resulting estimators and defer the

analytical and asymptotic analysis of their properties to a forthcoming paper.

For our setting, we consider an observational unit (e.g., a patient in a biomedical setting, an
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electronic system in a reliability setting) which is being monitored for the occurrence of a recurrent

event over a study period [0, τ ], where τ may represent an administrative time, time of study

termination, or some other right-censoring variable. The time τ could be a random time governed

by an unknown probability distribution functionG(t) = P(τ ≤ t). Let S0 ≡ 0 < S1 < S2 < S3 < . . .

be the successive calendar times of event occurrences, and let T1, T2, T3, . . . be the times between

successive event occurrences. Thus, for i = 1, 2, 3, . . ., Ti = Si − Si−1 and Si = T1 + T2 + . . .+ Ti.

Over the observation period [0, τ ], the number of event occurrences is K = max{k ∈ {0, 1, 2, . . .} :

Sk ≤ τ}, which is a random variable whose distribution depends on the distributional properties of

the inter-occurrence times Tis and the distribution G of τ . As such, K is informative with regards

to the distributional properties of event occurrences.

Assume also that for this unit there is a, possibly time-varying, q-dimensional vector of

covariates such as gender, age, race, disease status, white blood cell counts (WBC), prostate specific

antigen (PSA) level, weight, blood pressure, treatment regimen, etc. We suppose that over the

period [0, τ ], the realization of this covariate process is observable. We denote this covariate process

by
{

X(s) = (X1(s), X2(s), . . . , Xq(s))
t : 0 ≤ s ≤ τ

}

, with “t” representing vector/matrix transpose.

For this subject, the observable entities over the study period [0, τ ] are therefore

D(τ) ≡ {(X(s) : 0 ≤ s ≤ τ),K, τ, T1, T2, . . . , TK , τ − SK} . (1)

Notice that since SK =
∑K

j=1 Tj , specifying the value of τ − SK renders specifying τ redundant;

however, we still include this to indicate that τ − SK is the right-censoring variable for the inter-

occurrence time TK+1. Furthermore, note that sinceK is a random variable, then the distributional

properties of both τ−SK and TK+1 maybe of a complicated form. We remark that when considering

the data structure in this recurrent event situation, there is a need to recognize thatK is informative

and that the censoring mechanism for TK+1 is informative (cf., Wang and Chang 1999; Lin, Sun,

and Ying 1999; Peña, Strawderman, and Hollander 2001). These aspects are borne out of the

sum-quota data accrual scheme, since the total number of observed events is intrinsically tied to

the distributions governing the event occurrences themselves.

The observable entities may also be represented more succinctly and more beneficially through
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the use of stochastic processes. Still considering one unit, let us define for calendar time s, N †(s) =

∑∞
j=1 I{Sj ≤ s, Sj ≤ τ}, where I{·} denotes indicator function, the process which counts the

number of events observed on or before calendar time s during the study period [0, τ ]. Furthermore,

define for calendar time s, Y †(s) = I{τ ≥ s}, the “at-risk” process which indicates whether

the subject is still under observation at calendar time s or not. The data D(τ) in (1) could be

represented by

D(s∗) =
{(

X(s), N †(s), Y †(s)
)

: 0 ≤ s ≤ s∗ <∞
}

, (2)

where s∗ is an upper limit of observation time. Note that even though X(s) is not observed for

s > τ this does not pose a problem since for s > τ , Y †(s) = 0, and so for such a subject, there will

be no more information obtainable past τ . If in the study there are n subjects, the observables will

be D(s∗) = (D1(s
∗),D2(s

∗), . . . ,Dn(s
∗)) , where for i = 1, 2, . . . , n,

Di(s
∗) = {(Xi(s) : s ≤ τi) ,Ki, τi, Ti1, Ti2, . . . , TiKi

, τi − SiKi
} . (3)

Equivalently, Di(s
∗) =

{(

Xi(s), N
†
i (s), Y

†
i (s)

)

: 0 ≤ s ≤ s∗ <∞
}

, where N †i (s) =
∑∞

j=1 I{Sij ≤

s, Sij ≤ τi} and Y †i (s) = I{τi ≥ s}, and Si1 < Si2 < . . . are the calendar times of successive event

occurrences for the ith subject, Tij = Sij − Sij−1, j = 1, 2, . . ., and τi is the censoring time of the

ith subject.

Before proceeding, we briefly provide an outline of the contents of this paper. As mentioned

earlier, Section 2 will present a description of the class of models for recurrent events that is under

investigation. Section 3 will examine the problem of estimating the parameters of the model when

there are no frailty components. The results here are needed for dealing with the case with frailties,

so Section 4 describes the estimation procedure in the presence of frailties. Section 5 will summarize

results of the simulation studies pertaining to the properties of the estimators. We demonstrate

the estimation procedures discussed in Sections 3 and 4 on real data sets in Section 6. Section 7

will provide some concluding thoughts.
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2 A General Class of Models

In this section we describe the general class of models for recurrent events proposed in Peña and

Hollander (2004). Let Z = (Z1, Z2, . . . , Zn) be a vector of independent and identically distributed

(i.i.d.) positive-valued random variables from a parametric distribution H(z; ξ) = P(Z ≤ z|ξ)

where ξ is a finite-dimensional parameter taking values in Ξ ⊆ <r. These variables are unobservable

random factors affecting the event occurrences for the subjects. Also, let F = {Fs : 0 ≤ s ≤ s∗} be

a filtration or history on some probability space (Ω,F ,P) such that Xis and Y †i s are predictable

and such that N †
i s are counting processes with respect to F. The general class of models requires

the specification, possibly done dynamically, of predictable observable processes {Ei(s) : 0 ≤ s ≤

s∗}, i = 1, 2, . . . , n, satisfying the following conditions: (I) Ei(0) = ei0, almost surely (a.s.), where

ei0, i = 1, 2, . . . , n, are nonnegative real numbers; (II) Ei(s) ≥ 0, i = 1, 2, . . . , n; and (III) On

[Sik−1, Sik), Ei(s) is monotone and almost surely differentiable with a positive derivative E ′i(s). The

class of models is obtained by postulating that, conditionally on Z, the F-compensator of N †
i is

{A†i (s|Z,Xi) : 0 ≤ s ≤ s∗} with

A†i (s|Z,Xi) =

∫ s

0
Y †i (v)λi(v|Z,Xi) dv; (4)

λi(s|Z,Xi) = Zi λ0[Ei(s)] ρ[N †i (s−);α]ψ[βtXi(s)]. (5)

This means that the processM †
i (s|Z,Xi) = N †i (s)−A

†
i (s|Z,Xi) is a square-integrable F-martingale.

In (5), λ0(·) is an unknown baseline hazard rate function; ρ(·;α) : Z+ ≡ {0, 1, 2, . . .} → <+ is

of known functional form with ρ(0;α) = 1 and with α ∈ A ⊆ <p; and ψ(·) is a nonnegative

link function of known functional form with β ∈ B ⊆ <q. The unknown model parameters are

(λ0(·), α, β, ξ), where λ0(·) is non-parametrically specified, and α, β, and ξ are finite-dimensional

parameters.

The main impetus in introducing this general class of models for recurrent events is that it

incorporates simultaneously the effects of covariates through the link function ψ(·), the associations

among the event inter-occurrence times through the unobservable frailty variables Zis, the effects

attributable to the accumulating event occurrences for a subject through the component ρ(·;α),
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and the effects of performed interventions after each event occurrence through the effective age

processes {Ei(s)} that act on the baseline hazard rate function λ0(·). By requiring condition (III)

together with E ′(s) ∈ (0, 1], note that we have Ei(Sik−) ≤ Ei(Sik−1) + Tik, k = 1, 2, . . . , implying

that the ith subject’s effective age just before the kth event occurrence, represented by Ei(Sik−), is

at most the subject’s effective age just after the (k−1)th event occurrence, which is Ei(Sik−1), plus

the inter-occurrence time between the (k − 1)th and the kth events. This means that the effect of

the performed intervention after an event occurrence is to make the subject ‘age’ at a slower rate

relative to the elapsed calendar time.

The generality and scope of this class of models has been established in Peña and Hollander

(2004) for the case where Zi = 1, i = 1, 2, . . . , n. With the added feature of having the frailty

component, this class of models subsumes many existing models in the literature. Below we describe

some existing models which are special cases of the general class of models. For more details, see

Peña and Hollander (2004). It suffices to describe these models by setting n = 1.

Example 2.1: By letting Z = 1 (no frailty), ρ(k;α) = 1, k ∈ Z+, ψ(w) = 1, and

E(s) = s−SN†(s−), we obtain the model where the inter-occurrence times Tj , j = 1, 2, . . ., are i.i.d.

with common hazard rate function λ0(·). This is one of the models examined in Gill (1981) and

Peña, et al. (2001). By allowing the frailty Z to have a non-degenerate distribution, one obtains

a model that allows for associations among the inter-occurrence times of the subject, a model also

considered in Peña, et al. (2001) and Wang and Chang (1999). ‖

Example 2.2: The extended Cox proportional hazards model considered by Prentice,

Williams and Peterson (1981), Lawless (1987), and Aalen and Husebye (1991) is a special case

of the general model obtained by setting Z = 1, ρ(k;α) = 1, k ∈ Z+, E(s) = s − SN†(s−), and

ψ(w) = exp(w). ‖

Example 2.3: Still with Z = 1, ρ(k) = 1, k ∈ Z, and E(s) = s, a model examined by

Prentice, et al. (1981), Brown and Proschan (1983), and Lawless (1987) arises from the general

class of models. This resulting model is referred to in the reliability literature as a minimal repair

model, since it arises by ‘restoring a system to the state just before it failed (minimally repaired)’
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whenever the system fails. ‖

Example 2.4: The Gail, Santner and Brown (1980) Markovian model for tumor occurrence

becomes a special case of model (5) by taking Z = 1, E(s) = s− SN†(s−) and ρ(k;α) = α− k + 1,

which also coincides with the Jelinski and Moranda (1972) software reliability model, but with the

added feature that covariate effects have been incorporated. ‖

Example 2.5: Let I1, I2, I3, . . . be a sequence of i.i.d. Bernoulli random variables with

success probability p. Define the process {η(s) : s ∈ [0, τ ]} via η(s) =
∑N†(s)

i=1 Ii. Also, let 0 ≡ Γ0 <

Γ1 < Γ2 < . . . be defined according to Γk = min{j > Γk−1 : Ij = 1}, k = 1, 2, 3, . . . . By setting

Z = 1, ρ(k;α) = 1 and E(s) = s− SΓη(s−)
, we obtain

λ(s|Z,X) = λ0
(

s− SΓη(s−)

)

ψ(βtX(s)). (6)

This is the Brown and Proschan (1983) minimal repair model in reliability. This is the model stud-

ied by Whitaker and Samaniego (1989) where they pointed out that in estimating the reliability

function, it suffices to know the inter-failure times and the repair modes to achieve model identifi-

ability. If the success probability p is made to depend on the time of event occurrence, the Block,

Borges and Savits (1985) model obtains (see also Hollander, Presnell and Sethuraman (1992) and

Presnell, Hollander and Sethuraman (1994)). Note in this example that the Γks represent event

occurrences in which intervention causes the unit to acquire an effective age of zero. Furthermore,

SΓη(s−)
is the last time prior to s that the subject had an effective age of zero. More generally,

the class of models also subsumes the general repair model of Dorado, Hollander, and Sethuraman

(1997), which in turns include as special cases models of Kijima (1989), Last and Szekli (1998),

Baxter, Kijima, and Tortorella (1996), and Stadje and Zuckerman (1991). For more discussion on

this, see the more detailed technical report Peña, Slate, and Gonzalez (2003). ‖

Example 2.6: An example where ρ(·;α) is not identically unity is provided by taking

ρ[N †(s−);α] = αN†(s−) for some α ∈ <+. If, additionally, we take E(s) = s−SN†(s−), the resulting

model postulates that the effect of accumulating event occurrences is a proportional increase (if

α > 1) in the intensity rate relative to the preceding intensity rate. This could serve as a simple

and natural model for the weakening of the subject caused by the accumulating number of event
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occurrences. Under this specification, and assuming the exponential form for ψ, the intensity

process becomes λ(s|X) = λ0(s − SN†(s−))α
N†(s−) exp{βtX(s)}. Clearly, the above specification

could be coupled to the other forms of E(s) considered in the preceding examples. ‖

Example 2.7: Another generalization obtains via ρ[N †(s−);α] = max{α − g[N †(s−)], 0},

where α is some positive real number, and g(·) is some nondecreasing function. One could interpret

the parameter α as an initial measure of the unit’s susceptibility to events, and g(·) specifies the

rate at which this unit is becoming stronger as the event occurrences accumulate. If we take E(s) =

s−SN†(s−), the resulting model possesses the interesting property that the unit’s defects contribute

to the event occurrence intensity multiplicatively through the baseline hazard rate function λ0(·).

If g[N †(s−)] = N †(s−) and λ0(s) = λ0, where λ0 is some positive constant, then the Gail, et al.

(1980) tumor occurrence model and the Jelinski and Moranda (1972) software reliability model are

obtained. ‖

Example 2.8: Load-sharing models occur in a variety of situations dealing with coherent

systems, computer networks, materials science such as fibrous composites, etc. A popular load-

sharing model is the equal load-share model considered recently in Kvam and Peña (2003). A

setting in which this occurs is when one considers a K-component parallel system consisting of

identical components, and the event of interest for this system is the occurrence of a component

failure. Failed components are not replaced, and when a component fails, the load of the system

is redistributed equally over the remaining functioning components. To model this, we let α =

(α0 ≡ 1, α1, . . . , αK−1) be an unknown vector of constants, and we model the hazard rate of event

occurrence at calendar time s via λ(s) = λ0(s)[K −N †(s−)]αN†(s−), where λ0(·) is the hazard rate

of each component at time zero and N †(s) denotes the number of components that have failed up

to time s. This model is then a special case of the general model with E(s) = s, ρ(j;α) = (K−j)αj ,

and one has the added flexibility of also incorporating a link function involving covariates if such

are observed, as well as frailty components which could model unobserved operating environment

factors. Statistical inference issues for this model without covariates and frailties, such as estimating

α and the associated baseline survivor function of λ0(·), were considered in Kvam and Peña (2003).
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‖

3 Estimation of Parameters: Model without Frailties

In this section we address the problem of estimating the model parameters Λ0(·) =
∫ ·
0 λ0(w)dw, α

and β for the model where it is assumed that Zi ≡ 1, that is, the model without frailties. Thus,

the model of interest has intensity process

λi(s|Xi) = λ0[Ei(s)] ρ[N †i (s−);α]ψ(βtXi(s)). (7)

The observables for the n subjects, which now include the observable effective age processes, are
{(

Xi(s), N
†
i (s), Y

†
i (s), Ei(s)

)

: 0 ≤ s ≤ s∗
}

, i = 1, 2, . . . , n, where N †
i (s) =

∑∞
j=1 I{Sij ≤ s, Sij ≤

τi} and Y †i (s) = I{τi ≥ s}. The statistical identifiability of this class of models without frailties has

been established in Theorem 1 of Peña and Hollander (2004). The two basic conditions to achieve

identifiability, aside from the non-triviality of ψ(·) and sufficient variability on X, are that for each

value of the parameter set (λ0(·), α, β), the support of E(S1) should contain [0, τ ], and that ρ(·, ·)

should satisfy the condition that ρ(k;α(1)) = ρ(k;α(2)) for each k ∈ {0, 1, 2, . . .} implies α(1) = α(2).

These two conditions are henceforth assumed to hold.

For this model, letting A†i (s) =
∫ s
0 Y

†
i (v)λ0[Ei(v)] ρ[N

†
i (v−);α]ψ(βtXi(v)) dv, then with re-

spect to the filtration F, the vector of processes M† = (M †
1 , . . . ,M

†
n) = N† − A† = (N †1 −

A†1, . . . , N
†
n − A†n) consists of orthogonal square-integrable martingales with predictable quadratic

covariation processes 〈M †
i1
,M †

i2
〉(s) = A†i1(s) I{i1 = i2}. The usual martingale theory developed

by Aalen (1978), Gill (1980), Andersen and Gill (1982), and others (cf., Fleming and Harrington

(1991) and Andersen, et al. (1993)) does not apply directly for the purpose of estimating Λ0(·). The

reason is that the λ0(·) appearing in A†i (·) is time-transformed by the observable predictable process

Ei(·), while of interest is to estimate Λ0(t) for a given t. It is tempting and would seem natural

to simply define new processes involving the gap times between the event occurrences. However,

as pointed out in Peña, et al. (2001), this approach does not work since the resulting processes no

longer satisfy martingale properties owing to the effect of the sum-quota accrual scheme.

The technique utilized in Peña, et al. (2001), extending an idea of Sellke (1988) and Gill
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(1981), is to define a doubly-indexed process Zi(s, t) = I{Ei(s) ≤ t}, i = 1, 2, . . . , n. The index s

represents calendar time, which is the natural time of data accrual; while the index t represents

gap times. This process indicates whether at calendar time s, the effective age of the ith subject is

no more than t. For i = 1, 2, . . . , n, define also the doubly-indexed processes

Ni(s, t) =

∫ s

0
Zi(v, t)N

†
i (dv) and Ai(s, t) =

∫ s

0
Zi(v, t)A

†
i (dv);

Mi(s, t) = Ni(s, t)−Ai(s, t) =

∫ s

0
Zi(v, t)M

†
i (dv).

For a given t, by utilizing the martingale property ofM †
i and the predictability of Zi(·, t), the process

Mi(·, t) is a square-integrable zero-mean martingale; however, for fixed s, the processMi(s, ·) is not

a martingale, but nevertheless, it also has mean zero.

A critical result is an equivalent expression for Ai(s, t) which involves λ0(t) directly, instead of

its time-transformed version. To reveal this expression, define for j = 1, 2, . . . ,Ki +1 the processes

Eij−1(v) = Ei(v)I{Sij−1 < v ≤ Sij} on {Y †i (v) > 0}. (8)

Thus, Eij−1(·) is the restriction of Ei(·) on the jth interval bounded by successive event occurrence

times for the ith subject. Note that on (Sij−1, Sij ], the paths of Eij−1(·) are one-to-one, so its inverse

exists; and furthermore, it is also differentiable. We now provide the alternative expression for

Ai(s, t). The proof of this result is analogous to that in Peña, Strawderman and Hollander (2000);

see also Stocker and Peña (2003). To make our notation more concise, with E ′ij(s) = d
ds
Eij(s), we

define

ϕij(s;α, β) ≡
ρ[N †i (s−);α]ψ[βtXi(s)]

E ′ij(s)
. (9)

Proposition 1 For each i = 1, 2, . . . , n, Ai(s, t) =
∫ t
0 Yi(s, w)λ0(w)dw, where

Yi(s, w) ≡ Yi(s, w|α, β) =
N
†
i
(s−)
∑

j=1

I(Eij−1(Sij−1), Eij−1(Sij)](w)ϕij−1

(

E−1ij−1(w);α, β
)

+

I(E
iN

†
i
(s−)

(S
iN

†
i
(s−)

), E
iN

†
i
(s−)

(s∧τi)](w)ϕiN
†
i
(s−)

(

E−1
iN

†
i
(s−)

(w);α, β

)

.
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Using Proposition 1, we have the identity Mi(s, t) = Ni(s, t)−
∫ t
0 Yi(s, w)Λ0(dw), i = 1, 2, . . . , n, so

that
∑n

i=1Mi(s, dw) =
∑n

i=1Ni(s, dw)− S0(s, w)Λ0(dw), where

S0(s, t) ≡ S0(s, t|α, β) =
n
∑

i=1

Yi(s, t|α, β). (10)

Because
∑n

i=1Mi(s, dw) has mean zero, a method-of-moments ‘estimator’ of Λ0(t), given (α, β) is

Λ̂0(s, t;α, β) =

∫ t

0

{

J(s, w|α, β)
S0(s, w|α, β)

}

{

n
∑

i=1

Ni(s, dw)

}

, (11)

with J(s, w|α, β) = I{S0(s, w|α, β) > 0} and with the convention that 0/0 = 0. Notice that this

‘estimator’ is of the same flavor as the Nelson-Aalen estimator or the Aalen-Breslow estimator in

single-event settings, although it should be pointed out that the derivation as well as the structure

of the processes are quite different.

Next we develop the profile likelihood for (α, β) from which the estimator of (α, β) will be

obtained. Following Jacod (1975) (see also Andersen, et al., 1993), if the distribution G of τ does

not involve the model parameters, then the likelihood process associated with the observables for

the general model without frailties is

L†(s|λ0(·), α, β) =
{

n
∏

i=1

s
∏

v=0

[

Y †i (v) ρ[N
†
i (v−);α]ψ(βtXi(v))λ0[Ei(v)]

]N
†
i
(∆v)

}

×
{

exp

[

−
n
∑

i=1

∫ s

0
Y †i (v) ρ[N

†
i (v−);α]ψ(βtXi(v))λ0[Ei(v)] dv

]}

. (12)

The argument of the exponential function could be re-expressed via

∑n
i=1

∫ s
0 Y

†
i (v) ρ[N

†
i (v−);α]ψ(βtXi(v))λ0[Ei(v)]dv =

∑n
i=1Ai(s,∞) =

∫∞
0 S0(s, w|α, β) Λ0(dw).

Since from (11), we have Λ̂0(s, dw|α, β) =
∑n

i=1Ni(s, dw)/S0(s, w|α, β), it therefore follows that

∫∞
0 S0(s, w|α, β)Λ̂0(s, dw|α, β) =

∑n
i=1Ni(s,∞), which is independent of (α, β). Upon substituting

the ‘estimator’ Λ̂0(s, t|α, β) for Λ0(t) in the argument of the exponential function in (12), the

resulting term will not contribute to the profile likelihood for (α, β).

On the other hand, substituting Λ̂0(s, w|α, β) for Λ0(w) in the first term of (12), we obtain

the relevant portion of the profile likelihood of (α, β) to be

Lp(s|α, β) =
n
∏

i=1

N
†
i
(s)
∏

j=1

[

ρ(j − 1;α)ψ[βtXi(Sij)]

S0[s, Ei(Sij)|α, β]

]∆N
†
i
(Sij)

. (13)
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This process could also be viewed as the partial likelihood process for (α, β), which is a generaliza-

tion of the partial likelihood for the Cox model (cf., Cox (1972; 1975); Andersen and Gill (1982)).

The logarithm of the profile likelihood could be conveniently expressed in integral form via

lP (s|α, β) =
n
∑

i=1

∫ s

0

[

log ρ[N †i (v−);α] + logψ(βtXi(v))− logS0(s, Ei(v)|α, β)
]

N †i (dv). (14)

From this profile likelihood, the estimators of α and β will be obtained. It is easy to see that the

estimating equations for the profile maximum likelihood estimators are

n
∑

i=1

∫ s∗

0

[

∂
∂α
ρ[N †i (v−);α]
ρ[N †i (v−);α]

−
∂
∂α
S0(s, Ei(v)|α, β)
S0(s, Ei(v)|α, β)

]

N †i (dv) = 0; (15)

n
∑

i=1

∫ s∗

0

[ ∂
∂β
ψ(βtXi(v))

ψ(βtXi(v))
−

∂
∂β
S0(s, Ei(v)|α, β)
S0(s, Ei(v)|α, β)

]

N †i (dv) = 0. (16)

Because N †i (·) is a step process with a finite number of jumps, then both of these estimating

equations are finite sums with respect to the calendar times Sijs. Also, just like estimating equations

in simpler models, such as for the Cox proportional hazards model, it is clear that numerical

techniques will be needed to obtain the estimates α̂ and β̂.

The structure of the estimating equations in (15) and (16) can be better understood by

introducing new notation. For i = 1, 2, . . . , n and j = 1, 2, . . . , N †
i (s), and recalling the definition

of the function ϕij(·;α, β) in (9), define

Qij(s, w|α, β) = I(Eij−1(Sij−1), Eij−1(Sij)](w)ϕij−1

(

E−1ij−1(w);α, β
)

; (17)

Ri(s, w|α, β) = I(E
iN

†
i
(s−)

(S
iN

†
i
(s−)

), E
iN

†
i
(s−)

(min(s,τi))](w)ϕiN
†
i
(s−)

(

E−1
iN

†
i
(s−)

(w);α, β

)

. (18)

Note that these processes satisfy the technical and crucial condition of predictability. Using these

processes, S0(s, w|α, β) could be re-expressed via

S0(s, w|α, β) =
n
∑

i=1











N
†
i
(s−)
∑

j=1

Qij(s, w|α, β) +Ri(s, w|α, β)











. (19)

Observe that the Qijs can be interpreted as the contributions of the uncensored values, while the

Ris are the contributions of the right-censored values. With a slight change in notation above, we

therefore observe that this mirrors the single-event situation.
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For notation, let ρ(α)(·;α) = ∂ρ(·;α)/∂α, ψ′(·) be the derivative of ψ(·), and

V(j;α) =
ρ(α)(j;α)

ρ(j;α)
and W(x;β) =

xψ′(βtx)

ψ(βtx)
.

Then taking the partial derivatives (more appropriately, the gradients) of S0(s, w|α, β) with respect

to α and β, we obtain

∂

∂α
S0(s, w|α, β) =

n
∑

i=1











N
†
i
(s−)
∑

j=1

V(j − 1;α)Qij(s, w|α, β) + V(N †
i (s−);α)Ri(s, w|α, β)











;

∂

∂β
S0(s, w|α, β) =

n
∑

i=1











N
†
i
(s−)
∑

j=1

Wij(w;β)Qij(s, w|α, β) + W
iN

†
i
(s−)

(w;β)Ri(s, w|α, β)











,

where for brevity, Wij(w;β) = W(Xi(E−1ij−1(w));β). These expressions simplify when specific forms

of ρ(·;α) and ψ(·) are taken, or if the covariate process are time-independent. One possible choice

is ρ(j;α) = αj , leading to V(j;α) = j/α; and for ψ(·) a common choice is ψ(w) = exp(w), for

which ψ′(w) = ψ(w), so we obtain W(Xi(E−1ij−1(w));β) = Xi(E−1ij−1(w)), and, if this is coupled with

the assumption that the covariate vector process is time-independent, then Xi(E−1ij−1(w)) = Xi.

To obtain further simplification for the moment, let us assume that Xi are time-independent,

ρ(j;α) = αj , and ψ(w) = exp(w). Under these assumptions, letting

A(s, w|α, β) = 1

α

∑n
i=1

{

∑N
†
i
(s−)

j=1 (j − 1)Qij(s, w|α, β) +N †i (s−)Ri(s, w|α, β)
}

∑n
i=1

{

∑N
†
i
(s−)

j=1 Qij(s, w|α, β) +Ri(s, w|α, β)
} ;

B(s, w|α, β) =

∑n
i=1 Xi

{

∑N
†
i
(s−)

j=1 Qij(s, w|α, β) +Ri(s, w|α, β)
}

∑n
i=1

{

∑N
†
i
(s−)

j=1 Qij(s, w|α, β) +Ri(s, w|α, β)
} ,

it is easy to see that the estimating equations in (15) and (16) become

n
∑

i=1

N
†
i
(s∗−)
∑

j=1

[

j − 1

α
−A(s∗, Eij−1(Sij)|α, β)

]

∆N †i (Sij) = 0;

n
∑

i=1

N
†
i
(s∗−)
∑

j=1

[Xi −B(s∗, Eij−1(Sij)|α, β)]∆N †i (Sij) = 0.

Upon obtaining the estimators α̂ and β̂ as described in the preceding discussion, the estimator

of Λ0(t) based on the realizations of the observables over [0, s∗] is obtained by substituting (α̂, β̂)
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for (α, β) in the expression of Λ̂0(s
∗, t|α, β) given in (11). Thus,

Λ̂0(s
∗, t) =

∫ t

0

{

J(s∗, w|α̂, β̂)
S0(s∗, w|α̂, β̂)

}{

n
∑

i=1

Ni(s
∗, dw)

}

. (20)

Finally, for an estimator of the baseline survivor function associated with Λ0(·) defined via F̄0(t) =

exp {−Λ0(t)}, by the product-integral representation and the substitution principle, we obtain

ˆ̄F0(s
∗, t) =

t
∏

w=0

[

1− Λ̂0(s
∗, dw)

]

=
t
∏

w=0

[

1−
∑n

i=1Ni(s
∗, dw)

S0(s∗, w|α̂, β̂)

]

. (21)

This estimator is of a product-limit type analogous to those arising in the estimation of the baseline

survivor function in the Cox proportional hazards model or the multiplicative intensity model (Cox

1972; Andersen and Gill 1982).

For the i.i.d. interoccurrence times model in Example 2.1, which obtains when ψ(w) = 1 (no

covariate effects), ρ(w) = 1 (no effects of accumulating event occurrences), and Ei(s) = s−S
N
†
i
(s−)

(upon each event occurrence, effective age is reset to zero, so this is just the backward recurrence

time), the estimator of F̄0(t) in (21) simplifies to that considered in Peña, et al. (2001). Note, in

particular, that for this special model, E ′i(s) = 1, and since Eij−1(Sij) = Sij −Sij−1 = Tij , then the

process Yi(s, w) simplifies to Yi(s, w) =
∑N

†
i
(s−)

j=1 I{Tij ≥ w}+ I{min(s, τi)− SiN
†
i
(s−)

≥ w}, which

is the natural at-risk process for the gap times over the observation period [0, s].

4 Estimation of Parameters: Model with Frailties

In this section we consider the estimation of the parameters when the class of models includes

frailties. It will be assumed that the frailties Z1, Z2, . . . , Zn are i.i.d. from a distribution H(·|ξ)

where ξ ∈ Ξ ⊆ <r. A common choice for this H, which we adopt here, is the gamma distribution

with unit mean and variance 1/ξ, H = Gamma(ξ, ξ). Imposing the restriction that the gamma

shape and scale parameters are identical is needed to have model identifiability. Recall at this stage

that the Zis are not observed. For the model at hand, the conditional intensity function is as given

in (5), which, for convenience, is again displayed below:

λi(s|Zi,Xi) = Zi λ0[Ei(s)] ρ[N †i (s−);α]ψ(βtXi(s)).
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In estimating the model parameters ξ, Λ0(·), α, and β, we generalize and extend the approach

implemented in Peña, et al. (2001) which dealt with the frailty model without covariates, and

without the ρ(·;α) term, and with Ei(s) = s− S
iN

†
i
(s−)

. The computations of the estimates will be

facilitated through the expectation-maximization (EM) algorithm introduced by Dempster, Laird,

and Rubin (1977), and implemented in counting process frailty models by Nielsen, et al. (1992).

The main ingredients of this algorithm for the general class of recurrent event models are as follows:

Given (Λ0(·), α, β) and D(s∗) ≡ (D1(s
∗), . . . ,Dn(s

∗)), the conditional expectation of Zi is

E{Zi|Λ0(·), α, β} =
ξ +N †i (s

∗)

ξ +
∫ s∗

0 Y †i (v) ρ[N
†
i (v−);α]ψ(βtXi(v))λ0[Ei(v)] dv

. (22)

Furthermore, following the development of the ‘estimator’ Λ̂0(s
∗, ·|α, β) for the model without

frailties in the preceding subsection, given Z = (Z1, . . . , Zn), α, β, and the data D, the ‘estimator’

of Λ0(·) is given by

Λ̂0(s
∗, t|Z, α, β) =

∫ t

0

{

J(s∗, w|Z, α, β)
S0(s∗, w|Z, α, β)

}

{

n
∑

i=1

Ni(s
∗, dw)

}

, (23)

where J(s, w|Z, α, β) = I{S0(s, w|Z, α, β) > 0} with S0(s, w|Z, α, β) =
∑n

i=1 ZiYi(s, w|α, β). Anal-

ogously to the estimating equations for α and β in the model without frailties in (15) and (16),

given Z and Λ̂0(s
∗, ·|Z, α, β), we may estimate α and β by solving the estimating equations

n
∑

i=1

∫ s∗

0

[

∂
∂α
ρ[N †i (v−);α]
ρ[N †i (v−);α]

−
∂
∂α
S0(s, Ei(v)|Z, α, β)
S0(s, Ei(v)|Z, α, β)

]

N †i (dv) = 0; (24)

n
∑

i=1

∫ s∗

0

[ ∂
∂β
ψ(βtXi(v))

ψ(βtXi(v))
−

∂
∂β
S0(s, Ei(v)|Z, α, β)
S0(s, Ei(v)|Z, α, β)

]

N †i (dv) = 0. (25)

On the other hand, by integrating out Z according to its joint (gamma) distribution in the joint

likelihood function, the marginal profile likelihood for ξ, given (Λ0(·), α, β), is obtained as

LP (s
∗|ξ, α, β,Λ0(·)) =

n
∏

i=1

{[

Γ(ξ +N †i (s
∗))

Γ(ξ)

]

×

[

ξ

ξ +
∫ s∗

0 Y †i (v) ρ[N
†
i (v−);α]ψ(βtXi(v))λ0[Ei(v)] dv

]ξ+N
†
i
(s∗)

×






s∗
∏

v=0

[

Y †i (v) ρ[N
†
i (v−);α]ψ(βtXi(v))λ0[Ei(v)]

ξ

]N
†
i
(∆v)

















. (26)
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For a given (Λ0(·), α, β), this function could be maximized with respect to ξ using numerical max-

imization algorithms. With these ingredients at hand, the EM recipe for obtaining the estimates

of the model parameters in this general model with frailties is described by the following steps:

Step 0 (Initialization): Specify initial estimates ξ̂(0), α̂(0), and β̂(0) of ξ, α, and β, respec-

tively. By setting Ẑ
(0)
i = 1, i = 1, 2, . . . , n, obtain the initial estimate of Λ0(·) via

Λ̂
(0)
0 (s∗, t|Ẑ(0), α̂(0), β̂(0)) =

∫ t

0

{

J(s∗, w|Ẑ(0), α̂(0), β̂(0))

S0(s∗, w|Ẑ(0), α̂(0), β̂(0))

}{

n
∑

i=1

Ni(s
∗, dw)

}

which is just the ‘estimator’ in (11) under the model without frailties.

Step 1 (E-step): Given (ξ̂(0), α̂(0), β̂(0)), and Λ̂
(0)
0 (s∗, ·|Ẑ(0), α̂(0), β̂(0)), obtain the estimated

frailty values Ẑ
(1)
i = E

{

Zi|Λ̂(0)
0 , α̂(0), β̂(0)

}

, i = 1, 2, . . . , n, according to the formula in (22).

Denote these estimated values by Ẑ(1) = (Ẑ
(1)
1 , . . . , Ẑ

(1)
n ). By exploiting the property that

the estimator Λ̂0(·) is a step function, these quantities could be obtained according to the

following expressions: For i = 1, 2, . . . , n,

Ẑ
(1)
i =

ξ̂(0) +N †i (s
∗)

ξ̂(0) + Âi(s∗; Λ̂
(0)
0 , α̂(0), β̂(0))

(27)

where, with t(1) < t(2) < . . . < t(D) being the D distinct jump times of Λ̂
(0)
0 (s∗, ·) and

λ̂
(0)
0 (s∗, t(l)) = Λ̂

(0)
0 (s∗, t(l))− Λ̂

(0)
0 (s∗, t(l)−) is the jump of Λ̂

(0)
0 (s∗, ·) at t = t(l), we have

Â
(0)
i ≡ Âi(s

∗; Λ̂
(0)
0 , α̂(0), β̂(0)) =

∑D
l=1 Yi(s

∗, t(l)|α̂(0), β̂(0)) λ̂(0)0 (s∗, t(l)). (28)

Step 2 (M-step #1): Applying formula (23), obtain Λ̂
(1)
0 (s∗, t|Ẑ(1), α̂(0), β̂(0)).

Step 3 (M-step #2): After substituting Ẑ(1) for Z in the estimating equations (24) and

(25), obtain the solutions of these equations and denote them by α̂(1) and β̂(1).

Step 4 (M-step #3): Replacing Λ0(·) in (26) by Λ̂
(1)
0 (s∗, ·|Ẑ(1), α̂(0), β̂(0)) from Step 2, and

(α, β) by (α̂(1), β̂(1)), maximize the resulting (estimated) marginal likelihood with respect to

ξ to obtain ξ̂(1). The function to be maximized with respect to ξ is given by

n
∏

i=1







[

Γ(ξ +N †i (s
∗))

Γ(ξ)

] [

1

ξ + Â
(1)
i

]ξ+N
†
i
(s∗)

ξξ exp{B̂(1)
i }







(29)
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where Â
(1)
i is computed using the formula in (28) and B̂

(1)
i is computed via

B̂
(1)
i =

N
†
i
(s∗)
∑

j=1

log
{

ρ(j − 1; α̂(1))ψ(β̂(1)tXi(Sij)) λ̂
(1)
0 (s∗, Ei(Sij)|Ẑ(1), α̂(1), β̂(1))

}

. (30)

The maximization of (29) with respect to ξ may be aided by a reparameterization to, for

example, log(ξ), since this will alleviate the problem of negative values when using iterative

gradient-based algorithms.

Step 5 (Convergence): Compare the values (ξ̂(1), Ẑ(1), Λ̂
(1)
0 (s∗, ·|Ẑ(1), α(0), β(0)), α(1), β(1))

with the values (ξ̂(0), Ẑ(0), Λ̂
(0)
0 (s∗, ·|Ẑ(0), α(0), β(0)), α(0), β(0)) according to some distance func-

tion, e.g., Euclidean distance. If the distance between the old and the new values satisfy a

certain tolerance criterion, the algorithm terminates and the estimates are the final values

in the iteration. If the distance criterion is not satisfied, then replace the old values by the

new values, and proceed to Step 1 of the algorithm. Because of the possibility of very large,

possibly infinite, estimates of ξ, corresponding to the situation of approximate ‘uncorrelated-

ness,’ when comparing old and new iterates for ξ, we compare instead the associated values

for η = ξ/(1 + ξ) since this ratio takes values in (0, 1].

Having obtained an estimator of the baseline hazard function Λ0(·) given by Λ̂0(s
∗, ·), by

virtue of the product integral representation of the survivor curve, the semiparametric estimator

of the baseline survivor function F̄0(·) for this model with frailty is

ˆ̄F0(s
∗, t) =

∏

{w: w≤t}

[

1− Λ̂0(s
∗, dw)

]

. (31)

A computational implementation of the procedures and algorithms described in Sections 3 and

4 have been implemented in an R package (Ihaka and Gentleman 1996) called gcmrec in González,

Slate, and Peña (2003).

5 Properties of Estimators

5.1 Simulation Design

We performed computer simulation studies to examine numerically the properties of the parameter

estimators developed in Sections 3 and 4. The specific goals of these studies are: (i) to examine
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the effect of sample size (n) on the distributional properties of the estimators; (ii) to examine the

bias, variance, and root-mean-square error (rmse) of the estimators; (iii) to examine the perfor-

mance of the semiparametric estimator of the baseline survivor function F̄0 in terms of its bias

function, variance function, and root-mean-squared error function at specified time points. The

latter function is based on the loss function L( ˆ̄F (t), F̄ (t)) = ( ˆ̄F (t)− F̄ (t))2; (iv) to examine the

consequences when data that have been generated with frailty components are analyzed using the

model without frailties; and (v) to examine the consequences, such as the loss in efficiency, when

data that were generated using the model without frailties are analyzed with methods developed

under the model with frailties. For the first three items, simulation runs were performed for both

the frailty-less model and for the model with frailty. We describe the settings for the different

simulation parameters.

Sample Size: To examine the impact of sample size, we choose three values of n: n ∈ {10, 30, 50}.

The case of n = 10 may not be realistic in biomedical settings, which often have many subjects in

the study, but such a small sample size may arise in the reliability and engineering settings, such as

for example in the hydraulic data set. Including this small sample size enables us also to examine

the limitations of the numerical procedures in obtaining the estimates.

Censoring Mechanism: The censoring variable τi, i = 1, 2, . . . , n, are generated according to a

uniform distribution over [0, B] where B is chosen in order that under perfect repair (i.e., E(s) =

s−SN†(s−)) and with α = 1, there are, on average, approximately 10 events per unit. Moreover, to

place an upper limit to the number of events that could occur for a unit, when the number of events

for a unit reaches 50 then we cease observing this unit and set τi = Si,50. This has the potential

consequence of introducing some bias because this amounts to doing a combination of Type II and

random censoring. Nevertheless, because the value of 50 is large enough, we conjecture that the

bias introduced is negligible.

Effective Age Function: For the simulation studies we considered an effective age process corre-

sponding to the general minimal repair model (see Example 2.5) with perfect repair probability

of 0.6. Since the upper bound for the uniform censoring was determined under the perfect repair
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model and with α = 1 in order to have an average of approximately 10 events per unit, in the

simulations the effective average number of events per unit may either be smaller or larger than

this prespecified value of 10 owing to the interplay among the baseline hazard rate function (if it

is increasing failure rate (IFR) or decreasing failure rate (DFR)), the minimal repairs performed,

and the effect of increasing number of event occurrence quantified by α.

Baseline Survivor Function: For the baseline hazard function λ0(·) we choose the flexible and

commonly-used Weibull hazard function, with a unit scale parameter and shape parameter (γ)

taking values in {.9, 2}, the former leading to a DFR distribution, and the latter giving rise to an

IFR distribution. Note that the estimation procedure proposed is semiparametric, hence the scale

and shape parameters of this Weibull baseline distribution are not estimated; on the other hand,

see Stocker and Peña (2003) for a parametric treatment of the baseline hazard function.

ρ Function: The ρ function which handles the impact of accumulating event occurrences is as-

sumed to be of form ρ(k;α) = αk with α ∈ {0.9, 1.0, 1.05}, which models the situations where

an increasing number of event occurrences has a beneficial effect, has no effect, or has an adverse

effect, respectively.

Covariates: We consider a two-dimensional covariate vector (X1, X2) with X1 having a Bernoulli

distribution with success probability of 0.5, X2 having a standard normal distribution, and with X1

and X2 stochastically independent. The regression coefficient vector (β1, β2) is set to be (1,−1).

The fact that the grouping induced by the first covariate is done using a symmetric Bernoulli

mechanism lead sometimes to highly asymmetric allocations for some simulation replicates, which

was the cause of some convergence problems in the iterative procedure when n = 10.

Frailty Component: The parameter ξ of the gamma distribution governing the frailty variable was

set to {2, 6,∞}, with∞ corresponding to the absence of frailties. With respect to the parametriza-

tion ξ 7→ η = ξ/(1 + ξ), these frailty values convert to having η ∈ { 23 , 67 , 1}.

For each combination of these simulation parameters, 1000 replications were performed. In the

analysis, we set s∗ = 10. Also, to create the bias, variance, and root-mean-squared-error curves for

the estimator of the baseline survivor function, we choose the time values that corresponded to the
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[0 : (0.01) : 0.99] percentiles of the true baseline distribution function. Associated with the deciles

of this true baseline distribution function, we create side-by-side boxplots of the simulated values of

Wn(s
∗, t) ≡ √n[ ˆ̄F0(s∗, t)− F̄0(t)]. This enables the graphical and empirical assessment of whether

the sampling distributions of these standardized values (at a fixed time point) are converging to a

normal distributions. As mentioned earlier, a theoretical treatment of the asymptotic properties of

the estimators will be presented in another paper.

5.2 Discussions of Simulation Results

In the discussion of the simulation results that follows, we will focus on the effects of changing n,

changing ξ or η, changing α, and changing γ, on the distributional properties of the estimators of α,

β, and η, as well as the estimator of the baseline survivor function F̄0. In addition, we also address

the consequences of analyzing data that follows the general model with frailty using procedures

developed for the general model without frailties, an under-specification; and also consider the

impact of over-specification, which is the situation where procedures developed under the model

with frailties are utilized to analyze data from a model without frailties. Such analyses will provide

information on which type of mis-specification is of a more serious type.

Results of the simulation studies are presented in the following tables. Table 1 summarizes

the mean values and standard deviations (i.e., standard errors of the estimates) of the sampling

distributions of the estimators of α, β1, β2, and η for α values of 0.9, 1.0, and 1.05 as n varies in the

set {30, 50}. We do not anymore show the cases with n = 10 to conserve space. Table 2 contains

means and standard deviations summaries of the simulation runs pertaining to the under- and over-

specified analysis. Table 3 contains plots of the bias and rmse curves for the estimator of F̄0 under

the case where α = .9 for ξ ∈ {2, 6,∞} with the plots for different values of n superimposed on each

plot frame for two Weibull shape parameter values, γ = 0.9 and γ = 2.0. Table 4 contains side-by-

side boxplots of Wn(s
∗, t) for t-values associated with the deciles of the true survivor function F̄0

for the case where α = .9, ξ = 2, γ = 0.9, and as n varies in {10, 30, 50}. Table 5 contains bias and

rmse curves under the mis-specification runs, showing the effect of sample size for different values

of α and when ξ = 2 and γ = 0.9.
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We note at the outset that one limitation of the computational implementation used in the

simulation is that for small sample sizes such as n = 10 (not shown in the tables), there were some

cases of nonconvergence (indicated by the column NC in the tables), and also the computational

procedure in a few runs may not have converged to a maximizing value for the likelihood with

respect to the parameter β1, probably because there were not enough units allocated to one of the

groups. For some replicates, the resulting values turned out to be extreme outliers, and the effect

of these outliers is evident in the simulated mean values of β̂1. When these outliers were removed,

the simulated mean values became very close to the true value of β1.

As is to be expected, for the simulation runs where there was no mis-specification, when the

sample size increases, the performance of the estimators of the finite-dimensional parameters, as

well as for the baseline survivor function, improved, with the biases decreasing and the standard

errors also decreasing. This is also true for the over-specification runs. When the sample size

is small, there is considerable over-estimation of η = ξ/(1 + ξ), though this bias decreases with

increasing sample size. When there is under-specification however, all the estimators are extremely

biased (see UVW-runs in Table 2 as well as Table 5, demonstrating the undesirable consequences of

committing this under-specification. Regarding the effect of the frailty parameter ξ, for estimating

the finite-dimensional parameters, the amount of bias for n = 30 and n = 50 are negligible. The

impact of the ξ is on the standard errors of the estimators, with larger values of ξ translating into

less correlation, leading to smaller standard errors for the same sample size. When considering on

the other hand the estimator ˆ̄F0 of the baseline survivor function, by examining the curves in Table

3 we observe that the bias and rmse curves of this estimator decrease as n increases, and the same

could also be said as ξ increases. Generally, the bias function is positive, and as is to be expected

there is more bias and rmse in the middle portion of the survivor function. Regarding the marginal

distributions of ˆ̄F0(t), we observe from the side-by-side boxplots in Table 4 that as the sample size

increases, the sampling distribution of Wn(s
∗, t) in t becomes closer to being symmetric about zero

and supports the conjecture that a normal limiting distribution holds. This issue of asymptotic

distributions of the estimators will be addressed in a separate paper. In particular, the question
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of whether the process {Wn(s
∗, t) : 0 ≤ t ≤ t∗} converges weakly to a Gaussian process will be

examined.

Some care, however, must be observed when considering the effects of changing α and changing

Weibull shape parameter γ in the context of the precision of the estimators because the interplay

between these two parameters leads to differing observed number of events. To see this, examine

the column µ̂Ev, which represents the mean number of events observed per unit, in Table 1. In

this table, we notice that when α < 1 and γ < 1, the latter leading to a DFR Weibull baseline

distribution, there tends to be a smaller number of observed events; whereas when α > 1 and

γ > 1, the latter making the Weibull baseline IFR, then there tends to be more events observed.

These differences in the observed number of events can be explained by taking into account the

minimal repair model considered in the simulation. In the first situation for instance, an α value

less than unity makes the unit less likely to have events as calendar time increases since more event

occurrences become beneficial to the unit and, in addition, when a minimal repair is performed, then

the DFR nature (because γ < 1) of the baseline distribution diminishes the rate of event occurrences

thereby lengthening the inter-event times. Because the upper bound B for the uniformly distributed

follow-up time τ was determined under α = 1 and with a backward recurrence time effective age

corresponding to a perfect repair mechanism, the impact of α < 1 and γ < 1 is a smaller number

of events compared to the target of approximately 10 events used in deriving B. An analogous

argument, but in the opposite direction, holds true when dealing with α > 1 and γ > 1. The impact

of the minimal repair effective age and its interplay with a DFR or IFR baseline distribution can

be further seen from Table 1 with α = 1, where we see that when the baseline distribution is DFR

(IFR), the observed number of events per unit is less (more) than the target of approximately 10

events per unit used in deriving B. A fascinating situation is when α < 1 and γ > 1, or when α > 1

and γ < 1, for the effects of α and γ are in opposite directions in the context of event occurrences.

Examining the bottom portion of the A-runs in Table 1 and the upper half of the C-runs in Table

1, and with reference to the B-runs in this same table, we observe that for the chosen α and γ

values in the simulation, there was a more pronounced effect of the α values compared to the γ
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values since when α = .9 and γ = 2, the observed number of events is slightly below 10, whereas

when α = 1.05 and γ = .9, the observed number of events is more than 10. The greater effect of α

than γ on the mean number of events is not surprising, because γ was partially accommodated in

the determination of the upper bound B for the censoring distribution. It is a theoretical challenge,

however, to obtain an exact analytical expression for B that will yield a prespecified mean number

of event occurrences per unit for a given α, γ, ξ, and specified effective age function, even for the

restricted case where β = 0. This appears to be a non-trivial problem, which in the renewal (i.i.d.)

model (cf., Peña et al. (2001)) involves the baseline distribution renewal function owing to the

sum-quota accrual scheme.

In the presence of model mis-specification, by examining the bias and rmse plots in Table

5, we find that under-specification leads to a non-negligible systematic bias that increases with

n, and, based on other simulation runs not reported here, also with α. In fact, for this type of

mis-specification, we have observed that the mean of the process Wn(s
∗, t) in t does not converge

to the zero function as n increases, implying that with this mis-specification, the estimator ˆ̄F0 may

be inconsistent.

In contrast, with over-specification, we find that there is no recognizable loss in efficiency

compared to the correct analysis, though we observe some very slight increase in the standard

errors of the finite-dimensional parameter estimators (see XYZ-runs in Table 2 and compare the

standard deviations in the A9 row of Table 1 and the X3 row, B9 row of Table 1 with the Y3 row,

and the C9 row of Table 1 and the Z3 row). This indicates that there is much to be gained in

the context of robustness by simply fitting the frailty-based model since, if the data did come from

the frailty model, then the analysis is correct, while if the data came from the frailty-less model,

there is no significant efficiency loss incurred; whereas, if there is under-specification of the model,

then the consequences are unacceptable if the data actually came from the model with frailty. This

lends strong support that this new class of models provides a general and flexible class for fitting

recurrent event data and provides an avenue for a robust method of analysis for real data sets.
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6 Applications to Real Data

In this section we will apply the estimation procedures developed in preceding sections to three

real data sets from the biomedical and reliability settings.

The first application is to the bladder cancer data used in Wei, Lin, and Weissfeld (1989),

which can be obtained from the survival package (Lumley and Therneau 2003) in the R Library.

These data provide the times to recurrence of bladder cancer for n = 85 subjects. The covariates are

X1, the treatment indicator (1 = placebo; 2 = thiotepa); X2, the size (in cm) of the largest initial

tumor; and X3, the number of initial tumors. A pictorial representation of the data is provided

in the first plot in Figure 1, though the second and third covariates are not indicated. We first

fitted the general model using the backward recurrence time E(s) = s − SN†(s−) as effective age.

With s∗ = 64, the maximum observation period, we fitted the general model without frailties, and

obtained α̂ = 0.9826 (se = 0.0736); (β̂1, β̂2, β̂3) = (−0.3188,−0.0154, 0.1353). These are also the

estimates obtained when the general model with frailty is fitted since in that case ξ̂ = 5432999 (η̂ ≈

1), very large value indicating that there is no need for the frailty component when the effective

age is the backward recurrence time. Thus, using the approximate inverse of the partial likelihood

information matrix from fitting the model without frailties, the associated estimated standard

errors are .0736 for α̂ and (0.2051, 0.0695, 0.0511) for β̂. We recognize, however, that it remains

to establish formally that these values are indeed valid standard error estimates, an issue to be

addressed in a subsequent paper addressing the asymptotic properties of the model estimators.

For lack of information about the effective age, we also fitted the general model with frail-

ties assuming a ‘minimal repair’ after each event, E(s) = s. In this situation, the estimates are

α̂ = .789, (β̂1, β̂2, β̂3) = (−.5743,−.0315, .2220), and ξ̂ = .974, indicating the importance of the

frailty component in this case. The estimates of the survivor functions for the two effective age

specifications are presented in the second plot in Figure 1. The lower curves (red), corresponding

to the placebo group, are obtained by setting X1 = 1 in the expression given by

{ ˆ̄F0(t)}exp{β̂1X1+β̂2X̄2+β̂3X̄3},
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while the upper curves (blue) are for the thiotepa group obtained by setting X1 = 2. The observed

means were X̄2 = 2.01 and X̄3 = 2.11. The solid curves are for the backward recurrence time

effective age, while the dashed curves are for E(s) = s. These plots seem to indicate that the thiotepa

group has a higher survival rate than the placebo group, although the statistical significance of this

difference depends on which effective age process was used.

It is of interest to compare the estimates of the regression coefficients from the general model

with those obtained using the three existing methods of analysis described in Therneau and Hamil-

ton (1997) and Therneau and Grambsch (2000). The table below summarizes the estimates from

Andersen-Gill’s (AG) method, Wei, Lin and Weissfeld’s (WLW) marginal method, and Prentice,

Williams and Peterson’s (PWP) conditional method as reported in Therneau and Grambsch (2000),

together with the estimates obtained from the general model with frailty under these two specifi-

cations of the effective age process, E(s) = s− SN†(s−) and E(s) = s.

Covariate Parameter AG WLW PWP General Model
Marginal Conditional Perfecta Minimalb

logN(s−) α - - - .98 (.07) .79

Frailty ξ - - - ∞ .97

rx β1 −.47 (.20) −.58 (.20) −.33 (.21) −.32 (.21) −.57
Size β2 −.04 (.07) −.05 (.07) −.01 (.07) −.02 (.07) −.03

Number β3 .18 (.05) .21 (.05) .12 (.05) .14 (.05) .22

aEffective Age is backward recurrence time (E(s) = s− SN†(s−)).
bEffective Age is calendar time (E(s) = s).

From this table we note the crucial role that the effective age process plays in this analysis

and how it provides a reconciliation of the varied estimates from these different methods. When

the effective age process corresponds to perfect repair, then the estimates from the general model

are close to those obtained from PWP’s conditional method, whereas when the effective age process

corresponds to minimal repair, the resulting estimates are close to those obtained from the WLW

marginal method. The values from the AG method lie between these two cases. An explanation is

that, in the analyses reported in Therneau and Grambsch (2000), the AG method and the WLW

method assume a calendar time scale acting on the hazard functions, with the WLW method

incorporating a stratification arising from the event occurrence, which seems to be modeled by the
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α parameter in the general model; whereas, by the nature of the conditional approach of PWP, the

time scale acting on the hazard is the backward recurrence time. The ability of the general model

to seemingly explain these varied estimates from these different methods indicates the crucial role

of the effective age and the need to monitor this information. Without this information, different

methods will produce varied estimates, which could possibly lead to contradictory conclusions. If

information about the effective age is obtained, then the general model may provide a flexible

modeling vehicle for real data sets.

Because of the importance of the effective age process as demonstrated by this application

to the bladder cancer data, we examined further through a simulation study the impact of mis-

specifying the effective age process. We considered the model described in the simulation studies of

Section 5 with a perfect repair probability of 0.6, and examined the impact of two types of effective

age process mis-specification: that the interventions following event occurrences are all minimal

repair, or that they are all perfect repair.

The results (not shown) indicate an interesting interplay between the nature of the baseline

survivor function (DFR/IFR) and the behavior of ˆ̄F0 and α̂. We observed that under the minimal

repair mis-specification, when F̄0 is DFR, ˆ̄F0 exhibits negative bias and α̂ is positively biased.

Additionally for this mis-specification, when F̄0 is IFR, ˆ̄F0 exhibits positive bias and α̂ is positively

biased. Alternately, when the mis-specification is perfect repair, an underlying baseline DFR (IFR)

is associated with positive (negative) bias in ˆ̄F0 and negative (positive) bias in α̂. We explain these

findings as follows: When the model mistakenly assumes minimal repair at each event occurrence,

it tends to overestimate the effective age of units. Hence, in the case of DFR, the model anticipates

longer interevent times than are realized in the data, creating the negative bias, especially for

larger interevent times, in the estimates of the baseline survivor function in this situation. In

the case of IFR, the minimal repair mis-specification leads to longer interevent times in the data

than are anticipated by the model, creating a positive bias in the estimated baseline survivor

function. When a perfect repair is incorrectly assumed at each event occurrence, the model tends

to underestimate the effective age of units. Hence, using reasoning analogous to that for the

26



minimal repair mis-specification, there is positive (negative) bias in the estimated baseline survivor

function in the case of DFR (IFR). Especially interesting is that this behavior induces biases also

in the finite-dimensional parameter estimates, with α̂, in particular, evidently compensating such

that α̂ is positively biased when the baseline distribution is DFR, and negatively biased when this

distribution is IFR. These simulation results further indicate the importance of monitoring the

effective age process, and in future research we intend to examine consequences of other types of

mis-specifications that may occur in practice.

Another biomedical example pertains to the rehospitalization of patients diagnosed with col-

orectal cancer. The data provide the calendar time (in days) of the successive hospitalizations after

the date of surgery. The first readmission time was considered as the time between the date of the

surgical procedure and the first rehospitalization after discharge related to colorectal cancer. Each

subsequent readmission time was defined as the difference between the current hospitalization date

and the previous discharge date. There were a total of 861 rehospitalization events recorded for the

403 patients included in the analysis. The data can be obtained from the gcmrec package in the

R Library. The aim of the investigators was to determine whether there were differences regarding

the time of the recurrent hospitalization due to social-demographic or clinical outcomes. However,

in this example we consider only the following variables: tumor stage (Dukes classification: A-B, C

or D); whether the patient received chemotherapy; and the distance between the hospital and the

patient’s residence. We have coded these covariates using dummy variables such that the regression

coefficients can be interpreted as follows: β1 pertains to patients diagnosed with Dukes C stage, and

β2 for patients with Dukes D stage; β3 for patients who did not receive chemotherapy, and β4 for pa-

tients whose residence are more than 30 kilometers from the hospital. Since in this case we have no

information about the effective age, we assumed the backward recurrence time, E(s) = s−SN†(s−).

We fitted the general model without frailties, taking s∗ = 2060, the maximum follow-up time. The

resulting estimates of the parameters are α̂ = 1.1243 (s.e. = 0.0145), β̂1 = 0.3102 (s.e. = 0.1204),

β̂2 = 0.9270 (s.e. = 0.1369), β̂3 = −0.1226 (s.e. = 0.1062), and β̂4 = −0.0052 (s.e. = 0.148). We

also fitted the general model with frailties. After 35 iterations in the EM algorithm, the estimate of
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the frailty parameter ξ was quite small (ξ̂ = 2.3934), so we may conclude that the frailty component

of the model is important for these data. The fitted frailty-based model provided the estimates:

α̂ = 1.0811, β̂1 = 0.3050, β̂2 = 1.0516, β̂3 = −0.1426, and β̂4 = 0.0257. Based on these results,

we conclude that among these covariates, only the advanced tumor stages (C or D) are associated

with an elevated risk of rehospitalization. Furthermore, since the estimate of α is larger than unity,

there is an indication that each hospitalization increases the risk of further hospitalization.

The next data set, given in Blischke and Murthy (2000), which was analyzed in Kumar and

Klefsjo (1992), concerns hydraulic load-haul-dump (LHD) subsystems used in moving ore and rock

in underground mines in Sweden. The data set provides the calendar times (in hours), excluding

repair or down times, of the successive failures of n = 6 such systems during the development

phase, which was over a period of two years. We note that because in the data set the τi-values

were not provided, for each unit we set τi = SiKi
. The first two machines are the oldest, the second

two machines are of medium age, and the last two are relatively new machines. The categorized

age of the machines will serve as our covariate, and it will be coded in terms of dummy variables

with X = (0, 0) denoting old age, X = (1, 0) denoting medium age, and X = (0, 1) denoting

young age. For purposes of our analysis, we will assume that the effective age function is the

backward recurrence time E(s) = s − SN†(s−). The number of failure events for the six machines

are K = (24, 26, 28, 29, 27, 24). When the general model without frailty is fitted, the resulting

parameter estimates are α̂ = 1.0265 and (β1, β2) = (−0.0764,−0.0537). The estimates of the

standard errors of these parameter estimates, obtained from the estimate of the inverse of the

partial likelihood information matrix, are σ̂α̂ = 0.0106 and σ̂
β̂
= (0.2014, 0.2056). These estimates

were obtained by setting s∗ to any value larger than max1≤i≤6 τi = 4743 hours. We also fitted the

general model with gamma frailties to this hydraulic data set. The estimate of the frailty parameter

was very large (ξ̂ = 2.53× 1028 or η̂ ≈ 1), which indicates the absence of unobserved frailties which

would have induced additional heterogeneity among the machines. As a consequence, the estimates

of α and (β1, β2) were identical to those obtained when the model without frailties was fitted.
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7 Concluding Remarks

In this paper procedures for estimating the parameters of a general and flexible class of models for

recurrent events proposed by Peña and Hollander (2004) were developed, and their properties were

examined through computer simulation studies. The class of models, which includes as special cases

many well-known models in survival analysis and reliability, possesses the appealing properties that

it takes into account the effect of interventions which are administered after each event occurrence

through the notion of an effective age, the possible weakening (or strengthening) effect of accu-

mulating event occurrences, the possible presence of unobserved frailties that could be inducing

correlations among the inter-event times per unit, and the effect of observable covariates. Some

data sets in the biomedical and reliability/engineering settings were re-analyzed using this new class

of models. It was found in the simulation studies that an under-specification of the model, in the

sense of analyzing a data generated from the model with frailties using procedures developed from

the model without frailties, could have unacceptable consequences in that the resulting estimators

will have non-negligible systematic biases. On the other hand, it was found that over-specification

of the model may provide a robust method of analysis with an acceptable loss in efficiency. The

application of the procedures to the bladder cancer data set also provided a reconciliation of seem-

ingly varied estimates obtained from currently available methods of analyzing recurrent event data,

and highlights the importance of monitoring the effective age process.

There are still many interesting and important questions that need to be examined with

regards to this general model. The first is the ascertainment of asymptotic properties of the

estimators, such as their asymptotic normality or the weak convergence to a Gaussian process of

a properly normed estimator of the baseline survivor function. This will be the topic of another

paper, and the resolution of this asymptotic problem may require methods utilized in Murphy

(1994, 1995) and Parner (1998). Some asymptotic results for specific models subsumed by the

general class of models could be found in Peña et al. (2001) and Kvam and Peña (2003). Through

such asymptotic analysis we will be able to obtain expressions for approximating analytically the

standard errors of the estimators which will reflect the effects of an informative right-censoring
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mechanism as well as the impact of the sum-quota accrual scheme (see Peña et al. (2001) for the

special case of a renewal model).

The problem of how to validate this class of models after it has been fitted to a specific data

set is another open problem, and calls for suitable goodness-of-fit and model validation procedures.

For example, in the illustration using the LHD data set, the survivor curve estimate for the medium

age group is a little higher than for the new age group, and when one examines the data, there is

a long gap in the third machine which might have led to this ordering. A question of interest is

whether this particular inter-event time is an outlier, and it is hoped that future model validation

and diagnostics procedures for this class of models will be able to answer such a question. Another

question of interest is in the absence of an effective age data, might it have been better to fit a

minimal repair effective age function, instead of the perfect repair effective age for this LHD data?

This question leads to the recognition that an existing limitation of this class of models is that

currently available data sets do not possess information regarding the effective age process. Thus,

in applying this model to currently available data sets, we are forced to assume simple forms of

the effective age process, such as the imperfect repair or perfect repair models discussed here. This

problem of not knowing the effective age was first highlighted in Whitaker and Samaniego (1989),

where they pointed out that if the repair modes, hence the effective ages, are not known in the

minimal repair model, then the model is nonidentifiable. For the purpose of demonstrating their

inference methods using Proschan (1963)’s air-conditioning data, which did not include the mode-

of-repairs, they therefore augmented the inter-failure times data with assumed mode-of-repair data

to illustrate the estimation of the reliability function. As demonstrated by our simulation studies

to assess the impact of mis-specifying the effective age process in relation to the bladder cancer

data application, a mis-specification on this effective age could lead to systematic biases on the

estimators. It is therefore our hope that researchers will include the effective age in the data

gathering stage of their studies. This may prove to be a novel and important aspect in areas in

which recurrent events occur, and calls for a paradigm shift in the data gathering of recurrent event

data.
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α γ ξ η n NC µ̂Ev α̂ σ̂α̂ β̂1 σ̂
β̂1

β̂2 σ̂
β̂2

η̂

A2 0.9 0.9 2 0.67 30 0 4.1 0.898 0.031 1.012 0.379 −1.008 0.240 0.734

A3 0.9 0.9 2 0.67 50 0 5.2 0.899 0.021 1.017 0.287 −1.004 0.165 0.705

A5 0.9 0.9 6 0.86 30 0 4.3 0.900 0.030 0.988 0.300 −1.015 0.175 0.904

A6 0.9 0.9 6 0.86 50 0 5.3 0.899 0.021 0.998 0.221 −1.000 0.136 0.884

A8 0.9 0.9 ∞ 1.00 30 0 4.8 0.893 0.025 1.031 0.222 −1.030 0.135

A9 0.9 0.9 ∞ 1.00 50 0 4.4 0.895 0.018 1.024 0.158 −1.023 0.104

A11 0.9 2.0 2 0.67 30 0 7.8 0.902 0.016 1.010 0.348 −1.018 0.202 0.721

A12 0.9 2.0 2 0.67 50 0 6.7 0.902 0.012 0.994 0.271 −1.012 0.144 0.710

A14 0.9 2.0 6 0.86 30 0 8.9 0.900 0.016 1.009 0.236 −1.008 0.135 0.895

A15 0.9 2.0 6 0.86 50 0 7.2 0.900 0.012 0.998 0.173 −1.004 0.101 0.882

A17 0.9 2.0 ∞ 1.00 30 0 8.4 0.898 0.015 1.017 0.155 −1.014 0.095

A18 0.9 2.0 ∞ 1.00 50 0 7.4 0.899 0.011 1.003 0.112 −1.007 0.072

B2 1 0.9 2 0.67 30 2 9.5 1.000 0.011 1.010 0.374 −1.000 0.227 0.735

B3 1 0.9 2 0.67 50 0 8.7 1.000 0.007 0.989 0.280 −1.002 0.165 0.704

B5 1 0.9 6 0.86 30 0 7.7 1.000 0.012 1.014 0.286 −0.993 0.164 0.901

B6 1 0.9 6 0.86 50 0 7.3 1.000 0.007 1.013 0.201 −0.999 0.118 0.880

B8 1 0.9 ∞ 1.00 30 0 8.1 0.998 0.008 1.029 0.185 −1.024 0.114

B9 1 0.9 ∞ 1.00 50 0 9.1 0.999 0.006 1.010 0.130 −1.012 0.084

B11 1 2.0 2 0.67 30 0 9.5 1.000 0.008 1.016 0.336 −1.028 0.194 0.725

B12 1 2.0 2 0.67 50 0 13.0 1.000 0.006 1.004 0.258 −1.012 0.146 0.705

B14 1 2.0 6 0.86 30 0 13.8 1.000 0.008 1.006 0.228 −1.002 0.132 0.889

B15 1 2.0 6 0.86 50 0 10.8 1.000 0.006 1.003 0.168 −1.001 0.097 0.876

B17 1 2.0 ∞ 1.00 30 0 14.0 0.999 0.007 1.017 0.133 −1.010 0.083

B18 1 2.0 ∞ 1.00 50 0 11.2 1.000 0.005 1.010 0.099 −1.006 0.065

C2 1.05 0.9 2 0.67 30 3 11.8 1.051 0.007 0.994 0.366 −0.994 0.222 0.730

C3 1.05 0.9 2 0.67 50 0 9.7 1.050 0.004 1.009 0.284 −0.993 0.153 0.703

C5 1.05 0.9 6 0.86 30 1 12.9 1.051 0.007 1.002 0.271 −0.993 0.160 0.899

C6 1.05 0.9 6 0.86 50 0 13.9 1.050 0.005 1.006 0.196 −0.992 0.119 0.880

C8 1.05 0.9 ∞ 1.00 30 0 10.9 1.049 0.007 1.020 0.154 −1.012 0.101

C9 1.05 0.9 ∞ 1.00 50 0 13.8 1.050 0.004 1.009 0.121 −1.006 0.072

C11 1.05 2.0 2 0.67 30 0 12.3 1.050 0.006 1.026 0.336 −1.018 0.184 0.726

C12 1.05 2.0 2 0.67 50 0 13.4 1.050 0.005 1.008 0.248 −1.012 0.136 0.705

C14 1.05 2.0 6 0.86 30 0 10.9 1.050 0.006 1.019 0.225 −1.000 0.124 0.890

C15 1.05 2.0 6 0.86 50 0 14.3 1.050 0.004 0.997 0.166 −1.000 0.096 0.876

C17 1.05 2.0 ∞ 1.00 30 0 18.5 1.050 0.005 1.004 0.123 −1.010 0.076

C18 1.05 2.0 ∞ 1.00 50 0 13.5 1.050 0.004 1.004 0.090 −1.003 0.054

Table 1: Summary of simulated means and standard deviations of the estimators of α, β, and
η = ξ/(1 + ξ). The true value of β is (1,−1), and 1000 replications were run for each parameter
combination. The other columns of this table are: γ denotes the Weibull shape parameter; n is the
sample size; NC is the number of replicates in which there was no convergence; µ̂Ev is the observed
mean number of events per unit in all the simulation replications.
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α γ ξ n NC µ̂α̂ σ̂α̂ µ̂
β̂1

σ̂
β̂1

µ̂
β̂2

σ̂
β̂2

U2 0.90 0.9 2 30 0 0.954 0.031 0.779 0.322 -0.770 0.210
U3 0.90 0.9 2 50 0 0.959 0.023 0.747 0.239 -0.740 0.154
U5 0.90 0.9 6 30 0 0.921 0.028 0.898 0.285 -0.919 0.168
U6 0.90 0.9 6 50 0 0.923 0.020 0.883 0.212 -0.888 0.131
U8 0.90 2.0 2 30 0 0.952 0.022 0.719 0.297 -0.728 0.187
U9 0.90 2.0 2 50 0 0.956 0.017 0.700 0.223 -0.707 0.139
U11 0.90 2.0 6 30 0 0.920 0.018 0.909 0.220 -0.901 0.138
U12 0.90 2.0 6 50 0 0.922 0.013 0.879 0.167 -0.879 0.101

V2 1.00 0.9 2 30 0 1.019 0.014 0.771 0.324 -0.751 0.215
V3 1.00 0.9 2 50 0 1.020 0.009 0.726 0.251 -0.715 0.157
V5 1.00 0.9 6 30 0 1.008 0.011 0.913 0.271 -0.888 0.172
V6 1.00 0.9 6 50 0 1.009 0.008 0.886 0.198 -0.868 0.129
V8 1.00 2.0 2 30 0 1.024 0.012 0.711 0.291 -0.723 0.191
V9 1.00 2.0 2 50 0 1.024 0.009 0.685 0.221 -0.695 0.136
V11 1.00 2.0 6 30 0 1.009 0.009 0.885 0.224 -0.879 0.137
V12 1.00 2.0 6 50 0 1.009 0.008 0.871 0.173 -0.867 0.104

W2 1.05 0.9 2 30 0 1.059 0.010 0.725 0.342 -0.720 0.226
W3 1.05 0.9 2 50 0 1.058 0.006 0.696 0.261 -0.691 0.158
W5 1.05 0.9 6 30 0 1.054 0.007 0.873 0.273 -0.869 0.179
W6 1.05 0.9 6 50 0 1.053 0.005 0.851 0.198 -0.842 0.128
W8 1.05 2.0 2 30 0 1.061 0.009 0.704 0.296 -0.704 0.179
W9 1.05 2.0 2 50 0 1.062 0.007 0.686 0.224 -0.684 0.138
W11 1.05 2.0 6 30 0 1.054 0.007 0.877 0.227 -0.880 0.132
W12 1.05 2.0 6 50 0 1.054 0.005 0.870 0.162 -0.870 0.104

X2 0.90 0.9 ∞ 30 0 0.893 0.026 1.030 0.224 -1.031 0.144
X3 0.90 0.9 ∞ 50 2 0.895 0.018 1.030 0.173 -1.022 0.105
X5 0.90 2.0 ∞ 30 0 0.897 0.015 1.016 0.163 -1.015 0.099
X6 0.90 2.0 ∞ 50 2 0.898 0.011 1.014 0.115 -1.015 0.076

Y2 1.00 0.9 ∞ 30 6 0.998 0.010 1.023 0.186 -1.022 0.116
Y3 1.00 0.9 ∞ 50 1 0.999 0.006 1.019 0.136 -1.019 0.086
Y5 1.00 2.0 ∞ 30 2 0.999 0.007 1.013 0.138 -1.011 0.084
Y6 1.00 2.0 ∞ 50 0 0.999 0.006 1.010 0.100 -1.007 0.066

Z2 1.05 0.9 ∞ 30 6 1.050 0.005 1.015 0.162 -1.011 0.099
Z3 1.05 0.9 ∞ 50 6 1.050 0.004 1.017 0.112 -1.013 0.073
Z5 1.05 2.0 ∞ 30 2 1.050 0.005 1.014 0.126 -1.008 0.078
Z6 1.05 2.0 ∞ 50 2 1.050 0.004 1.005 0.094 -1.005 0.055

Table 2: Summary of simulated means and standard deviations for the estimators of α, β1, and
β2 for the situation of under-specification (label UVW) and over-specification (label XYZ). The
true regression coefficients are β = (1,−1) and 1000 replications were run for each parameter
combination.
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Simulation A1:  Fit frailty is TRUE
n = 10, p = 0.6, γ = 0.9, α =0.9, ξ = 2
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Simulation A2:  Fit frailty is TRUE
n = 30, p = 0.6, γ = 0.9, α =0.9, ξ = 2
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Simulation A3:  Fit frailty is TRUE
n = 50, p = 0.6, γ = 0.9, α =0.9, ξ = 2
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Simulation A4:  Fit frailty is TRUE
n = 10, p = 0.6, γ = 0.9, α =0.9, ξ = 6
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Simulation A5:  Fit frailty is TRUE
n = 30, p = 0.6, γ = 0.9, α =0.9, ξ = 6
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Simulation A6:  Fit frailty is TRUE
n = 50, p = 0.6, γ = 0.9, α =0.9, ξ = 6
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Simulation A7:  Fit frailty is FALSE
n = 10, p = 0.6, γ = 0.9, α =0.9, ξ = Inf
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Simulation A8:  Fit frailty is FALSE
n = 30, p = 0.6, γ = 0.9, α =0.9, ξ = Inf
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Simulation A9:  Fit frailty is FALSE
n = 50, p = 0.6, γ = 0.9, α =0.9, ξ = Inf

Table 4: Side-by-side boxplots of the simulated values of Wn(s
∗, t) =

√
n[ ˆ̄F0(s

∗, t) − F̄0(t)] for
t-values associated with the [.1 : (.1) : .9] percentiles of the true baseline survivor function F̄0.
The plots are for the case where F̄0 is a Weibull with shape parameter of 0.9 and scale parameter
of unity, and with α = .90, and for combinations of ξ and n as indicated. In each boxplot, the
mean value is indicated by a red ×, black line marks the median, and darker shade (lighter shade)
indicates below (above) zero.
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Figure 1: The first plot is a pictorial representation of the bladder data set used by Wei, Lin and
Weissfeld (1989). The picture shows the times of bladder cancer recurrence for 85 subjects. The
treatment assignment (X1) is color-coded according to red (placebo) and blue (thiotepa). The other
two covariates, the size of the largest initial tumor (X2) and the number of initial tumors (X3) are
not depicted in this picture. The second plot contains estimates of the survivor function for this
data set when the model without (and with) frailty is fitted. The red curve is for the placebo group
(X1 = 1), while the blue curve is for the thiotepa group (X1 = 2), both evaluated at the mean
values of X2 and X3. The solid curves are for effective age E(s) = s − SN†(s−) (perfect repair),
while the dashed curves are when E(s) = s (minimal repair).
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