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CHAPTER 1

CLASSES OF FIXED-ORDER AND ADAPTIVE
SMOOTH GOODNESS-OF-FIT TESTS

WITH DISCRETE RIGHT-CENSORED DATA

Edsel A. Peña

Department of Statistics
University of South Carolina
Columbia, SC 29208 USA
E-mail: pena@stat.sc.edu

Classes of hazard-odds based fixed-order and adaptive smooth goodness-
of-fit tests for the composite hypothesis that an unknown discrete distri-
bution belongs to a family of distributions using right-censored observa-
tions are presented. The proposed classes of tests generalize Neyman’s 33

smooth class of tests. The class of fixed-order tests is the discrete analog
of the hazard-based class of tests for continuous failure times studied
in Peña35. The class of adaptive tests employs a modified Schwartz40

Bayesian information criterion for choosing the order of the embedding
class, with the modification on the criterion accounting for the incom-
pleteness mechanism.

1. Introduction

Statistical goodness-of-fit (gof) testing has always been an active re-
search area as evidenced by entering the phrase “goodness of fit” in
the MathSciNet search engine. In its simplest form a random sample
T1, T2, . . . , Tn from an unknown distribution function F is observed, and
it is desired to determine if F = F0, where F0 is a specified distribution.
The most well-known gof procedure is Pearson’s34 chi-square test which
utilizes the statistic

χ2 =
K∑

j=1

(Oj − Ej)2

Ej
, (1)

where K is the size of the partition of the support of F0, Oj is the number
of Ti’s in the jth member of the partition, and Ej is the number of Ti’s
expected to be in the jth member of the partition when F0 holds. The
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popularity of this test is partly due to its simplicity and the fact that
it requires only critical values from the family of chi-square distributions.
There are other tests for the simple gof problem, such as Kolmogorov-
Smirnov (KS) type tests, Neyman’s33 smooth gof tests, Cramer-von Mises
(CVM) type tests, and those by Khamaladze20,21. A review of some of
these procedures could be found in Stephens42. Many of these tests have
extensions to the composite null hypothesis setting, where the problem is to
test whether F ∈ C, with C a specified (parametric) family of distributions,
cf., Chernoff and Lehmann6, Rao and Robson37, D’Agostino and Stephens9,
and Greenwood and Nikulin13. Except for Pearson’s34 test, most of the
above-mentioned procedures imposes the restriction that F is continuous,
with this assumption typically made in order to facilitate the derivations
of distributional results.

Though not as prevalent as the case with continuous distributions, gof
tests for discrete distributions, or when data arose from grouping of con-
tinuous data, have also been considered. Kulperger and Singh26 examined
χ2 gof tests for discrete distributions and considered the issue of random
grouping. Cressie and Read8 introduced the family of power divergence
statistics for performing gof with multinomial data. Best and Rayner4,5

proposed Neyman smooth gof tests for the null hypothesis that F is geomet-
ric and Poisson, respectively; while Eubank10 proposed Neyman smooth-
type tests for dealing with multinomial data. In Choulakian, Lockhart and
Stephens7 a test for the discrete uniform was presented; while in Spinelli
and Stephens41 CVM-type procedures were developed for testing a Poisson
distribution. Kocherlakota and Kocherlakota24, Rueda, Perez-Abreau and
O’Reilly38, Baringhaus and Henze3, and Nakamura and Perez-Abreau32

examined gof procedures for discrete data using the empirical probability
generating function; in particular, tests for the Poisson distribution were
developed. Empirical distribution-based methods were also considered for
discrete models. Among papers adopting this approach were Henze15 and
Klar23. However, all of these papers dealing with goodness-of-fit for discrete
models assume that T1, T2, . . . , Tn are completely observed.

In biomedical, engineering, reliability, and in other areas where the
primary variable of interest is the time-to-occurrence of an event, hereon re-
ferred to as a failure time, it is typical that some of the failure times will be
right-censored due to time constraints, limited resources, withdrawal from
the study, loss to follow-up, etc. Numerous papers have appeared dealing
with the modeling and analysis of failure times in the presence of incom-
plete observations. For continuous failure times, the problem of gof testing
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has been addressed in several papers with the aim of extending to censored
data those procedures that were developed for complete data. Among these
papers are those of Koziol and Green25, Hyde19, Hollander and Proschan17,
Nair29,30,31, Gatsonis, Hsieh and Korwar11, Habib and Thomas14, Akritas2,
Hjort16, Hollander and Peña18, Li and Doss28, and Kim22. An interesting
goal in gof testing with censored data is to extend Pearson’s test. The diffi-
culty underlying such an extension is that the exact number of failures in a
member of the partition is not observable. An attempt to extend Neyman’s
smooth gof procedure in the presence of right-censored data has also been
made by Gray and Pierce12. Their approach parallels that of Neyman33

where the density function is embedded in a wider class. A different exten-
sion of the smooth gof tests with continuous failure times, which adapts
naturally to censored data and enables point process theory, was that in
Peña35 and Agustin and Peña1, the latter dealing with reliability models
for recurrent events.

Except for the test proposed in Hyde19 which is a special case of the
class of tests proposed in this chapter, the gof problem with right-censored
discrete failure times does not seem to have been investigated extensively in
the literature. The existing gof procedures for discrete and complete data
mentioned earlier have not yet been extended for discrete and censored
data, which is rather surprising since discrete failure times are ubiquitous
in many studies. For instance, discrete failure times occur because of the
intrinsic nature of the failure time process such as when failure is measured
in terms of counts or the number of cycles, or due to an inherent limitation
in the measurement process forcing subjects to be observed only at the
end of specified intervals (e.g., weekly basis). Discrete failure times also
manifest when the times are interval-censored as in biomedical studies, or
when data is presented in a life-table format as is done in actuarial settings.
Right-censoring occurs due to the withdrawal of subjects from the study,
a fixed study period, or due to failure (death) from competing causes. In
these situations, prior to performing higher-level statistical analysis such
as estimation or hypothesis testing, it is desirable to know the parametric
family of distributions or hazards to which F or Λ belongs since this will
enable the use of more efficient inferential methods.

This chapter aims to provide a general class of gof tests for discrete
failure times and in the presence of right-censoring for the composite null
hypothesis. In Peña36 a general approach for generating a class of tests
for the simple null hypothesis case was presented, an approach which is
a hazard-based extension of Neyman’s33 smooth goodness-of-fit tests. See
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Rayner and Best39 for an extensive discussion of the Neyman formulation of
this class of smooth goodness-of-fit tests. The present chapter considers the
parallel treatment of the composite null hypothesis case. The procedures
presented in this chapter are discrete analogs of the intensity-based smooth
goodness-of-fit tests developed in Peña35 for continuous failure times. In
this formulation, the sequence of odds associated with the hazard rates are
embedded in a wider class, in contrast to the usual Neyman formulation
where the sequence of probabilities are embedded, cf., Rayner and Best39.
This intensity-based embedding facilitates the derivation of the smooth
goodness-of-fit tests as score tests, thereby endowing the tests with certain
local optimality properties. In contrast to the development of Pearson’s test
in which the vantage point is the time origin and the underlying question
is: ‘How many observations are expected to have values in a member of
the partition of the support of F0?’ the current approach’s vantage point
is dynamic in that the relevant question is: ‘Given that just before a cer-
tain time point there are a certain number of units at risk, how many are
expected to fail at this time point?’ Consequently, instead of dealing with
global probabilities, the main focus are conditional probabilities, hazards,
or intensities, which are the natural quantities when dealing with dynamic
or time-evolving systems.

Due to space and time constraints, proofs of the propositions and
theorems will not be presented in this chapter, but we focus instead on the
proposed class of goodness-of-fit procedures. Results of simulation studies
pertaining to the achieved levels and powers will be presented in the paper
containing the proofs of the propositions and theorems. We mention that
simulation studies performed for the tests associated with the simple null
hypothesis case demonstrated the viability of the proposed class of tests
and indicates that the proposed adaptive test using the modified Schwartz
information criterion could be used as an omnibus test. Results of these
simulation studies can be found in Peña36.

2. Description of the Problem

Let T1, T2, . . . , Tn be independent and identically distributed (IID) random
variables from an unknown discrete distribution F whose support is known
to be A = {a1, a2, . . .} with ai < ai+1, i = 1, 2, . . .. The Ti’s are not com-
pletely observed, but only the random vectors (Z1, δ1), (Z2, δ2), . . . , (Zn, δn)
are observed with the interpretation that δi = 1 implies Ti = Zi, whereas
δi = 0 implies Ti > Zi. Let λj = λj(F ), j = 1, 2, . . . be the hazard
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of T at aj , so λj = P(T = aj |T ≥ aj) = ∆F (aj)/F̄ (aj−), and let
Λ(t) =

∑∞
j=1 λjI{aj ≤ t}, t ∈ <, be the discrete hazard function associ-

ated with F . We assume in the sequel the independent censoring condition:

P{T = aj |T ≥ aj} = λj = P{T = aj |Z ≥ aj}, j = 1, 2, . . . . (2)

The problem dealt with is to test the hypothesis that F belongs
to a parametric class F0 of discrete distributions parameterized by a q-
dimensional vector η taking values in Γ, an open set in <q. Denote by C0
the class of hazard functions associated with F0 so C0 = {Λ0(·|η) : η ∈ Γ},
where the functional form of Λ0(·|η) is known. The goodness-of-fit problem
is to test the composite hypotheses

H0 : Λ(·) ∈ C0 versus H1 : Λ(·) /∈ C0 (3)

on the basis of the right-censored data (Zi, δi), i = 1, 2, . . . , n. The simple
null hypothesis case where interest is on testing

H0 : Λ(·) = Λ0(·) versus H1 : Λ(·) 6= Λ0(·) (4)

with Λ0(·) a fully specified discrete hazard function was dealt with in
Peña36. The present chapter extends the results in Peña36 to the composite
case. Note that in (3), the parameter vector η is a nuisance parameter.

3. Hazard Embeddings and Likelihoods

Let λ0
j (η), j = 1, 2, . . . be the hazards associated with Λ0(·|η), so

Λ0(t|η) =
∑

{j:aj≤t}

λ0
j (η).

Following Peña36, for λj < 1 and λj(η) < 1, let the hazard odds be

ρj =
λj

1− λj
and ρ0

j (η) =
λ0

j (η)
1− λ0

j (η)
.

For a fixed smoothing order p ∈ Z+, and for the p × 1 vectors Ψj =
Ψj(η), j = 1, 2, . . . , J , we embed ρ0

j (η) into the hazard odds determined by

ρj(θ, η) = ρ0
j (η) exp{θtΨj(η)}, j = 1, 2, . . . ; θ ∈ <p. (5)

This is equivalent to postulating that the logarithm of the hazard odds
ratio is linear in Ψj(η), that is,

log

{
ρj(θ, η)
ρ0

j (η)

}
= θtΨj(η), j = 1, 2, . . . .
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Within this embedding, the partial likelihood of (θ, η) based on the obser-
vation period (−∞, aJ ] for some fixed J ∈ Z+ is (cf., Peña36)

L(θ, η) =
J∏

j=1

ρj(θ, η)Oj

[1 + ρj(θ, η)]Rj
(6)

where

Oj =
n∑

i=1

I{Zi = aj , δi = 1} and Rj =
n∑

i=1

I{Zi ≥ aj}.

Furthermore, within this hazard odds embedding, the composite goodness-
of-fit problem simplifies to testing H0 : θ = 0, η ∈ Γ versus H1 : θ 6=
0, η ∈ Γ, so η is a nuisance parameter. For our notation, we shall denote by
∇v = ∂/∂v the gradient operator with respect to a vector v. The test is to
be anchored by the estimated score statistic

Uθ(0, ˆ̂η) = ∇θ log L(θ, η)|θ=0,η=ˆ̂η,

where ˆ̂η = η̂(θ = 0) is the restricted partial likelihood maximum likelihood
estimator (RPLMLE). This is the η that maximizes the restricted partial
likelihood function

L0(η) = L(0, η) =
J∏

j=1

ρj(0, η)Oj

[1 + ρj(0, η)]Rj
=

J∏
j=1

[λ0
j (η)]Oj [1− λ0

j (η)]Rj−Oj (7)

with ρj(0, η) = ρ0
j (η) = λ0

j (η)/[1− λ0
j (η)].

4. Restricted Partial Likelihood MLE

From (7), the logarithm of the partial likelihood function is

l0(η) = log L0(η) =
J∑

j=1

{
Oj log λ0

j (η) + (Rj −Oj) log[1− λ0
j (η)]

}
. (8)

Consequently,

∇ηl0(η) =
J∑

j=1

Aj(η)[Oj − E0
j (η)]

where, for j = 1, 2, . . .,

E0
j (η) = Rjλ

0
j (η) and Aj(η) =

∇ηλ0
j (η)

λ0
j (η)[1− λ0

j (η)]
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are the q × 1 ‘standardized’ gradients of λ0
j (η) with respect to η. We form

the J × q matrix of standardized gradients

A(η) = [A1(η),A2(η), . . . ,AJ(η)]t , (9)

and define the J × 1 vectors

O = (O1, O2, . . . , OJ)t and E0(η) =
(
E0

1(η), E0
2(η), . . . , E0

J(η)
)t

.

Then, in matrix form,

∇ηl0(η) = A(η)t
[
O−E0(η)

]
.

The estimating equation for the RPLMLE ˆ̂η is therefore

A(η)t
[
O−E0(η)

]
= 0. (10)

For example, suppose that C0 is the class of constant hazards, which corre-
sponds to the class of geometric distributions. Then A(η) = 1J/[η(1− η)]
and E0(η) = Rη, so the estimating equation becomes

{η(1− η)}−11t
J(O−Rη) = 0,

yielding the RPLMLE given by

ˆ̂η =
1t

JO
1t

JR
=

∑J
j=1 Oj∑J
j=1 Rj

. (11)

Clearly, in many situations, ˆ̂η will need to be obtained iteratively or through
numerical methods.

5. Asymptotics and Test Procedure

The logarithm of the partial likelihood function is given by

l(θ, η) =
J∑

j=1

{Oj log ρj(θ, η)−Rj log[1 + ρj(θ, η)]} .

With Ψ(η) = [Ψ1(η),Ψ2(η), . . . ,ΨJ(η)]t, the score function for θ, evalu-
ated at θ = 0, is immediately obtained to be

Uθ(θ = 0, η) = ∇θl(θ, η)|θ=0 = Ψ(η)t[O−E0(η)]. (12)

Since η is unknown, this score function is estimated by

Ûθ = Uθ(θ = 0, ˆ̂η) = Ψ(ˆ̂η)t[O−E0(ˆ̂η)]. (13)
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To develop the test we need the asymptotic distribution of Ûθ. For this
purpose, we first present the joint asymptotic distribution of the (p+ q)×1
vector of scores

U(η) =
[
Ψ(η)t

A(η)t

]
[O−E0(η)] (14)

at η = η0, the true value of η under H0.
To achieve a more compact notation, for a vector v, we denote by

Diag(v) the diagonal matrix whose diagonal elements are those of v. Let

D(η) = Diag (λj(η)[1− λj(η)] : j = 1, 2, . . . , J)

and λ(η) = (λ1(η), λ2(η), . . . , λJ(η))t . Then, the matrix of standardized
gradients could be re-expressed via

A(η) = D(η)−1∇ηtλ(η). (15)

The asymptotic distribution of U(η) can be obtained by invoking Theorem
4 in Peña36. To describe this asymptotic distribution, we need to introduce
more notation. Let

V(η) = Diag(R)D(η)

and with B(η) = [Ψ(η),A(η)], define the (p + q)× (p + q) matrix

Ξ(η) = B(η)tV(η)B(η).

Furthermore, for i = 1, 2, . . . , n and j = 1, 2, . . . , J , let

Vij = I{Zi = aj , δi = 1};
Wij = I{Zi ≥ aj};

Uij(η) = Vij −Wijλ
0
j (η),

and

Fj =
n∨

i=1

σ{Wi1, Vi1,Wi2, Vi2, . . . ,Wij , Vij ,Wij+1}.

From Theorem 4 in Peña36 we obtain the following proposition.

Proposition 1: Assume that H0 holds and that the true value of η is η0.
Furthermore, suppose that p does not change with n and for i = 1, 2, . . . , n

and j = 1, 2, . . . , J , the following conditions hold:

(i) the jth row of B(η0), which is Bj(η0) = [Ψj(η0)t,Aj(η0)t], is Fj−1-
measurable and E{[‖ Bj(η0) ‖ Uij ]2} <∞;
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(ii) there exists a (p + q) × (p + q) positive definite matrix Ξ(0)(η0) such
that, as n→∞,

n−1Ξ(η0)
pr−→ Ξ(0)(η0);

(iii) with Vjj(η0) = Rjλj(η0)[1− λj(η0)], then as n→∞,

max
1≤j≤J

trace
{
[Ξ(η0)]−1[Bj(η0)tVjj(η0)Bj(η0)]

} pr−→ 0;

(iv) as n→∞, max1≤j≤J ‖ Bj(η0) ‖2= Op(1).

Then, as n→∞,

1√
n
U(η0) =

1√
n
B(η0)t[O−E0(η0)]

d−→ Np+q(0,Ξ(0)(η0)).

Marginalizing on the score function for θ, it follows from Proposition 1
that

1√
n
Ψ(η0)t[O−E0(η0)]

d−→ Np(0,Ξ(0)
11 (η0)) (16)

where Ξ(0)
11 (η0) is the in-probability limit of n−1Ψ(η0)tV(η0)Ψ(η0). Of

course this result is not directly useful for constructing the test since η0

is not known; however, it will become useful later when ascertaining the
impact of the estimation of η0 by ˆ̂η. For later use, we also denote by
Ξ(0)

12 (η0) = Ξ(0)
21 (η0)

t
the in-probability limit of n−1Ψ(η0)tV(η0)A(η0) and

by Ξ(0)
22 (η0) the in-probability limit of n−1A(η0)tV(η0)A(η0).
We are now ready to present the asymptotic result which will be useful

for constructing the goodness-of-fit procedure.

Theorem 1: Assume that the conditions of Proposition 1 hold, and in
addition there exists a neighborhood Γ0 of η0 in Γ such that, as n→∞,

(i) for each j = 1, 2, . . . , J , λj(η) is twice-differentiable with η 7→ ∇ηλj(η)
continuous at η = η0; max1≤j≤J ‖ ∇ηλj(η) ‖= Op(1), and for each
l, l′ ∈ {1, 2, . . . , q},

max
1≤j≤J

sup
η∈Γ0

∣∣∣∣ ∂2

∂ηlηl′
λj(η)

∣∣∣∣ = op(n);

(ii) for each i = 1, 2, . . . , n and j = 1, 2, . . . , J , Ψij(η) is twice-differentiable
with η 7→ ∇ηΨij(η) continuous at η = η0;

max
1≤i≤n

max
1≤j≤J

‖ ∇ηΨij(η) ‖= Op(1),
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and for each l, l′ ∈ {1, 2, . . . , q},

max
1≤i≤n

max
1≤j≤J

sup
η∈Γ0

∣∣∣∣ ∂2

∂ηlηl′
Ψij(η)

∣∣∣∣ = op(n);

(iii) the limiting matrix Ξ(0)
22 (η0) is nonsingular.

Then, under H0 and as n→∞,

1√
n
Ψ(ˆ̂η)t[O−E0(ˆ̂η)] d−→ Np

(
0,Ξ(0)

11.2(η0)
)

,

where Ξ(0)
11.2(η0) = Ξ(0)

11 (η0)−Ξ(0)
12 (η0)

{
Ξ0)

22(η0)
}−1

Ξ(0)
21 (η0).

Comparing this result with that in (16), we see the effect of esti-
mating the unknown parameter η0 by the RPLMLE ˆ̂η is to decrease the

covariance matrix by the term Ξ(0)
12 (η0)

{
Ξ0)

22(η0)
}−1

Ξ(0)
21 (η0). Also, by re-

calling the definitions of the matrices Ξ(0)
ij (η0)’s, it is immediate that the

limiting covariance matrix Ξ(0)
11.2(η0) can be estimated consistently by

Ξ̂(0)
11.2 =

1
n

{
Ψ(ˆ̂η)tV(ˆ̂η)Ψ(ˆ̂η)−

[Ψ(ˆ̂η)tV(ˆ̂η)A(ˆ̂η)][A(ˆ̂η)tV(ˆ̂η)A(ˆ̂η)]−1[A(ˆ̂η)tV(ˆ̂η)Ψ(ˆ̂η)]
}

. (17)

With M− denoting a generalized inverse of a matrix M, the test
statistic for testing H0 and a fixed smoothing order p is

Ŝ2
p =

{
1√
n
Ψ(ˆ̂η)t[O−E0(ˆ̂η)]

}t {
Ξ̂(0)

11.2

}−{ 1√
n
Ψ(ˆ̂η)t[O−E0(ˆ̂η)]

}
. (18)

Corollary 1: Under the conditions of Theorem 1 and under H0, as n →
∞, Ŝ2

p
d−→ χ2

p∗ with p∗ = rank(Ξ(0)
11.2(η0)). Therefore, an asymptotic α-level

test of H0 versus H1 rejects H0 whenever Ŝ2
p > χ2

p̂∗;α with p̂∗ = rank(Ξ̂(0)
11.2),

and where χ2
p;α is the 100(1− α)th percentile of a χ2

p distribution.

To further simplify our notation, let

A∗(η) = V(η)
1
2 A(η) and Ψ∗(η) = V(η)

1
2 Ψ(η),

and for a full rank J × q (with J > q) matrix X, let

P (X) = X(XtX)−1Xt
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be the projection operator (matrix) on the linear subspace L(X) generated
by X in <J . Also, denote by

P⊥(X) = I− P (X)

the projection operator on the orthocomplement of L(X). Using these no-
tation, the estimator Ξ̂(0)

11.2 can be reexpressed via

Ξ̂(0)
11.2 =

1
n
Ψ∗(ˆ̂η)tP⊥(A∗(ˆ̂η))Ψ∗(ˆ̂η). (19)

Let us also define the ‘standardized’ observed and dynamic expected fre-
quencies via

O∗ = V(ˆ̂η)−
1
2 O =

 Oj√
Rjλ0

j (ˆ̂η)[1− λ0
j (ˆ̂η)]

: j = 1, 2, . . . , J

t

;

E∗(ˆ̂η) = V(ˆ̂η)−
1
2 E0(ˆ̂η) =

 Rjλ
0
j (ˆ̂η)√

Rjλ0
j (ˆ̂η)[1− λ0

j (ˆ̂η)]
: j = 1, 2, . . . , J

t

with the convention that 0/0 = 0.
Using these standardized quantities, and upon further simplification,

the test statistic can be expressed as

Ŝ2
p = [O∗−E∗(ˆ̂η)]t

[
Ψ∗(ˆ̂η)

{
Ψ∗(ˆ̂η)tP⊥(A∗(ˆ̂η))Ψ∗(ˆ̂η)

}−
Ψ∗(ˆ̂η)t

]
[O∗−E∗(ˆ̂η)].

(20)
Under an orthogonality condition between A∗(ˆ̂η) and Ψ∗(ˆ̂η), we further
obtain the more compact and norm-like nature of the statistic given in the
following corollary. This corollary also implies that under the orthogonality
condition, the estimation of η0 by ˆ̂η does not require any adjustments in
the limiting covariance matrix relative to the case when η0 is known, an
‘adaptiveness’ property.

Corollary 2: If Ψ∗(ˆ̂η) lies in L(A∗(ˆ̂η))⊥, the orthocomplement of
L(A∗(ˆ̂η)), then

Ŝ2
p =‖ P (Ψ∗(ˆ̂η))[O∗ −E∗(ˆ̂η)] ‖2 .

For purposes of studying the asymptotic local power properties of
the test, Theorem 1 could be generalized to cover the behavior under local
alternatives. This generalization is contained in the following theorem.
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Theorem 2: If the conditions of Theorem 1 hold, then under the sequence
of local alternatives H

(n)
1 : θ(n) = n−

1
2 γ(1+o(1)) for γ ∈ <p and as n→∞,

1√
n
Ψ(ˆ̂η)t[O−E0(ˆ̂η)] d−→ Np

(
Ξ(0)

11.2(η0)γ,Ξ(0)
11.2(η0)

)
.

As a consequence, the asymptotic local power of the test described
above for the sequence of local alternatives specified in Theorem 2 is

ALP(γ) = P
{
χ2

p∗(δ
2(γ)) > χ2

p∗;α

}
, (21)

where the noncentrality parameter is

δ2(γ) = γtΞ(0)
11.2(η0)γ,

which could be consistently estimated by

δ̂2 =
1
n

[Ψ∗(ˆ̂η)γ]tP⊥(A∗(ˆ̂η))[Ψ∗(ˆ̂η)γ].

Under the orthogonality condition of Corollary 2 this simplifies to

δ̂2 =
1
n
‖ Ψ∗(ˆ̂η)γ ‖2 pr−→ γtΞ11(η0)γ = δ2.

6. Some Choices of Ψ

For a fixed smoothing order p, three particular choices of the J × p matrix
Ψ(η) are provided below. The first specification is given by

Ψ1 =

((
R
n

)0

,

(
R
n

)1

, . . . ,

(
R
n

)p−1
)

, (22)

where

(R/n)k = ((R1/n)k, (R2/n)k, . . . , (RJ/n)k)t.

Note that this choice does not depend functionally on η, but its distribution
depends on η. This choice has proven effective in goodness-of-fit testing for
the simple null hypothesis setting for this discrete failure time setting36, and
as such we expect that this will also perform satisfactorily in this composite
null hypothesis setting.

The second specification, which depends functionally on η, is

Ψ2(η) =
(
[λ0(η)]0, [λ0(η)]1, . . . , [λ0(η)]p−1

)
, (23)

where

[λ0(η)]k = ([λ0
1(η)]k, [λ0

2(η)]k, . . . , [λ0
J(η)]k)t.
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The analogous choice for the continuous failure time situation was quite
effective in generating tests with commendable powers (cf., Peña35).

The third specification produces a test statistic which generalizes
Pearson’s statistic. Let C1, C2, . . . , Cp be a (disjoint) partition of J =
{1, 2, . . . , J}. Define

Ψ3 =
(
1C1 ,1C2 , . . . ,1Cp

)t (24)

where for C ⊆ J , 1C is a J × 1 vector whose jth element is I{j ∈ C}.
Furthermore, define

O•(C) =
∑
j∈C

Oj and Ê0
•(C) =

∑
j∈C

E0
j (ˆ̂η).

Also, with

V̂ ∗
• (C) = 1t

CV(ˆ̂η)1/2P⊥(A∗(ˆ̂η)V(ˆ̂η)1/21C

the resulting test statistic for the specification (24) is given by

Ŝ2
p =

p∑
i=1

[
O•(Ci)− Ê0

•(Ci)
]2

V̂ ∗
• (Ci)

, (25)

which is a Pearson-type test statistic.
However, these choices do not satisfy the orthogonality condition in

Corollary 2, so the correction term for the covariance matrix will be re-
quired. It is possible to start with these choices to arrive at a Ψ′ that
satisfies the orthogonality condition using a Gram-Schmidt type of orthog-
onalization. But, as pointed out in Peña35 in the continuous failure time
setting, the benefits of such a programme may not outweigh the effort and
difficulty in performing the orthogonalization.

7. Adaptive Choice of Smoothing Order

The testing procedure described in the preceding section requires that the
smoothing order p be fixed. This introduces an arbitrariness in the proce-
dure, and without a good prior knowledge of the class of hazards that holds
if the class under the null hypothesis does not hold, there is a great poten-
tial of choosing a p that is far from optimal. Of course, repeated testing
with different smoothing orders is unwise since it will inflate the Type I
error rates. It is therefore imperative and important to have a data-driven
or adaptive approach for determining the smoothing order p.

We propose a procedure that uses a modified Schwartz information
criterion (Schwartz40) to decide on the smoothing order p. We mention that
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for the classical Neyman’s smooth goodness-of-fit test, Ledwina27 proposed
the use of the Schwartz information criterion for adaptively determining the
smoothing order. Let Lp(θp, η) denote the partial likelihood of (θp, η) when
the smoothing order p is given in (6), and let lp(θp, η) = log Lp(θp, η) be
the associated log-partial likelihood function. Denote by (θ̂p, η̂) the partial
likelihood maximum likelihood estimator (PLMLE), so that

Lp(θ̂p, η̂) = sup
θp∈<p; η∈Γ

Lp(θp, η).

Clearly, as in the computation of the RPLMLE ˆ̂η, numerical techniques
will be needed to compute the PLMLE. Let Up(θp, η) and Ip(θp, η) be the
score function vector and observed Fisher information matrix associated
with Lp(θp, η), respectively. Thus,

Up(θp, η) =
[
∇θlp(θp, η)
∇ηlp(θp, η)

]
;

and

Ip(θp, η) = −

[
∂2

∂θp∂θt
p
lp(θp, η) ∂2

∂θp∂ηt lp(θp, η)
∂2

∂θt
p∂η lp(θp, η) ∂2

∂η∂ηt lp(θp, η)

]
.

A possible approach to iteratively computing the PLMLE (θ̂p, η̂) is via the
Newton-Raphson updating given by[

θ̂p

η̂

]
←
[

θ̂p

η̂

]
+ [Ip(θ̂p, η̂)]−1Up(θ̂p, η̂). (26)

Denote by λ̂max the largest eigenvalue of Ip(θ̂p, η̂). The modified
Schwartz information criterion is defined to be

MSIC(p) = lp(θ̂p, η̂)− p

2

[
log(n) + log(λ̂max)

]
. (27)

The first two terms in the right-hand side of (27) is the usual Schwartz in-
formation criterion for complete data. The last term in (27) represents the
correction arising from the right-censoring. The justification for this modi-
fication will be provided in more a general framework involving incomplete
data in a forthcoming paper.

The order selection procedure and the associated goodness-of-fit test
proceeds as follows: First, a value of Pmax, which represents the upper
bound of the smoothing order is specified. We propose to set the value of
Pmax to 10, though it could be changed to some other value. Second, the
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smoothing order to be used in the test statistic, denoted by p∗, is the value
of p that maximizes MSIC(p) for p = 1, 2, . . . , Pmax, that is,

p∗ = arg max1≤p≤Pmax
MSIC(p). (28)

Of course, note that this p∗ is also a function of Pmax, although we suppress
writing this explicitly. Finally, the asymptotic adaptive α-level test of H0

versus H1 rejects H0 in favor of H1 whenever Ŝ2
p∗ > χ2

1;α. The fact that
the critical value is that associated with a one degree-of-freedom chi-square
distribution follows from the following asymptotic result, whose proof will
be presented in a forthcoming paper.

Theorem 3: If the conditions of Theorem 1 hold, then under H0 and as
n→∞, p∗

pr−→ 1 and Ŝ2
p∗

d−→ χ2
1.

For practical purposes, instead of using the asymptotic critical value
of χ2

1;α, for small to moderate sample sizes, we recommend the use of the test
which rejects H0 in favor of H1 whenever Ŝ2

p∗ > χ2
p∗;α. Another possibility,

as yet unexplored, is to approximate the appropriate critical value using a
bootstrap procedure.
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