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Abstract

A test for globally testing the four assumptions of the linear model
is proposed. The test can be viewed as a Neyman’s smooth test and
it only relies on the residual vector. The components of the global
test statistic could be utilized to gain insights into which assumptions
have been violated if the global procedure indicates that there is a
breakdown in at least one of the four assumptions. The procedure
could be used in conjunction with the usual graphical methods, and it
is simple enough to be implemented by beginning statistics students.
The procedure is demonstrated by analyzing data sets that have been
used in previous works dealing with model diagnostics, and a real
data set pertaining to end-of-trading-day share values of the College
Retirement and Equities Funds Growth and Stock accounts. Simula-
tion results are presented indicating the sensitivity of the procedure
in detecting model violations under a variety of situations.
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1 Linear Model and its Assumptions

One of the most important models in Statistics is the linear model which

postulates a relationship between an observable n× 1 response vector Y and

an observable n×pmatrixX which could be constituted by the design matrix

and/or the values of predictor variables. In the linear model the relationship

between Y and X is given by

Y = Xβ + σε, (1)

where β is a p× 1 vector of unknown coefficients, σ is an unknown scale pa-

rameter, and ε is an n×1 vector of unobservable error variables. Furthermore,

it is assumed that, conditionally on X, ε has a multivariate normal distribu-

tion with mean vector 0 and covariance matrix I, the n× n identity matrix.

This distributional assumption, together with the linear link specification in

(1) are usually enumerated as the following four distinct assumptions.

(A1) (Linearity) E{Yi|X} = xiβ, where xi is the ith row of X;

(A2) (Homoscedasticity) Var{Yi|X} = σ2, (i = 1, 2, . . . , n);

(A3) (Uncorrelatedness) Cov{Yi, Yj|X} = 0, (i 6= j); and

(A4) (Normality) Yi|X, (i = 1, 2, . . . , n), have normal distributions.
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Assumptions (A3) and (A4) are equivalent to the assumption that Yi|X, (i =

1, 2, . . . , n), are independent normal random variables. Without loss of gen-

erality, we assume thatX is of full rank and with n > p, that is, rank(X) = p.

It is well-known that under (A1)-(A4), the maximum likelihood (ML) esti-

mators of β and σ2 are given, respectively, by

b = β̂ = (XtX)−1XtY; (2)

s2 = σ̂2 =
1

n
Yt(I−PX)Y, (3)

where PX = X(XtX)−1Xt is the projection operator on the linear subspace

generated by the columns of X. This matrix is usually denoted by H. It is

well-known that the estimator b in (2) is also the least-squares (LS) estimator

of β. The usual procedures for constructing confidence ellipsoids/intervals

and for testing hypotheses for β and σ2 were also developed under the as-

sumptions (A1)-(A4), and consequently, the validity of these inferential pro-

cedures rely to a great extent on the validity of (A1)-(A4). The consequences

of the breakdown of any of these four assumptions are well-known, and pos-

sible remedial measures such as the use of variable transformations, weighted

regression, incorporating additional predictor variables and, if need be, the

adoption of nonparametric methods, have also been discussed in numerous

research papers. The assessment of whether assumptions (A1)-(A4) are satis-

fied, based on the data (Y,X), has therefore received considerable attention

and has led to numerous procedures. Most of these procedures typically in-

volve the use of the observed n×1 vector of standardized residualsR, defined
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via

R =
Y −Xb

s
=

(I−PX)Y

s
. (4)

There are other types of residuals that have been used in model validation

and diagnostics such as Theil’s (1965) best linear unbiased scalar covariance

residuals, referred to as BLUS residuals; as well as recursive or sequential

residuals, see for instance Kianifard and Swallow’s (1996) review paper. In

this paper we restrict our attention to the use of the (ordinary) residuals R.

Early important works dealing with the use of R in assessing the model

assumptions are those by Tukey (1949) in the context of testing for nonaddi-

tivity (assessing A1); Durbin and Watson’s (1950, 1951) test for serial corre-

lation (assessing A3); Anscombe (1961) and Anscombe and Tukey (1963) for

checking normality (assumption A4) and homoscedasticity (assumption A2).

Many of these residual-based methods for validating the assumptions (A1)-

(A4) are summarized and discussed in the excellent monographs of Cook

and Weisberg (1982) and Atkinson (1985); indeed, the references in these

two monographs serve as excellent resources for the literature in this area.

It should be pointed out that the computation of R involves the reuse of the

data (Y,X) as this is also used for estimating β and σ2, and in statistics

utilized in testing hypotheses for β and σ2. As a consequence of this reuse

of the data (Y,X), the residual vector generally obtains a more complicated

distributional structure; in particular, the residuals are not independent even

if (A1)-(A4) hold, in contrast to the independence of the ‘true’ residual vec-

tor ε = (Y − Xβ)/σ. The impact, especially the non-negligible change on
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the distributional properties of the residuals even in large samples, by the

substitution of estimators for unknown parameters to obtain the residuals

have been duly noted in research papers, cf., Durbin and Watson (1950),

Anscombe and Tukey (1963), Theil (1965), and Atkinson (1985, p. 24). How-

ever, in practical settings, especially in the assessment of (A1)-(A4) through

graphical methods, the impact of the aforementioned substitution is mostly

ignored.

Existing methods for checking the validity of (A1)-(A4) can be classi-

fied into two types: graphical methods and formal significance testing meth-

ods. Graphical methods, which we usually teach in our elementary courses

because of ease and convenience by virtue of the fact that most statistical

softwares automatically generate the ‘appropriate’ plots, usually involve a

combination of plots of the residuals R with respect to fitted values, func-

tions of both included and omitted predictor variables, and time sequence,

as well as their normal probability plots and histograms/boxplots, cf., Cook

and Weisberg (1982), Atkinson (1985), and Cook (1998). These graphical

methods are also utilized to detect outlying and/or influential observations,

though from a mathematical viewpoint, these latter issues can be subsumed

into the assessment of (A1)-(A4). Graphical methods are certainly conve-

nient to use, especially so with the availability of statistical softwares that

easily generate a multitude of plots; however, its use in assessing (A1)-(A4)

is also highly subjective, and it could be quite misleading owing to the effect

of the substitution of estimators for the unknown parameters. Furthermore,
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a particular plot is used to assess a particular assumption, but sometimes it

is not clear how combinations of violations of (A1)-(A4) could impact the

behavior of the resulting plot. Thus, it will be beneficial to the practitioner

if we could augment these residual plots with a value that could serve as a

measure of the degree in which the assumptions (A1)-(A4) are violated.

Formal significance tests for (A1)-(A4) involve testing the null hypoth-

esis (H0) versus the alternative alternative (H1) where

H0 : Assumptions (A1)-(A4) all hold;
H1 : At least one of (A1)-(A4) does not hold.

(5)

The typical structure of such a test is to define a statistic S(R) whose sam-

pling distribution is known under H0 and such that departures from H0 will

manifest in terms of larger values of S(R). Given an observed residual vector

R = r, one calculates the p-value via

p = P{S(R) > S(r)|H0}, (6)

and the decision to reject H0 is based on the magnitude of p. However, the

current state of the art is that these formal significance tests are typically

tests for a specific assumption, so they are not simultaneous or global tests

for the four assumptions (A1)-(A4). For instance, there are tests for the

normality assumption (cf., Anscombe and Tukey (1963)); there are tests for

link mis-specifications (cf., Tukey (1949)); there are tests for heterogeneity of

variances (Cook and Weisberg (1983); Bickel (1978), and Anscombe (1961));

and there are tests for the uncorrelatedness or independence of the error

components (cf., Durbin and Watson (1950, 1951), Theil and Nagar (1961)).
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See also Kianifard and Swallow (1996) for significance testing procedures for

the different assumptions which utilizes recursive residuals. The difficulty

with these tests is that each may not be able to detect departures from those

assumptions that the particular test is not specific for, and the impact of a

violation of another assumption on this test is usually not apparent. Another

potential problem is that when a specific test indicates a violation, it might

be due to the violation of another assumption which also affects this specific

test. For example, a test for normality could also be drastically affected by a

mis-specified link function or dependent error components. One may decide

to perform tests for each of the different assumptions, but this will lead to

an increase in the Type I error probability when the results of these tests

are combined. There is therefore a need to have a global test for all the

assumptions (A1)-(A4) which controls the Type I error rate and which could

be used if the user does not have an idea of which particular assumption may

be violated. If such a test indicates that at least one of the assumptions is not

satisfied, then directional tests may be used to determine the assumptions

that have been violated. Knowing the particular assumption that has been

violated is important for instituting appropriate remedial measures.

In this paper we propose such a global test. The test is based on the

residual vector, and it could be viewed as a Neyman (1937) smooth test

(cf., Thomas and Pierce (1979) and Rayner and Best (1986, 1989)), hence it

possesses local optimality properties. Furthermore, the components of this

global test could be utilized as directional tests for determining the assump-
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tions that have been violated. As alluded to earlier, statistics that are func-

tions of the residual vector R generally possess complicated distributional

properties. Consequently, the distributional aspects for the proposed global

test is asymptotic. In principle, for small sample sizes, computer-intensive

methods, such as bootstrapping or Monte Carlo methods, may be employed

to determine p-values.

The remainder of this paper is organized as follows. Section 2 will

describe and discuss the global and the component statistics. ‘Deletion’

statistics obtained by excluding an observation from the analysis will also

be described. Their utility for assessing outlying and influential observations

will be discussed. The theoretical justification of the global procedure will

be presented in Section 3 where it will be derived as a Neyman smooth test.

The asymptotic normality and the asymptotic independence of the compo-

nents will be established in this section. The sensitivity of the procedures

were examined through computer simulations. The results of this simula-

tion study are summarized in Section 4. Simulated levels and powers of the

test under different situations depicting violations of the model assumptions

are presented. Section 5 will contain an application of the procedure to the

Forbes data set; an analysis of Ruppert and Carroll’s (1980) water salinity

data; an illustration using a textile data from Box and Cox (1964); and an

application to a real data set consisting of end-of-trading-day values of the

College Retirement Equities Funds (CREF) Growth and Stock Accounts.

The first three are well-known data sets which have been used in papers and
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monographs dealing with model validation and diagnostics.

2 Global Procedure and Component Statis-

tics

Henceforth, we assume that the matrix X has as its first column the n × 1

vector 1 = (1, 1, . . . , 1)t. This is hardly a restrictive assumption as this

simply means that we are incorporating an intercept term in model (1),

which is typically the case. Recalling that the ith component of the residual

vector is

Ri =
Yi − Ŷi

s
, i = 1, 2, . . . , n, (7)

where Ŷi = xib is the ith fitted or predicted value, the first three component

statistics are as follows:

Ŝ2
1 =

{

1√
6n

n
∑

i=1

R3
i

}2

; (8)

Ŝ2
2 =

{

1√
24n

n
∑

i=1

[R4
i − 3]

}2

; (9)

Ŝ2
3 =

{

1√
n

∑n
i=1(Ŷi − Ȳ )2Ri

}2

(Ω̂− btΣ̂Xb− Γ̂Σ̂−1
X Γ̂t)

, (10)

where, with z̄ = 1
n
1tZ for an n× q matrix Z, we define

Ω̂ =
1

n

n
∑

i=1

(Ŷi−Ȳ )4, Σ̂X =
1

n

n
∑

i=1

(xi−x̄)t(xi−x̄), and Γ̂ =
1

n

n
∑

i=1

(Ŷi−Ȳ )2(xi−x̄).

(11)
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The fourth component statistic requires a user-supplied n×1 vectorV, which

by default is set to be the time sequence V = (1, 2, . . . , n)t. It is defined via

Ŝ2
4 =







1
√

2σ̂2
V n

n
∑

i=1

(Vi − V̄ )(R2
i − 1)







2

, (12)

with σ̂2
V = 1

n

∑n
i=1(Vi − V̄ )2. The global test statistic is defined as

Ĝ2
4 = Ŝ2

1 + Ŝ2
2 + Ŝ2

3 + Ŝ2
4 . (13)

Versions related to the statistics Ŝ2
i , (i = 1, 2, 4), have been considered for

significance testing purposes in earlier papers. For instance, statistics related

to Ŝ2
1 and Ŝ2

2 have appeared in Anscombe and Tukey (1963), and a statis-

tic related to Ŝ2
4 has been considered by Cook and Weisberg (1983), Bickel

(1978), and Anscombe (1961) in the context of testing for heteroscedasticity.

Perhaps, one of the main contributions of the present paper is combining

these different directional statistics in a global statistic and determining its

properties, albeit asymptotic properties. We will see in ensuing sections that

this combined global statistic could serve as an omnibus statistic for globally

testing all the assumptions of the linear model.

For large n, which for application purposes will be understood to mean

that n− p ≥ 30, the global test for the hypotheses H0 versus H1 in (5) at an

asymptotic significance level of α is:

Global Test: Reject H0 if Ĝ2
4 > χ2

4;α, (14)

where χ2
k;α is the 100(1−α)th percentile of a central chi-squared distribution

with degrees-of-freedom k. If the test in (14) leads to the rejection of H0,
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the component statistics Ŝ2
1 , Ŝ

2
2 , Ŝ

2
3 , and Ŝ2

4 could be examined by compar-

ing their values to χ2
1;α to get an indication of which particular assumption

or assumptions have been violated. The following are rough guidelines in

interpreting the values of these component statistics, with these guidelines

suggested by the theoretical considerations to be presented in Section 3 and

the simulation results in Section 4.

(i) Skewed error distributions will usually be indicated by large values of

the statistic Ŝ2
1 ;

(ii) Deviations from the normal distribution kurtosis of the true error dis-

tribution will be generally revealed by large values of statistic Ŝ2
2 ;

(iii) The use of a misspecified link function or the absence of other predictor

variables in the model will mostly be detected by large values of the

statistic Ŝ2
3 ;

(iv) The presence of heteroscedastic errors and/or dependent errors will

typically manifest in large values of the statistic Ŝ2
4 ; and

(v) Simultaneous violations of at least two of the assumptions (A1)-(A4)

will be manifested by large values of several of these component statis-

tics.

A potentially useful procedure for detecting outlying and influential ob-

servations, and which could be implemented in conjunction with the global

and directional tests, is to adopt the well-known idea of ‘deletion’ statistics,
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which reflect the change in values of statistics after the deletion of an obser-

vation. For a statistic T , denote by T [i] the value of the statistic after the

ith observation is deleted. We will be interested in the quantities

∆Ĝ2
4[i] =

[

Ĝ2
4[i]− Ĝ2

4

Ĝ2
4

]

× 100, i = 1, 2, . . . , n, (15)

which represent the percent relative change in the value of the global statistic

Ĝ2
4 after the deletion of the ith observation. The idea is that an observation

with a large absolute value of ∆Ĝ2
4[i] is either an outlier or has large influence.

The values of ∆Ĝ2
4[i] could conveniently be plotted with respect to the time

sequence to graphically assess their values.

Related to the statistic in (15) is to compute the p-values after the

deletion of each of the observations, that is,

p[i] = P{Ĝ4
2[i] > ĝ4

2[i]|H0}, i = 1, 2, . . . , n, (16)

where ĝ4
2[i] is the observed value of the global statistic after deletion of the

ith observation. The evaluation of this probability could be performed using

the (approximate) chi-squared distribution with 4 degrees-of-freedom. The

idea is if p[i] is quite different from the other p[j]’s, this will be indicative

that the ith observation is either an outlier or an influential observation. A

plot of the p[i]-values with respect to the time-sequence will graphically aid

in assessing their values.

Clearly, this deletion idea could be extended to each of the component

statistics; however, it appears that for economy of information, the dele-

tion statistics pertaining to the global statistic will suffice for data-analytic
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purposes. We mention that our S-Plus program which implements the pro-

cedures have the option of computing the above quantities for each of the

component statistics.

The computation of these ‘deletion’ statistics can be efficiently per-

formed by solely utilizing quantities obtained by fitting the model using the

full data. These computational formulas arise as a consequence of the impor-

tant matrix inversion formula (cf., Atkinson (1985), formula (2.2.1)) which

states that for a nonsingular matrix A and matrices U and V,

(A−UVt)−1 = A−1 −A−1U(I−VtA−1U)−1VtA−1. (17)

Denote by hij the (i, j)th element of the projection matrix PX = H =

X(XtX)−1Xt, that is, hij = xi(X
tX)−1xt

j. Then, for i = 1, 2, . . . , n (cf., the

formulas (2.2.8) and (2.2.9) in Atkinson (1985)),

b[i] = b− (XtX)−1xt
isRi

1− hii
and s2[i] =

ns2

n− 1

[

1 +
R2

i

n(1− hii)

]

. (18)

Consequently, the standardized residual associated with the jth observation

when the ith observation is excluded from the analysis is

Rj[i] =
Yj − Ŷj[i]

s[i]
=

√
n− 1

(

Rj +
hji

1−hii
Ri

)

√

n+ 1
1−hii

R2
i

(19)

since Yj − Ŷj[i] = s
(

Rj +
hji

1−hii
Ri

)

. We also need formulas for Ω̂[i], Σ̂X [i]

and its inverse, Γ̂[i], and σ̂2
V [i] which solely use quantities obtained from the

full data model fitting. It is immediate to show that

σ̂2
V [i] =

n

n− 1

[

σ̂2
V −

(Vi − V̄ )2

n

]

. (20)
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On the other hand, because Ŷj[i] = Ŷj − hji

1−hii
sRi and Ȳ [i] = n

n−1

(

Ȳ − Yi

n

)

,

then

Ŷj[i]− Ȳ [i] = (Ŷj − Ȳ ) +
(Yi − Ȳ )

n− 1
− hji

1− hii
sRi. (21)

Using the above expression, we may compute Ω̂[i] according to

Ω̂[i] =
1

n− 1

n
∑

j=1; j 6=i

(

Ŷj[i]− Ȳ [i]
)4
. (22)

Analogous arguments lead to

Σ̂X [i] =
n

n− 1

[

Σ̂X −
(xi − x̄)t(xi − x̄)

n

]

, (23)

from which upon applying (17), we obtain

Σ̂−1
X [i] =

n− 1

n

{

Σ̂−1
X +

1

n
Σ̂−1

X (xi − x̄)t
[

I− 1

n
(xi − x̄)Σ̂−1

X (xi − x̄)t
]

(xi − x̄)Σ̂−1
X

}

.

Finally, by using (21) and the obvious identity xj − x̄[i] = (xj − x̄) + (xi −

x̄)/(n− 1), we may compute Γ̂[i] according to

Γ̂[i] =
1

n− 1

n
∑

j=1; j 6=i

(

Ŷj[i]− Ȳ [i]
)2

(xj − x̄[i]). (24)

3 Theoretical Interludes

From (1), the vector of ‘true’ residuals

R0 ≡ R0(σ2, β) =
Y −Xβ

σ
(25)

is equal-in-distribution to the error vector ε. If H0 holds, then the density

function of R0 is

fR0(r0) =
n
∏

i=1

φ(r0
i ), (26)
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where φ(·) is the standard normal density function. Following Neyman’s

(1937) idea of constructing a ‘smooth’ test (cf., Thomas and Pierce (1979)

and Rayner and Best (1989)), we embed fR0(r0) into a class of density func-

tions, indexed by θ = (θ1, θ2, . . . , θ6)
t, whose members are of form

fR0(r0|θ) = C(θ)fR0(r0) exp{θtQ(r0)}, (27)

where

Q(r0) =
n
∑

i=1

[

r0
i , (r0

i )
2 − 1, (r0

i )
3, (r0

i )
4 − 3, [(xi − x̄)β]2r0

i , (vi − v̄)[(r0
i )

2 − 1]
]t
.

(28)

The function C(θ) in (27) is a proportionality constant which makes fR0(r0|θ)

a density function. Also, as mentioned in Section 2, the vector V is a user-

supplied vector. Notice that in the embedding class, the null hypothesis

density function obtains when θ = 0.

Let us first consider the case where β and σ2 are known, so R0 =

R0(σ2, β) is observable. Within the embedding class of density functions

specified by (27), the score test for H∗
0 : θ = 0 versus H∗

1 : θ 6= 0 is easily

developed. Indeed, it is straightforward to see that the score test statistic at

θ = 0 equals

U(θ = 0, σ2, β) = Q(R0;σ2, β). (29)

Since under H0, R
0
i , (i = 1, 2, . . . , n), are i.i.d. standard normal variables,

then for any positive integer k, E{[R0
i ]

2k+1} = 0 and E{[R0
i ]

2k} = ∏k
j=1(2j −
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1), so it is immediate that the covariance matrix of 1√
n
Q(R0;σ2, β) is

Σ
(n)
11 (σ

2, β) =





















1 0 3 0 1
n
T2(β) 0

0 2 0 12 0 0
3 0 15 0 3

n
T2(β) 0

0 12 0 96 0 0
1
n
T2(β) 0 3

n
T2(β) 0 1

n
T4(β) 0

0 0 0 0 0 2
n

∑n
i=1(Vi − V̄ )2





















,

where Tk(β) =
∑n

i=1[(xi − x̄)β]k, k = 2, 3, 4. If, as n → ∞, the following

conditions are satisfied:

(a) There exists a nonsingular p×pmatrixΣX such that 1
n
T2(β)

pr−→ βtΣXβ;

(b) There exists a function Ω(β) such that 1
n
T4(β)

pr−→ Ω(β);

(c) There exists a σ2
V ∈ (0,∞) such that 1

n

∑n
i=1(Vi − V̄ )2

pr−→ σ2
V ;

(d) {max1≤i≤n[(xi − x̄)β]4} /T4(β) = op(1); and

(e)
{

max1≤i≤n(Vi − V̄ )2
}

/
{

∑n
i=1(Vi − V̄ )2

}

= op(1);

then it follows from the Lindeberg-Feller Central Limit Theorem (CLT) that,

under H0,

1√
n
Q(R0;σ2, β)

d−→ N
(

0,Σ11(σ
2, β)

)

, (30)

where

Σ11(σ
2, β) =





















1 0 3 0 βtΣXβ 0
0 2 0 12 0 0
3 0 15 0 3βtΣXβ 0
0 12 0 96 0 0

βtΣXβ 0 3βtΣXβ 0 Ω(β) 0
0 0 0 0 0 2σ2

V





















. (31)
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In this situation where β and σ2 are assumed known, notice the asymptotic

dependence of the components Q1, Q3 and Q5; as well Q2 and Q4. For this

situation, an asymptotic α-level score test for H∗
0 : θ = 0 versus H∗

1 : θ 6= 0

rejects H∗
0 whenever

1

n
Q(R0;σ2, β)t[Σ

(n)
11 (σ

2, β)]−Q(R0;σ2, β) ≥ χ2
5;α. (32)

However, since σ2 and β are unknown, then neither R0 nor Σ
(n)
11 are

observable. There is therefore a need to plug-in estimators for σ2 and β in

R0(σ2, β), and by substituting the ML estimators s2 and b in (3) and (2),

respectively, we obtain the (estimated) residual vector R = R0(s2,b) given

in (4). To develop a test based on R, we need the asymptotic distribution

of Q(R; s,b) under H0. Towards this goal, observe that the ML estimating

equations for σ2 and β that give rise to s2 and b are

A(R0(σ2, β);σ2, β) ≡ R0(σ2, β)tR0(σ2, β)− n = 0; (33)

B(R0(σ2, β);σ2, β) ≡ σXtR0(σ2, β) = 0. (34)

Augmenting the vector Q with A and B, then by invoking the Lindeberg-

Feller CLT we find that, under H0 plus the conditions guaranteeing asymp-

totic normality of Q(R0(σ2, β);σ2, β) which were enumerated earlier,

1√
n







Q(R0(σ2, β);σ2, β)
A(R0(σ2, β);σ2, β)
B(R0(σ2, β);σ2, β)







d−→ N
(

0,Ξ(σ2, β)
)

, (35)

where

Ξ(σ2, β) =

[

Σ11(σ
2, β) Σ12(σ

2, β)
Σ12(σ

2, β)t Σ22(σ
2, β)

]

,
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with

Σ12(σ
2, β) =





















0 σµX
2 0
0 3σµX
12 0
0 σ[Γ(β) + (βtΣXβ)µX ]
0 0





















;

Σ22(σ
2, β) =

[

2 0

0 σ2(ΣX + µt
XµX)

]

;

and with µX and Γ(β) defined according to

1

n
x̄

pr−→ µX and
1

n

n
∑

i=1

[(xi − x̄]β]2(xi − x̄) pr−→ Γ(β). (36)

By virtue of (33) and (34), when s2 and b are substituted for σ2 and β,

respectively, then the last two components in the augmented vector are both

equal to zero. Consequently, it follows by multivariate normal theory, or it

could be established more formally by relying on Pierce’s (1982) result, that

1√
n
Q(R0(s2,b); s2,b) =

1√
n
Q(R; s2,b)

d−→ N
(

0,Ξ11.2(σ
2, β)

)

(37)

where Ξ11.2(σ
2, β) = Σ11(σ

2, β)−Σ12(σ
2, β)Σ22(σ

2, β)−1Σ12(σ
2, β)t. To pro-

vide a simplified form for this limiting covariance matrix, we establish the

following intermediate result.

Lemma 1 If the first column of X is 1, then µX (ΣX + µt
XµX)

−1
µt
X = 1.

Proof: Let X = [1 W] so that ΣX + µt
XµX =

[

1 µW
µt
W ΣW + µt

WµW

]

.

Applying the partitioned matrix inverse theorem (cf., Anderson (1984), Th.

A.3.3), we obtain

[ΣX + µt
XµX ]

−1 =

[

1 + µWΣ
−1
W µt

W −µWΣ−1
W

−Σ−1
W µt

W Σ−1
W

]

.
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Since µX = (1 µW ), then the assertion immediately follows by (matrix)

multiplication. ‖

By straightforward multiplication, and applying Lemma 1, we obtain

∆(σ2, β) ≡ Σ12Σ
−1
22Σ

t
12 =





















1 0 3 0 βtΣXβ 0
0 2 0 12 0 0
3 0 9 0 3βtΣXβ 0
0 12 0 72 0 0

βtΣXβ 0 3βtΣXβ 0 η(β) 0
0 0 0 0 0 0





















,

(38)

with η(β) = (βtΣXβ)
2 + Γ(β)Σ−1

X Γ(β)
t. The matrix ∆(σ2, β) is the correc-

tion factor in the limiting covariance matrix arising from plugging-in s2 and

b for σ2 and β, respectively. This factor is clearly non-negligible. Finally,

from (31) and (38), a simplified form of Ξ11.2 is

Ξ11.2(σ
2, β) =





















0 0 0 0 0 0
0 0 0 0 0 0
0 0 6 0 0 0
0 0 0 24 0 0
0 0 0 0 ξ(σ2, β) 0
0 0 0 0 0 2σ2

V





















, (39)

where ξ(σ2, β) = Ω(β)− (βtΣXβ)
2 − Γ(β)Σ−1

X Γ(β)
t. We formally state this

asymptotic result as a theorem.

Theorem 1 If assumptions (A1)-(A4) hold for the linear model in (1) with

X having as its first column the vector 1, and if conditions (a)-(e) enumerated

earlier hold, then n−1/2Q(R; s2,b) converges in distribution to a zero-mean

normal distribution with covariance matrix Ξ11.2 given in (39).
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Note the invariance of this asymptotic result to re-scaling, that is, the

result is independent of σ. This is a consequence of the facts that the

model is scale-invariant and the residual vector is scale-equivariant. The

theorem also indicates that Q1(R; s2,b) and Q2(R; s2,b) are degenerate at

zero, hardly a surprise since these quantities are the estimating functions

for σ2 and β. What is surprising, instead, is the asymptotic independence

of Q3(R; s2,b) and Q5(R; s2,b), since as noted earlier, Q3(R
0;σ2, β) and

Q5(R
0;σ2, β) are not asymptotically independent. Evidently, the process of

replacing the unknown parameters by their ML estimators in the quantities

Q(R0(σ2, β);σ2, β) made all the components asymptotically independent!

The quantities Ω(β), ΣX , and Γ(β) can be consistently estimated by

their empirical counterparts and with β replaced by b. Their respective

estimators are those given in (11), and so we are able to obtain a consistent

estimator Ξ̂11.2 of Ξ11.2. The score statistic for testing H
∗
0 : θ = 0 versus H∗

1 :

θ 6= 0, with σ2 and β considered as nuisance parameters, is the quadratic

form of 1√
n
Q(R; s2,b) with quadratic matrix Ξ̂−1

11.2. It is immediate to see

that this statistic is

1

n
Q(R; s2,b)tΞ̂−11.2Q(R; s2,b) = Ŝ2

1 + Ŝ2
2 + Ŝ2

3 + Ŝ2
4 = Ĝ2

4, (40)

where Ŝ2
k , (k = 1, 2, 3, 4), and Ĝ2

4 are as defined in (8),(9), (10), (12), and

(13), respectively. Theorem 1 therefore justifies the use of the chi-squared

distribution with four degrees-of-freedom for assessing the magnitude of Ĝ2
4,

as well as the one degree-of-freedom chi-squared distributions for each of the
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component statistics.

4 Monte Carlo Adventures

To examine the sensitivity of the procedures for detecting different types of

departures from assumptions (A1)-(A4), computer simulation studies were

performed. Each set of runs, coinciding with a particular model, consisted of

2000 replications and involved sample sizes n ∈ {30, 100, 200}. For each set

of runs, one fixed covariate sequence x1, x2, . . . , xn was generated according

to a standard uniform distribution. The simulation program was coded in

S-Plus, in particular, random variates were generated using the random

number generators in S-Plus, and for the linear model fitting, the S-Plus

object lm was utilized.

The first set of runs was for the purpose of determining if the proce-

dures achieve the pre-specified level of significance for the three sample sizes

considered. The level of significance was set to 5%. For each run of this set,

the response values were generated according to the model

Yi = xi + εi, i = 1, 2, . . . , n, (41)

where εi’s were generated from a standard normal distribution. For the

resulting data, (Yi, xi), i = 1, 2, . . . , n, the model

Yi = β0 + β1xi + σεi, i = 1, 2, . . . , n, (42)

was fitted and the resulting residuals, Ri, (i = 1, 2, . . . , n), were utilized in the

testing procedure. The user-supplied vector V was taken to be the default
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time-sequence. For the 2000 replications, the percentage of rejection of H0

was recorded. Table 1 summarizes the observed empirical levels. Except

for the two values of 4.00% for n = 30, the observed levels are within two

standard errors of 5%. It appears therefore that the asymptotic chi-square

approximation is acceptable, at least for the specific model in this simulation

run.

The first type of violation examined was when the error distribution

is not normal. We considered several types of error distributions, broadly

classified into symmetric and skewed distributions. The true model is as in

(41), but with εi’s having non-normal distributions. The model fitted to the

data is (42). Table 2 presents the simulated powers of the tests when the

error distribution is of a symmetric variety. The first four distributions are

Student’s t-distribution with different degrees-of-freedom. The distribution

t1 is of course the standard Cauchy distribution, so not only is (A4) violated,

but even (A1) and (A2) are also violated as the moments of this distribution

do not exist. The last three distributions are the standard logistic, standard

double exponential, and a centered (i.e., with zero-mean) uniform whose

variance is unity. By examining these simulated powers, we observe that the

detection ability of the global test is quite good relative to the best directional

test based on the four component statistics, with its power not significantly

degraded by combining the four statistics. The best directional test is that

based on the statistic Ŝ4
2 , which we recall is a kurtosis-type statistic. Notice

that the test based on Ŝ2
3 does not have any power for detecting this error
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distribution mis-specification. It is interesting to observe that when n = 30

and with the uniform error distribution, the tests based on Ŝ2
2 and the global

statistic have very low powers, but for large sample sizes their powers are very

good. Based on other runs performed, this behavior remains invariant under

a change in the variance of the uniform error distribution, as well as when

the covariate vector is instead generated according to a normal distribution.

As of yet we are unable to explain this puzzling phenomenon! In contrast,

note that the other three tests could not detect uniform distributed errors!

Also, when the degrees-of-freedom of the t-distribution increases, then the

power of the tests decreases; however, this is to be expected since as the

degrees-of-freedom increases, then the t distribution becomes closer to the

normal distribution.

Table 3 summarizes the power results when the errors have shifted

(to have mean zero) chi-squared distributions, which are right-skewed distri-

butions. As in the symmetric error distributions, the global test performs

acceptably relative to the best test among the four directional tests, with the

powers slightly degraded due to combining the four directional tests, some of

which do not have good power against this assumptional departure. The best

directional test for this skewed class of distributions is based on Ŝ2
1 , which is

the skewness-type statistic. Again, the test based on Ŝ2
3 does not have any

detection power for this alternative.

The next set of simulation runs concerns the situation where (A2) is

violated, so that the conditional variances of the Yi’s are not equal. Two
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models were considered for this purpose. The first model has variances that

depend on the covariate values. Specifically, the true model is

Yi = xi + xγi εi, i = 1, 2, . . . , n, (43)

where εi’s are i.i.d. from N(0, 1). The fitted model was that in (42). The

simulated powers for γ ∈ {.5, 1, 2} are summarized in Table 4. The best

directional test for this departure is the Ŝ2
2 -test, with the global test also

performing acceptably. Again, the test based on Ŝ2
3 has very low power for

this heteroscedastic model. The second model for heteroscedastic variances

is of form

Yi =

{

xi + σ1εi for i ≤ n/2
xi + σ2εi for i > n/2

, (44)

with εi’s also i.i.d. from N(0, 1). Table 5 presents the simulated powers

when model (42) is fitted for two sets of values of (σ1, σ2). It is interesting to

observe that the global test dominates the directional tests! This could be

a consequence of the fact that the directional tests based on Ŝ2
1 , Ŝ

2
2 , and Ŝ

2
4

have high powers, and the combination of these tests made the global test

more powerful.

The next set of runs were for mis-specified link functions, that is, when

(A1) is violated. The data analyzed were generated according to the model

Yi = xi + β2x
γ
i + εi, i = 1, 2, . . . , n, (45)

with εi’s i.i.d. from N(0, 1). Model (42) was fitted to the resulting data.

Table 6 provides a summary of the simulated powers of the tests for different
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sets of (β2, γ). Interestingly, the directional tests based on Ŝ2
1 , Ŝ

2
2 , and Ŝ2

4

are not sensitive to this violation. The best directional test is that based on

Ŝ2
3 , with the power of the global test quite degraded relative to the Ŝ2

3 -test

possibly because the other three tests have no power to detect this alternative.

Notice that when β2 = 1 and γ ∈ {.5, 2}, the powers of the tests are very

low. This could be a consequence of the fact that for this parameter set, the

signal-to-noise ratio (SNR) is very low. This SNR may be measured via

SNR =
E{MSE(Fitted)|True} − E{MSE(True)|True}

E{MSE(True)|True} , (46)

with the notation that E{MSE(Model A)|Model B} is the expectation of the

mean-squared error when Model A is fitted with the expectation evaluated

with respect to Model B. Thus, E{MSE(True)|True} = σ2. To obtain the rel-

evant SNR for the mis-specified model considered in the simulation, consider

the more general model given by

Y = Xβ +Vω + σε (47)

to be the true model, where V is of full rank with rank q.

Lemma 2 Let MSE = {Yt(I − PX)Y}/(n − p) be the mean-squared error

from fitting the model Y = Xβ + σε, and assume model (47) holds. Then

E{MSE} = σ2 +
(Vω)t(I−PX)(Vω)

n− p
.

Proof: For notational convenience, for an n× r matrix A, P[A] denotes the

projection operator on the linear subspace generated by the columns of A.
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Then, we have

Yt(I−P[X])Y = Yt(I−P[X,V])Y +Yt(P[X,V]−P[X])Y.

Under model (47), the expectation of the first term on the right-hand side is

(n − p − q)σ2, and E{Y} = µ ≡ Xβ +Vω and Cov{Y} = σ2I. Therefore,

by projection properties,

E{Yt(P[X,V]−P[X])Y}

= σ2trace(P[X,V]−P[X]) + (Xβ +Vω)t(P[X,V]−P[X])(Xβ +Vω)

= σ2q +
{

µtµ−
[

µtµ− (Vω)t(I−P[X])(Vω)
]}

= σ2q + (Vω)t(I−P[X])(Vω).

Thus,

E{Yt(I−P[X])Y} = σ2(n− p− q) + σ2q + (Vω)t(I−P[X])(Vω)

= σ2(n− p) + (Vω)t(I−P[X])(Vω)

completing the proof. ‖

Using the result in Lemma 2, when the true model is (47) and model

(1) is fitted, then the SNR is

SNR =
1

n− p

(

V
ω

σ

)t

(I−PX)
(

V
ω

σ

)

. (48)

As expected, note that SNR becomes zero whenever ω = 0 or V = AX, i.e.,

when the columns of V are in the linear space generated by the columns of

X. Indeed, recognize that the SNR in (48) is the mean-squared error (MSE)
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obtained by regressingVω/σ onX. Applying this general result to the model

used in the simulation, we have the correspondences

p = 2, X = [1 x] , V = xγ ≡ (xγ1 , . . . , x
γ
n)

t, and ω = β2,

so for this model, (48) simplifies to

SNR =
1

n− 2

(

β2

σ

)2 n
∑

i=1

[xγi −mean(xγ)]2
[

1− corr(x,xγ)2
]

. (49)

Since the xi’s were from a standard uniform distribution, for large n, we

obtain the approximations

1

n

n
∑

i=1

[xγi −mean(xγ)]2 ≈ γ2

(γ + 1)2(2γ + 1)
and corr(x,xγ)2 ≈ 3(2γ + 1)

(γ + 2)2
.

Using these approximations, for large n, the expression in (49) can be ap-

proximated by

SNR(β2, γ, σ) ≈
(

β2

σ

)2
γ2

(γ + 1)2(2γ + 1)

{

1− 3(2γ + 1)

(γ + 2)2

}

. (50)

For the values of (β2, γ, σ) utilized in the simulation studies, we obtain

SNR(1, .5, 1) ≈ 1
450

, SNR(1, 2, 1) ≈ 1
180

, SNR(3, .5, 1) ≈ 1
50
, SNR(3, 2, 1) ≈ 1

20
,

SNR(5, .5, 1) ≈ 1
18
, and SNR(5, 2, 1) ≈ 5

36
. These values explain the order-

ing of the simulated powers for the Ŝ2
3 -based test. Note in particular that

SNR(5, .5, 1) ≈ 1/18 is slightly larger than SNR(3, 2, 1) ≈ 1/20, and this is

reflected by the small differences in the observed powers for the Ŝ2
3 -based test

for these two sets of values of (β2, γ).

The final set of simulation runs concerns violations of assumption (A3).

We considered two models for generating dependent error terms. The first
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model, which endows the error sequence a martingale structure, is Yi =

xi + εi, i = 1, 2, . . . , n, where, with ε∗j ’s i.i.d. from N(0, 1),

εi =
1√
i

i
∑

j=1

ε∗j . (51)

The second class of models has a Markov structure for the error sequence.

In this model, the error sequence is defined according to

ε1 = ε∗1 and εi =
ρεi−1 + ε∗i√

1 + ρ2
, i = 2, . . . , n, (52)

with ρ being a dependence parameter. In the simulation, we performed runs

for ρ = 1 and ρ = 3. Table 7 summarizes the simulated powers of the tests

under these dependent error models. Observe that for the martingale error

structure, the best test is the global test, with the Ŝ2
4 -test also performing

very well. For the Markov error structure, the best is the Ŝ2
4 -test, with the

global test’s power also very acceptable. The tests based on Ŝ2
1 and Ŝ2

2 also

has some detection abilities for this type of assumptional departure, but are

not competitive with the Ŝ2
4 -based test or the global test. The test based on

Ŝ2
3 possesses no ability to detect this particular type of violation.

5 Illustrative Examples

Example 1: The first illustration involves Forbes’ bivariate data set dis-

cussed in both Weisberg (1980, pp. 2-4) and Atkinson (1985) which contains

17 observations on the boiling point (in degrees Fahrenheit) of water at dif-

ferent pressures (in inches of mercury), with the different pressures arising
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from the different elevations in the Alps at which the measurements were

taken. As had been discussed in these monographs, there is a very strong fit

between pressure and boiling point, except that an examination of the residu-

als reveals the unusual nature of the 12th observation. This is demonstrated

by the first four plots in Figure 1, especially the third and fourth plots.

Recognizing the limitation that the sample size of this data set may not be

large enough to achieve good approximations for our proposed procedures,

we nevertheless applied the global test procedure and obtained the value

Ĝ2
4 = 98.45 with p-value approximately zero, so we conclude that at least one

of (A1)-(A4) is violated. Computing the component statistics, together with

their approximate p-values, we find Ŝ2
1 = 28.71(p ≈ 0); Ŝ2

2 = 65.08(p ≈ 0);

Ŝ2
3 = 1.90(p ≈ .1675), and Ŝ2

4 = 2.75(p ≈ .0970). A plot of ∆Ĝ4
2[i] versus the

observation number is provided in the fifth graph in Figure 1, and a plot of the

deletion p-values p[i] versus observation number is the last graph in Figure

1. Examining these plots, it is evident that observation 12 is truly unusual.

In particular, notice from the last graph in Figure 1 that the p-value when

observation 12 is deleted is very different from all the other p-values. This

indicates that the rejection of H0 is mainly caused by the 12th observation.

When the data is re-analyzed with observation 12 deleted, we find the fol-

lowing values of the test statistics, together with their approximate p-values:

Ĝ2
4[12] = 2.54(p ≈ .64); Ŝ2

1 [12] = 1.06(p ≈ .30); Ŝ2
2 [12] = .26(p ≈ .61);

Ŝ2
3 [12] = 1.21(p ≈ .27), and Ŝ2

4 [12] = .01(p ≈ .90). An examination of

the ∆Ĝ2
4[i] and p[i] plots for this ‘new’ data set did not show any unusual
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observations. These results indicate that by deleting the 12th observation,

assumptions (A1)-(A4) become acceptable.

Example 2: The second example involves multiple regression analyses of

Ruppert and Carroll’s (1980) water salinity data (see Table 3 in their paper)

which they used to illustrate robust regression techniques, and which was

also used for illustrative purposes in Atkinson (1985). We use this data set

to demonstrate the possible utility of the deletion statistics for detecting

outlying and/or influential observations, as well as in model construction in

conjunction with the model validation statistics. The data set consisted of

28 observations on the variables Salinity, which is the water salinity at the

specified time period; LagSalinity, which is the water salinity lagged two

weeks; Trend, which represents one of the six biweekly periods in March to

May; and WaterFlow, which is the river discharge. The response variable is

Salinity, while the predictor variables are LagSalinity, Trend, and WaterFlow.

The first part of the analyses involved fitting the multiple regression model

Salinity = β0 + β1(LagSalinity) + β2(Trend) + β3(WaterFlow) + σε. (53)

The fitted model had b0 = 9.5903, b1 = .7771, b2 = −.0255, and b3 = −.2950.

The coefficients β0, β1, and β3 were significantly different from zero. The

multiple R2 was 82.64%. When we applied the model validation procedures

proposed in this paper, we found the following values of the test statistics,

together with their p-values: Ĝ2
4 = .16(p = .9971), Ŝ2

1 = .02(p = .87),

Ŝ2
2 = .005(p = .95), Ŝ2

3 = 0(p = 1), and Ŝ2
4 = .13(p = .72). Thus, these
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values seem to indicate that the assumptions are acceptable. However, an

examination of the plots of ∆G2
4[i] and ∆p[i] versus observation number,

which are provided in the first two panels in Figure 2 vividly reveals that

observation number 16 is quite an unusual observation. In Atkinson (1985),

the unusual nature of the 16th observation was revealed using a half-normal

plot of Cook’s (1977) statistic. Following Atkinson, we suppose that the

value of WaterFlow for this 16th observation, which was 33.443, was actually

a misprint for 23.443, and so we re-fitted the model in (53) but with 23.443

in place of 33.443. The resulting analysis yielded the estimates b0 = 18.35,

b1 = .70, b2 = −.15, and b3 = −.63, with β0, β1, and β3 significantly different

from zero. The multiple R2 was 89.26%. Applying the model validation

procedures, we obtained Ĝ2
4 = 6.66(p = .15), Ŝ2

1 = 1.37(p = .24), Ŝ2
2 =

.02(p = .87), Ŝ2
3 = 4.24(p = .04), and Ŝ2

4 = 1.03(p = .31). Though the global

statistic has p-value exceeding 10%, the p-value for Ŝ2
3 is .04, which seems to

indicate that there is a mild problem in the link function (cf., see the results

of the simulations pertaining to the mis-specified link function). The plots

of ∆Ĝ4
2[i] and ∆p[i] from this model fitting, given in the third and fourth

panels in Figure 2, indicate no unusual observations, except possibly for the

5th observation. Recognizing the possible problem with the link function, we

follow Atkinson’s (1985, p. 50) suggestion of incorporating a quadratic term

of WaterFlow and we therefore fitted the model

Salinity = β0+β1(LagSalinity)+β2(Trend)+β3(WaterFlow)+β4(WaterFlow)2+σε.

(54)
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The resulting estimates are b0 = 67.57, b1 = .68, b2 = −.25, b3 = −4.58, and

b4 = .08, and the multiple R2 was 91.64% . Only β2 did not turn out to be

significantly different from zero. Applying our model validation procedures,

we find Ĝ2
4 = 1.69(p = .79), Ŝ2

1 = 1.12(p = .29), Ŝ2
2 = .03(p = .86), Ŝ2

3 =

.19(p = .66), and Ŝ2
4 = .35(p = .55). The plots of ∆Ĝ2

4[i] and ∆p[i] versus

observation number are provided in the fifth and sixth panels of Figure 2. The

values of the test statistics indicate that the assumptions are viable, and the

plots of ∆Ĝ2
4[i] and ∆p[i] do not anymore show any unusual observations, so

fitting the model (54) on the ‘corrected’ data set have yielded an acceptable

model.

Example 3: A well-known data set (see Table 4 in Box and Cox (1964))

arising from a designed textile experiment is the wool data set consisting

of 27 observations on the number of cycles to failure of a worsted yarn for

the 33 combinations of the levels of factors Length with levels of 250mm,

300mm, and 350mm; Loading Amplitude with levels of 8mm, 9mm, and

10mm; and Load with levels of 40g, 45g, and 50g. This data set was used

by Box and Cox (1964) to illustrate the family of power transformations; see

also Atkinson (1985, pp. 81–84). We use this data set to demonstrate how

our validation statistics could be employed to assess the viability of a fitted

model. If an additive model is fitted to this data set with Cycles to Failure

as response variable, a test of significance of the model reveals a p-value of

1.02×10−6 and a multiple R2 equal to 72.91%. Applying the model validation

procedure, the global statistic took a value of Ĝ2
4 = 31.91 with p-value of
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2.00× 10−6 indicating serious problems with at least one of the assumptions

(A1)-(A4). An examination of the plots of ∆Ĝ2
4[i] and ∆p[i] also reveal that

the 19th and 20th observations are outlying and/or highly influential. These

results are consistent with those of Atkinson’s (1985). Next, we fitted the

same additive model, but with the response being the logarithm of Cycles to

Failure. Again, the model turned out to be significant with p-value of zero

and multiple R2 equal to 96.58%. Computing the model validation statistics,

we obtained Ĝ2
4 = 5.81(p = .21) and Ŝ2

1 = .87(p = .35), Ŝ2
2 = .10(p = .75),

Ŝ2
3 = .38(p = .53), and Ŝ2

4 = 4.45(p = .0348). Thus, these results indicate

a mild problem with the homoscedasticity assumption, but definitely also

demonstrates that a logarithmic transformation on the response provides a

better fit. We also fitted the additive model with response variable being

the reciprocal of Cycles to Failure. As in the two previous models, the fitted

model turned out to be significant with p-value of zero and multiple R2 of

76.57%. However, the global statistic yielded Ĝ2
4 = 40.34 with an associated

p-value of 3.68 × 10−8. This demonstrates that among the three models

considered, the one utilizing a logarithmic transformation resulted in a fitted

model where the assumptions (A1)-(A4) maybe acceptable. Of course, these

results are consistent with those of Atkinson’s (1985) which were arrived at

using other methods, and the fact that logarithmic transformation resulted

in the best fitting model has been established in Box and Cox (1964).

Example 4: For our last example, we considered the end-of-trading-day

share values of CREF’s Stock and Growth Accounts consisting of successive
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observations starting from January 2, 1996 until May 31, 1996. The data set

was downloaded from TIAA-CREF’s website

http://www.tiaa-cref.org/financials/selection/ann-select.html.

The downloadable data set in TIAA-CREF’s website included the share val-

ues of the accounts even for non-trading days, such as Saturdays, Sundays,

and holidays, so the values for these days equal those of the preceding trading

day. Before the analyses were performed, these non-trading day values were

removed which left a total of n = 106 observations. The cleaned-out data

set used in this example is available upon request from the author, or can

be downloaded from his website. The goal of the model fitting is to relate

the values of the Stock and Growth retirement accounts for the purpose of

predicting the share value of the Growth Account from the share value of the

Stock Account. A bivariate plot of the data set is provided in the first panel

on Figure 3. The second panel in this figure is a plot of Growth share values

versus the Time Sequence. The third panel plots ∆Stock versus ∆Growth,

where for i = 1, 2, . . . , n,

∆Growthi+1 = Growthi+1−Growthi and ∆Stocki+1 = Stocki+1− Stocki,

which are the first-order differences. The last panel is a plot of ∆Growth

versus Time.

We first fitted a simple linear regression model with Growth as response

variable and Stock as predictor variable. The fitted model was Growth =

−12.0942 + .5178(Stock) with coefficient of determination R2 = 98.8% and
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residual standard error of .1623 on 104 error degrees-of-freedom. A test

for the significance of the model yielded a p-value of zero. We applied our

procedure for the purpose of validating the linear model assumptions. The

value of the global statistic was Ĝ2
4 = 7.87 with p-value of .0965. On the

basis of this global test, at 5% level of significance we may conclude that the

four assumptions are acceptable, though at a 10% level of significance, the

result indicates a violation of at least one of the assumptions. We therefore

examined the four directional statistics, whose values, together with their

p-values, were: Ŝ2
1 = 2.32(p = .1281); Ŝ2

2 = .55(p = .4568); Ŝ2
3 = 4.65(p =

.0311), and Ŝ2
4 = .35(p = .5548). The value of Ŝ2

3 indicates a violation in

the link function. These results are supported by the residual plots in Figure

4, specifically by looking at the fourth panel which contains a plot of the

time sequence and the residuals, and to a lesser extent and with a dose of

subjective judgement, from the first panel, which is a plot of the residuals

and the fitted values. The second and third panels are the usual histogram

and normal probability plot of the residuals, and except for a slight right-

skewness (of course, subjectively assessed) these seem to indicate that the

normality assumption is more or less satisfied. The last two panels are plots

of ∆Ĝ2
4[i]’s and p[i]’s with respect to the time sequence, and these plots seem

to indicate that there are no obvious outliers and/or extremely influential

observations.

By virtue of the conclusions arising from the model validation pro-

cedures above and to try to eliminate the possible effect of time, we fit-
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ted a simple linear regression model but with ∆Growth as dependent vari-

able and ∆Stock as predictor variable. The resulting fitted model was

∆Growth = .0057 + .4760(∆Stock) with a coefficient of determination equal

to R2 = 92.86% and residual standard error of .07828 based on 103 de-

grees of freedom. The fitted model was again found to be significant with

p-value of zero. Performing the model validation, the global statistic was

Ĝ2
4 = 2.81 with p-value of .59. Therefore, at a significance level of 10%,

the null hypothesis that (A1)-(A4) for this model hold cannot be rejected.

The directional statistics arising from this model were Ŝ2
1 = .11(p = .73);

Ŝ2
2 = .0041(p = .95); Ŝ2

3 = .17(p = .68), and Ŝ2
4 = 2.51(p = .11). These

values confirm that the assumptions are quite viable for the model which

utilizes the first-order differences in share values, though the p-value of Ŝ2
4

is very close to .10 which may be indicative of a mild heteroscedasticity or

dependent errors. Figure 5 presents the relevant plots for this model fitting.

The first four panels show no unusual patterns, which is consistent with the

quantitative values provided by the global and directional statistics. The

last two panels, which are plots of ∆Ĝ2
4[i]’s and p[i]’s with respect to time

sequence, also indicate no unusual patterns, except maybe for 7th, 48th, and

54th observations which could be outliers or mildly influential observations.
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Model Sample Component Statistics Global Statistic

Characteristic Size (n) Ŝ2
1 Ŝ2

2 Ŝ2
3 Ŝ2

4 Ĝ2
4

30 4.00 4.00 5.05 5.75 5.10
True Model 100 5.50 4.20 4.35 4.70 5.95

200 5.70 4.60 4.40 4.05 5.75

Table 1: Achieved levels of each of the 5%-asymptotic level tests based on
2000 replications.
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Error Sample Component Statistics Global Statistic

Distribution Size (n) Ŝ2
1 Ŝ2

2 Ŝ2
3 Ŝ2

4 Ĝ2
4

30 78.30 90.65 4.40 42.20 90.55
t1 100 94.95 100 4.15 67.00 100

200 97.85 100 4.35 75.10 100

30 18.45 20.35 4.70 9.60 22.40
t5 100 34.30 57.00 4.40 13.80 54.55

200 42.25 83.10 4.55 15.15 80.50

30 8.65 8.75 5.20 5.45 10.25
t10 100 16.70 25.45 4.90 7.55 27.35

200 17.15 39.50 6.05 8.50 35.70

30 6.05 5.85 4.50 5.00 7.00
t20 100 8.10 11.65 5.10 5.25 12.35

200 10.30 17.40 5.50 6.60 16.60

30 11.80 12.60 5.90 7.20 15.05
Logistic 100 17.45 30.30 5.50 8.20 29.35

200 20.10 52.35 4.25 9.00 47.10

30 19.50 24.75 5.60 10.35 27.20
Double Exp. 100 35.05 73.55 5.60 14.60 70.65

200 39.45 95.95 6.35 14.05 92.90

Centered 30 4.15 0 4.55 5.10 0.10
Uniform 100 4.20 67.25 5.85 4.70 3.90

(Variance=1) 200 5.05 100 4.45 4.25 86.40

Table 2: Achieved powers of each of the 5%-asymptotic level tests based
on 2000 replications when the error distribution is of a symmetric type. tk
represents a Student’s t-distribution with k degrees-of-freedom.
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Error Sample Component Statistics Global Statistic

Distribution Size (n) Ŝ2
1 Ŝ2

2 Ŝ2
3 Ŝ2

4 Ĝ2
4

30 91.30 59.70 5.25 21.30 80.20
χ2

1 − 1 100 100 98.35 5.05 31.35 100
200 100 99.95 4.85 33.60 100

30 71.90 38.95 5.40 14.15 57.05
χ2

2 − 2 100 100 86.90 4.25 21.05 99.80
200 100 98.90 5.30 24.40 100

30 37.15 18.05 4.45 8.65 29.15
χ2

5 − 5 100 96.90 54.25 4.60 11.80 87.70
200 100 79.40 4.40 13.15 99.90

30 22.40 12.90 4.75 6.90 18.75
χ2

10 − 10 100 79.70 31.50 4.95 8.60 61.00
200 98.90 50.00 4.60 8.80 94.70

Table 3: Achieved powers of each of the 5%-asymptotic level tests based
on 2000 replications when the error distribution is a shifted chi-square. χ2

k

represents a chi-squared distribution with k degrees-of-freedom.

Value of Sample Component Statistics Global Statistic

γ Size (n) Ŝ2
1 Ŝ2

2 Ŝ2
3 Ŝ2

4 Ĝ2
4

30 8.50 10.85 5.65 6.10 14.15
.5 100 12.00 37.40 4.70 5.55 31.55

200 10.65 48.85 4.80 8.35 39.50

30 11.10 16.65 3.40 6.20 16.15
1 100 21.35 78.15 5.15 21.05 72.30

200 24.10 96.95 5.40 13.35 93.30

30 21.40 52.35 6.15 12.60 46.75
2 100 34.10 98.95 7.00 10.05 96.45

200 47.50 100 7.55 31.60 100

Table 4: Achieved powers of each of the 5%-asymptotic level tests based on
2000 replications when the true model is Yi = xi+x

γ
i εi with εi’s i.i.d. N(0, 1)

and the model Yi = β0 + β1xi + σεi is fitted.
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Values of Sample Component Statistics Global Statistic

(σ1, σ2) Size (n) Ŝ2
1 Ŝ2

2 Ŝ2
3 Ŝ2

4 Ĝ2
4

30 20.05 29.75 7.60 16.60 35.30
(1, .5) 100 39.45 93.45 6.05 71.50 94.90

200 43.50 99.90 6.00 99.90 100

30 24.80 43.20 10.65 15.40 45.35
(1, 2) 100 35.20 89.85 4.35 89.40 95.55

200 43.20 99.95 5.90 97.20 99.95

Table 5: Achieved powers of each of the 5%-asymptotic level tests based
on 2000 replications when the true model is Yi = xi + σiεi with εi’s i.i.d.
N(0, 1) and σi = σ1 for i ≤ n/2 and σi = σ2 when i > n/2, and the model
Yi = β0 + β1xi + σεi is fitted.
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Value of Sample Component Statistics Global Statistic

(β2, γ) Size (n) Ŝ2
1 Ŝ2

2 Ŝ2
3 Ŝ2

4 Ĝ2
4

30 5.45 4.10 4.20 5.00 4.80
(1, .5) 100 4.60 5.15 6.65 5.85 6.20

200 4.90 5.80 7.60 4.70 8.25

30 4.60 4.15 6.00 3.90 5.25
(1, 2) 100 4.45 5.30 9.35 4.85 6.30

200 5.15 4.75 10.50 4.15 6.90

30 5.45 4.15 8.25 4.85 5.45
(3, .5) 100 5.90 4.00 17.45 4.90 8.70

200 4.00 4.60 32.95 5.00 16.55

30 4.95 3.55 12.70 5.05 5.55
(3, 2) 100 4.95 4.95 43.65 4.55 22.80

200 4.25 5.50 83.35 5.45 59.90

30 3.70 3.70 14.45 4.20 5.70
(5, .5) 100 5.10 4.25 51.60 4.65 27.05

200 5.20 5.00 84.25 5.40 62.00

30 5.45 4.10 36.55 4.60 12.70
(5, 2) 100 5.20 4.80 92.00 5.45 72.60

200 5.00 4.65 99.60 5.15 97.90

Table 6: Achieved powers of each of the 5%-asymptotic level tests based on
2000 replications when the true model is Yi = xi + β2x

γ
i + εi with εi’s i.i.d.

N(0, 1) and the model Yi = β0 + β1xi + σεi is fitted.
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Error Sample Component Statistics Global Statistic

Structure Size (n) Ŝ2
1 Ŝ2

2 Ŝ2
3 Ŝ2

4 Ĝ2
4

Martingale 30 20.85 10.25 3.80 35.45 27.85
εi =

1√
i

∑i
j=1 ε

∗
j 100 50.70 33.50 3.50 70.25 72.20

ε∗i i.i.d. N(0, 1) 200 63.90 50.35 5.00 79.40 87.25

Markov type 30 5.20 3.05 3.50 8.20 5.30
εi =

1√
2
(εi−1 + ε∗i ) 100 8.90 4.70 6.25 15.55 12.15

ε∗i i.i.d. N(0, 1) 200 11.40 5.85 5.15 18.35 15.70

Markov type 30 5.45 2.90 1.85 13.30 6.85
εi =

1√
10
(3εi−1 + ε∗i ) 100 19.60 10.60 5.45 36.45 34.85

ε∗i i.i.d. N(0, 1) 200 29.50 21.40 3.60 47.45 54.45

Table 7: Achieved powers of each of the 5%-asymptotic level tests based on
2000 replications in the presence of dependent errors.
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Figure 1: Plots pertaining to the analysis of Forbes’ boiling point and pres-
sure data.
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Figure 2: Plots pertaining to the analyses of the water salinity data. The
first two panels are plots arising from the analysis using the original data
set. The next two panels are from the analysis using the corrected data set.
The last two panels are those from the corrected data set, but with the fitted
model including a quadratic term of WaterFlow.
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Plot of Response Variable versus Predictor Variable
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Figure 3: Plots pertaining to TIAA-CREF’s Growth and Stock Accounts
end-of-trading-day values for five months starting January 2, 1996. The first
panel is a plot of the Stock and Growth share values, while the second panel
is a time plot of the Growth share values. The third panel plots ∆Growth
versus ∆Stock, while the last panel plots ∆Growth versus Time.
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Plot of the Fitted Values versus the Standardized Residuals
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Figure 4: Plots pertaining to the analysis of TIAA-CREF’s Growth and
Stock Accounts upon fitting a simple linear regression model with Growth
as response variable and Stock as predictor variable.
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Plot of the Fitted Values versus the Standardized Residuals
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Figure 5: Plots pertaining to the analysis of TIAA-CREF’s Growth and
Stock Accounts upon fitting a simple regression model with ∆Growth as
dependent variable and ∆Stock as predictor variable.
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