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1. Introduction

In many studies in public health, biomedicine, reliability, engineer-
ing, economics, and sociology, the event of primary interest is recurrent
and thus could occur several times during the study period for a study
unit or subject. Examples of recurrent events in public health are drug
or alcohol abuse of adolescents, outbreak of diseases (e.g., encephali-
tis), and repeated hospitalization of end stage renal disease patients. In
the medical area the recurrent event may be the occurrence of a tu-
mor (cf., Byar (1980); Gail, Santner and Brown (1980); Klein, Keiding
and Kamby(1980); Wei, Lin and Weissfeld (1989)), headaches (Levi-
ton, Schulman, Kammerman, Porter, Slack and Graham (1980)), cyclic
movements in the small bowel during fasting state (Aalen and Huse-
bye (1991)), depression, seizures of epileptic patients, nausea in patients
taking drugs for the dissolution of cholesterol gallstones, and angina pec-
toris in patients with coronary disease (cf., Lawless (1987); Thall and
Lachin (1988)). In the reliability and engineering settings, the break-
down of electro-mechanical systems (e.g., motor vehicles, subsystems
in space stations, computers), encountering a software bug in software
development, and nuclear power plant meltdowns are examples of recur-
rent events; while in the economic setting they could be the advent of
economic recession, stock market crashes, and labor strikes.
By virtue of the time-sequential fashion in which recurrent events oc-

cur, there is an added aspect to these studies which hitherto has not been
considered in existing models and which is usually not present in studies
where only one endpoint event per subject is observed. This aspect is the
ability to perform interventions on the subject upon event occurrence.
For example, when a subject abuses alcohol, intervention in the form
of psychological methods (e.g., con�nement or enforced hospitalization;
correction of faulty home environment), physiological methods (e.g., con-
ditional reex therapy; elevation of blood sugar level; convulsive therapy;
serotherapy and hemotherapy), or through family-based or institutional-
based methods (e.g., closer supervision by family members; Alcoholics
Anonymous) is performed. Similarly, a heart attack patient would for
instance be advised to alter existing lifestyle (e.g., eating habits; reduce
stress level); while the reoccurrence of a tumor might lead to its removal
and some prophylactic treatment (e.g., continuation of retinoid prophy-
laxis (cf., Byar (1980))). In reliability and engineering, the breakdown
of the system will entail repair or replacement of the failed subsystem
or component, and the replacement will usually be an improved version
of the old subsystem or component. In an economic setting, when the
stock market crashes or a recession occurs, the government intervenes by
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instituting new guidelines. The primary purpose of such interventions is
to prolong, if not eliminate, the reoccurrence of the event. Hence such
interventions can be viewed as improving the subject or unit. Improve-
ment is usually possible since one could use the information that has
accumulated on or before the event occurrence and the knowledge that
has been discovered or acquired between event occurrences to assist in
the formulation of new intervention strategies. It should be realized,
however, especially in the medical and public health settings which usu-
ally deal with human subjects, that though the intervention may bring
about improvements, other factors such as the weakening e�ect on the
subject of accumulating event occurrences and the adverse e�ects of ag-
ing and other time-dependent covariates may outweigh the intervention
improvement. Thus, when all these e�ects are considered, the time to
the next occurrence of the event may still be smaller, in a stochastic
sense, relative to the preceding interoccurrence time. It is therefore
imperative that any modeling scheme should attempt to take into con-
sideration the e�ects of the interventions simultaneously with the e�ects
of accumulating event occurrences and relevant concomitant variables.

2. Mathematical Framework

Let us formalize the description of mathematical models for recur-
rent phenomena by considering an experimental unit (for example, a
patient in a clinical trial) experiencing successive occurrences of a re-
current event. Let X = (X1; : : : ;Xq)

t, where t denotes vector/matrix
transpose, be a vector of covariates (e.g., age, race, sex) for this unit,
which may be time-dependent. Denote by T1; T2; T3; : : : the successive
interoccurrence times of the event, and by S1; S2; S3; : : : the successive
calendar times of event occurrences, so

S0 � 0; S1 = T1; S2 = T1 + T2; S3 = T1 + T2 + T3; : : : : (1)

Let F = fFs : s � 0g represent an increasing, right-continuous collection
of �-�elds for this unit, that is, a �ltration (cf., Fleming and Harrington
(1992); Andersen, Borgan, Gill and Keiding (1993)), so in particular Fs

contains information about the number of times that the recurrent event
has occurred in the time interval [0; s], the covariate information, and
information concerning the types of interventions performed upon event
occurrences.
A probabilistic model for the successive occurrences of the recurrent

event is a speci�cation of the collection of joint distribution functions
of fS1; S2; S3; : : :g. Because of the dynamic nature or time-sequential
feature of the setting and as a consequence of the interventions that are
performed, such speci�cations are facilitated by restating the model in
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terms of hazard functions or failure intensities. Let fN(s) : s � 0g be
the process which represents the number of occurrences of the recurrent
event during the period [0; s], and fY (s) : s � 0g denote the risk process
so Y (s) = 1 if the unit is still under observation at time s, and Y (s) = 0
if the unit is not under observation at time s. Let fA(s) : s � 0g be a
predictable nondecreasing process such that the process fM(s) : s � 0g,
where

M(s) = N(s)�A(s); s � 0;

is a square-integrable local martingale. We assume that A(s) =
R s
0 d�(w),

where f�(s) : s � 0g is a predictable nondecreasing process satisfying

d�(w) = Y (w)�(w)dw; (2)

where f�(w) : w � 0g is a predictable nonnegative process (see Aalen
(1978)). It will have the intuitive and practical interpretation that,
for h > 0 and suÆciently small, the quantity Y (s)�(s)h represents the
approximate conditional probability, given Fs�, of the recurrent event
occurring in the time interval [s; s + h). The probabilistic model for
the recurrent phenomena is then completely determined by specifying
the failure intensity rate process f�(s) : s � 0g (cf., Jacod (1975);
Aalen (1978); Bremaud (1981); Arjas (1989); Andersen, Borgan, Gill
and Keiding (1993)). As implied by its measurability with respect to
Fs�, the intensity process �(s) may depend on the covariate of the unit
and the number of event occurrences during the period [0; s].

3. Existing Models

By specifying the f�(s) : s � 0g process, a variety of classes of models
for the recurrent event are generated. We review in this subsection
some of the models considered in the literature. Let  : < ! <+ be a
known nonnegative (link) function. In most cases this is taken to be the
exponential function given by

 (u) = expfug: (3)

Let �0(�) be some unknown hazard rate function. The simplest model
considered is obtained by taking

�(s) = �0(s� SN(s�)) (X
t�); (4)

where � = (�1; �2; : : : ; �q)
t is a regression coeÆcient vector. Since

s�SN(s�) represents the elapsed time since the last event occurrence, this
model assumes that the interoccurrence times are identically distributed.
Borrowing from the parlance of reliability, one says that upon an event
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occurrence, the intervention leads to a `perfect repair' of the unit. With
 given in (3), this model is the extension of the Cox (1972) propor-
tional hazards model, or Aalen (1978) and Andersen and Gill (1982)
multiplicative intensity model, to the recurrent event situation. This
model has been considered in Prentice, Williams and Peterson (1981),
Lawless (1987), and Aalen and Husebye (1991), and under this model
the resulting data could be analyzed using partial likelihood methods
for making inference about �, and through the use of the Nelson-Aalen
estimator for making inference about the cumulative baseline hazard
function A0(�) =

R �
0 �0(s)ds (cf., Kalbeisch and Prentice (1980); Cox

and Oakes (1984); Fleming and Harrington (1992); Andersen, Borgan,
Gill and Keiding (1993)). This model has the disadvantage of ignoring
the (non-zero) correlations among the interoccurrence times (cf., Pren-
tice and Kalbeisch (1979); Aalen and Husebye (1991)), which could
have serious implications especially in the presence of intervention. Two
possible approaches could be used to partially alleviate this de�ciency.
The �rst approach is to introduce a time-dependent covariate Xq+1(t),
possibly de�ned to be Xq+1(t) = logf1 + N(t�)g, which is augmented
to the covariate vector to obtain X� = (Xt;Xq+1)

t, while the regression
vector is also augmented to become �� = (�t; �q+1), (note that �q+1 is
not time-dependent). In model (4), the linear form ��tX� is then used
in the link function. Such an approach, however, su�ers from the defect
that it could not allow non-proportional intervention e�ects. The second
approach is to incorporate in the model an unobservable random frailty
in model (4) via

�(sjZ) = Z�0(s� SN(s�)) (�
tX); (5)

where Z has some parametric distribution which is usually taken to be
a gamma distribution with shape and scale parameters (�; �). Through
such a model, dependencies among the interoccurrence times are incor-
porated, although whether they are the appropriate dependencies is not
clear. In models where only one event per subject is observed, incor-
porating frailties is very useful in generating models which account for
subject heterogeneities, aside from being able to model positive depen-
dence among the failure times of the subjects. An excellent exposition
on the stochastic process approach to modeling frailties together with
the appropriate methods of analyses could be found in Andersen, Bor-
gan, Gill and Keiding (1993, Ch. IX). Other very useful references are
those by Clayton (1978), Clayton and Cuzick (1985), Hougaard (1984,
1986a, 1986b, 1987), Oakes (1982, 1986a, 1986b, 1989), Nielsen, Gill,
Andersen and Sorensen (1992), and Vaupel (1990).
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Another model for recurrent data considered in the literature is ob-
tained by taking

�(s) = �0(s) (�
tX): (6)

This has been considered in Prentice, Williams and Peterson (1981),
Brown and Proschan (1983) and Lawless (1987). It amounts to assuming
that the intensity of event occurrence for a subject or unit that just
experienced an event occurrence is identical to the intensity just prior
to the event occurrence. In reliability terminology, the subject or unit is
said to have been `minimally repaired' through the intervention. Partial
likelihoodmethods are also applicable in making inference about � under
this model. A limitation of this model is the restrictive way in which
intervention e�ects can be modeled, since the model basically states that
there is no improvement on the subject or unit relative to its state just
prior to the event occurrence even after the intervention. As in (4) one
may be able to alleviate the just-mentioned limitation in (6) through
the incorporation of a time-dependent covariate which enters in the link
function, or through the introduction of an unobservable random frailty.
A generalization of the Markovian model of Gail, Santner and Brown

(1980), derived via theories of carcinogenesis, postulates that

�(s) = (m�N(s�) + 1)�0(s� SN(s�)) (�
tX); (7)

where m is some unknown positive integer parameter with the interpre-
tation of being the original number of tumor sites, so that N(s) � m.
This model could also be viewed as another extension of (4) through
the use of the time-dependent covariate Xq+1(s) = log(m�N(s�) + 1)
with �q+1 = 1. This model takes into account the e�ect of the number
of event occurrences through the multiplicative term m � N(s�) + 1,
and since this is a decreasing function of N(s�), this is a model where
the e�ect of an increasing number of event occurrences on the subject
or unit leads to its improvement, which may not be the case in many
biomedical-type settings. At this stage we point out the fruitful inter-
play between models that arise in biomedical settings and reliability by
observing that the model in (7) can also be viewed as the Jelinski and
Moranda (1972) software reliability model with covariates, where m will
have the interpretation as being the original number of bugs in the soft-
ware. The basic limitation of the model in (7) is again the restrictive
way in which intervention e�ects can be incorporated.
Another model usable for recurrent data, but which was primarily de-

veloped for modeling the tumor occurrences at multiple sites after breast
cancer, is that of Klein, Keiding and Kamby (1989) which utilizes the
generalized multivariate Marshall-Olkin distribution. For the bivariate



Models for Recurrent Events in Reliability and Survival Analysis 7

case, the joint survivor function of (T1; T2) is assumed to be

S(t1; t2) = expf�A1(t1)�A2(t2)�A12(max(t1; t2))g

where, for j 2 f1; 2; 12g, we have

Aj(t) =

Z t

0
�j(u)du with �j(t) = �0j(t) expf�0j + �tjXg:

It is not clear, however, how this model could be restated in the stochas-
tic process framework that we have adopted, and this modeling scheme
seems diÆcult to implement in the situation where event occurrences and
interventions are happening in a time-sequential fashion. Furthermore,
the appeal of this model in the tumor occurrence setting is it allows the
modeling of simultaneous occurrences, but this is not the case in the re-
current model we are considering since we are assuming that for a given
subject or unit the events are occurring one at a time.
The class of marginal models developed for multivariate failure time

data could also be used in the recurrent data setting. Such models spec-
ify the marginal distributions or hazard functions of the interoccurrence
times Tk's. Among these models is the one examined by Wei, Lin and
Weissfeld (1989) which postulates that the hazard rate function of Tk is

�k(t) = �0k(t) expf�
t
kXk(t)g; k = 1; 2; : : : ; (8)

or the log-linear model of Lin and Wei (1991) given by

log(Tk) = �tkXk + �k; k = 1; 2; : : : ; (9)

where Xk are (possibly time-dependent in (8)) covariates which are rel-
evant for the kth event, and �k's are random error terms. Aalen and
Husebye's (1991) variance component model which speci�es that

g(Tk) = �+ U + �k; k = 1; 2; : : : ; (10)

where U and �k's are independent, U is zero-mean normal with variance
�2u, and the �k's are iid zero-mean normal random variables with vari-
ance �2� , also belongs to this marginal class of models. The appeal of
these models is the ease of analyses since existing methods for the Cox
model and the accelerated failure time model are immediately applica-
ble. The disadvantage of these models when dealing with recurrent data
is that the dependencies among the Tk's are not explicitly taken into ac-
count, and one would be hard-pressed to model the intervention e�ects
and the possibly weakening e�ects of accumulating event occurrences.
Furthermore, the time-dynamic aspect of the model is ignored.
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Finally, another modeling approach utilized primarily in the reliability
area, but which could be adopted to recurrent models in biomedical
settings is that of specifying the form of the cumulative mean function
(CMF) of N(s), without specifying the full probabilistic speci�cation of
the process. This approach is exempli�ed in Lawless and Nadeau (1995),
where they presented simple and robust methods for the estimation of
the CMF. The robust estimators are related to estimators developed
under the Poisson process model. The speci�c model considered in that
paper, which also incorporates covariates, is given by

m(t) = m0(t)P (t) (�
tX(t)); t � 0; (11)

where m0(�) is a baseline mean function, and P (�) is some known func-
tion. The cumulative mean function is (in the continuous-time case)
de�ned to be

M(t) =

Z t

0
m(u)du:

Some of the robust inference procedures for this model were developed
using estimating equation theory. The model in (11) is restrictive in
that the intervention e�ects it could model can only be contained in the
P (�) function, and the link function.
These are the di�erent varieties of models that have been utilized in

dealing with recurrent data in the biomedical, reliability, engineering,
economics, and sociological settings. Though many of these models are
quite general, none of them satisfy the three requirements enunciated in
Section 1, which is to have a model that takes into account the three
e�ects simultaneously. One may argue that all of these e�ects could be
incorporated through the use of time-dependent covariates in the Cox
model, but one should realize that the type of e�ects that could be
modeled through such an approach are limited to be of the proportional
type. In the next section we advocate a di�erent scheme of modeling
the intervention e�ects, which is through a change in the time origin
of the baseline hazard function just after intervention. It will also be
demonstrated that most of the models mentioned above are subsumed
in the proposed class of models.

4. A New Class of Models

To describe our proposed class of models, we assume the existence of
a complete probability space (
;F ;P) with an associated �ltration

F = fFs : s 2 [0; � ]g;

where 0 < � � 1 is the upper endpoint of the study period. All relevant
random entities are de�ned on (
;F). In particular, the interoccurrence
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times T1; T2; : : :, the calendar times S1; S2; : : : of event occurrences, and
the observable processes fN(s) : s 2 [0; � ]g and fY (s) : s 2 [0; � ]g are
de�ned in (
;F).
Our proposed class of models postulates that the intensity rate process

f�(sjX) : s 2 [0; � ]g for a subject or unit with covariate vector X =
(X1; : : : ;Xq)

t, which may be time-dependent, is of the form

�(sjX) = �0[E(s)]�[N(s�)] (�tX): (12)

In (12), �0(�) is an unknown baseline hazard rate function; �(�) is a non-
decreasing or nonincreasing function from IN = f0; 1; 2; : : :g into <+ =
[0;1) which may depend on unknown parameters with the norming con-
dition �(0) = 1;  (�) is a nonnegative link function from < = (�1;1)
into <+ which is of known form (usually taken to be the exponential
function); � = (�1; �2; : : : ; �q)

t is an unknown regression coeÆcient vec-
tor; and fE(s) : s 2 [0; � ]g is an observable predictable process satisfying
the conditions:

(I) E(0) = e0 almost surely (a.s.), where e0 is a nonnegative real num-
ber;

(II) E(s) � 0 a.s.;

(III) for s 2 [Sk�1; Sk), E(s) is a.s. monotone and di�erentiable with
E 0(s) 2 (0; 1]:

This predictable observable process, called the e�ective age of the unit, is
where the improvement e�ects accruing from the performed intervention
is modeled. Note that condition (III) implies E(Sk�) � E(Sk�1)+Tk; k =
1; 2; : : :, which means that the unit's e�ective age just before the kth
event occurrence, which is represented by E(Sk�), is at most the unit's
e�ective age just after the (k� 1)th event occurrence, which is E(Sk�1),
plus the time between the (k � 1)th and the kth event occurrences,
which is Tk. Thus, in the context of the e�ective age of the unit, the
e�ect of intervention is to make the unit age at a slower rate relative to
the elapsed calendar time. We point out that a di�erent interpretation
is needed or other conditions need to be imposed if the baseline hazard
rate function �0(�) is a decreasing hazard rate function, as in the case for
instance when dealing with infants having ear infection since infants will
usually exhibit a decreasing hazard rate. In these types of situations,
the improvement e�ects might be modeled by changing the sign of the
derivative and allowing E(0) to be non-zero. Our modeling the inter-
vention e�ects as a change in the unit's e�ective age di�ers from models
which have been considered in the literature, since most of the models in
the literature incorporate such e�ects in the regression component. The
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initial motivation of our modeling approach came from reliability repair
models where when a system or component fails, either the system or
component is restored to its state just prior to its failure, or is replaced
by a new component, so the process of repair leads to a change in the
unit's e�ective age. In biomedical settings, such a model is also plausible
since interventions that can be considered as good are meant to slow or
decelerate the reoccurrence of the event.
In model (12), the function �(�), represents the e�ect of accumulating

event occurrences. In many biomedical situations, this will usually be
assumed to be a nondecreasing function of N(s�) since it is natural to
assume that the event occurrences have a weakening e�ect on the unit
or subject. In some situations however, such as the Markovian model
by Gail, Santner and Brown (1980) in (7) where this function will be
�(k) = m�k+1, the occurrences of events lead to improvements on the
unit. This nonincreasing feature is also prevalent in reliability models
where at each event occurrence, faults or defects in the system or compo-
nent are eliminated, which leads to improvements. Thus, generally, we
will simply require that this function be monotonic, either nondecreas-
ing or nonincreasing depending on the context or situation at hand. The
link function in the model clearly serves the purpose of containing the
e�ects of the concomitant variables. In this model (12), the intervention
e�ects, the e�ects of accumulating event occurrences, and the e�ects
of the covariates are therefore taken into account simultaneously. Fur-
thermore, there is an interplay among these e�ects to the extent that
just after intervention, in an overall sense, the unit need not always be
better relative to its state just before the event occurrence because the
improvement e�ects might be outweighed by the other two e�ects.
We now illustrate the generality of the proposed class of models by

considering speci�c forms of E(�) and �(�).

Example 4.1: By letting �(k) � 1, k 2 Z � f0; 1; 2; : : :g, and E(s) =
s�SN(s�), then �(sjX) = �0(s�SN(s�)) (�

tX), which is the extended
Cox model in (4) considered by Prentice, Williams and Peterson (1981),
Lawless (1987), and Aalen and Husebye (1991). k

Example 4.2: By letting �(k) � 1, k 2 Z, and E(s) = s, s 2 [0; � ], we
obtain �(sjX) = �0(s) (�

tX), which is the model in (6), a model exam-
ined by Prentice, Williams and Peterson (1981), Brown and Proschan
(1983) and Lawless (1987). k

Example 4.3: Gail, Santner and Brown's (1980) Markovian model
becomes a special case of model (12) by taking E(s) = s � SN(s�) and
�(k) = m�k+1, and as mentioned in the preceding section, this model



Models for Recurrent Events in Reliability and Survival Analysis 11

coincides with the Jelinski and Moranda (1972) software reliabilitymodel
with the additional feature that a covariate has been incorporated. k

Example 4.4: Let I1; I2; I3; : : : be a sequence of iid Bernoulli random
variables with success probability p. [For technical reasons, it is assumed
that the Ii's are measurable with respect to F0.] De�ne the process
f�(s) : s 2 [0; � ]g via

�(s) =

N(s)X
i=1

Ii:

Also, let 0 � �0 < �1 < �2 < : : : be de�ned according to

�k = minfj > �k�1 : Ij = 1g; k = 1; 2; 3; : : : :

By setting �(k) � 1 and E(s) = s� S��(s�)
, we obtain

�(sjX) = �0(s� S��(s�)
) (�tX): (13)

This is the Brown and Proschan (1983) minimal repair model used in
reliability modeling, and it can be viewed as a mixture of the perfect
repair and the minimal repair models in the preceding examples. If
the success probability p is made to depend on the time of the event
occurrence, then the Block, Borges and Savits (1985) model obtains (see
also Hollander, Presnell and Sethuraman (1992) and Presnell, Hollander
and Sethuraman (1994)). Note that in this example, the �k's represent
the event occurrences in which intervention causes the unit to be `as good
as new' (in the reliability terminology, a perfect repair), and such perfect
repairs happen independently at each event occurrence with probability
p. Furthermore, note that S��(s�)

is the time of the last perfect repair

prior to time s. k

Example 4.5: Let fAj : j = 0; 1; 2; : : :g and f�j : j = 0; 1; 2; : : :g be
two sequences satisfying

A0 = 0;�0 = 1; Aj � 0;�j 2 (0; 1]; and Aj � Aj�1 +�j�1Tj�1;

for j = 1; 2; 3; : : :. If we let �(k) � 1, and

E(s) = AN(s�) +�N(s�)(s� SN(s�)); (14)

then model (12) reduces to the general repair model, but with the added
feature of having incorporated covariates in the model. The model with-
out covariates was introduced and studied in Dorado, Hollander and
Sethuraman (1997), where they interpreted the sequence fAjg as the
successive e�ective ages just after event occurrences, while the sequence
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f�jg was given the interpretation of being life supplements. In our con-
text, these life supplements could then be viewed as the improvement
e�ects attributable to the interventions that were performed. Notice that
in this model, the intensity is still fully determined by the baseline haz-
ard rate function �0(�) and the covariates through the link function  (�).
In contrast, in our proposed model, by introducing the term �[N(s�)],
which could model the e�ects of the accumulating event occurrences,
the intensity process is not totally governed by the baseline hazard rate
function.
Even with the restriction �(k) � 1 however, notice that this general

repair model subsumes the preceding three examples. Furthermore, as
shown in Dorado, Hollander and Sethuraman (1997), this model also
subsumes as special cases some models that are utilized in the reliabil-
ity and engineering contexts. For instance, Kijima's (1989) Model I is

obtained by setting �i = 1; i � 0, and Aj =
Pj�1

i=1 DiTi; j � 1, where
fDjgj�1 is a sequence of independently distributed random variables
taking values in [0; 1], and which is independent of the other random en-
tities. Kijima's (1989) Model II is obtained via the general repair model

by taking �j = 1; j � 0, and Aj =
Pj�1

k=1(
Qj�1

i=k Di)Tk; j � 1. k

Example 4.6: Last and Szekli (1998) introduced a model for the
failure process of a repairable system. Their model is as follows: Let �F
be a survivor function, and for a given a � 0, let

�Fa(t) =
�F (t+ a)
�F (a)

be the residual survivor function at time a. Given an initial age A0,
the �rst interfailure time T1 is distributed according to the survivor
function �FA0 . The (calendar) time to the occurrence of the �rst failure
is therefore S1 = S0 + T1 = T1 since S0 = 0. Upon failure the unit
is repaired with a random degree Z1 � 1 which could possibly depend
on information up to S1, and the new e�ective age of the unit becomes
A1 = (1 � Z1)(S1 + A0). Here, the Z1 is allowed to be negative, which
would correspond to destructive repair. The next interfailure time T2
is distributed according to the survivor function �FA1 , and the calendar
time at which the second failure occurs is S2 = S1 + T2. Upon this
second failure, the unit is repaired with a random degree Z2, and the
new e�ective age of the unit becomes A2 = (1 � Z2)(A1 + T2). Again,
Z2 is allowed to take a negative value, and it could also depend on
information up to S2. Continuing in this fashion, the nth interfailure
time has survivor function �FAn�1 , and the calendar time at which the
nth event occurs is given by Sn = Sn�1 + Tn. The e�ective age of the
unit just after the nth event becomes An = (1� Zn)(An�1 + Tn).
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If, in the Dorado, Hollander and Sethuraman (1997) model, here-
after referred to as the DHS model, we set �j = 1 for all j, and
Aj+1 = (1 � Zj+1)(Aj + Tj+1), and if furthermore we assume that the
Zi's cannot be negative, then the Last and Szekli (1998) model, hereon
referred to as the LS model, is obtained. Thus, the LS model is almost
subsumed by the DHS model, but not completely because in the former
model the Zi's could be negative. Last and Szekli (1998) showed that
their model contains many proposed models in the literature, including
those of Baxter, Kijima and Tortorella (1996) and Stadje and Zucker-
man (1991). Notice, however, that the LS model is subsumed by our
proposed model by simply taking

E(s) = AN(s�) +
�
s� SN(s�)

�
;

further illustrating the generality of our proposed class of models even
in the case without covariates. k

Example 4.7: We consider some more examples where �(�) is not
identically unity. The simplest such speci�cation is to take �[N(s�)] =

�
N(s�)
0 , where �0 2 <. If we then take E(s) = s�SN(s�), then the model
postulates that the e�ect of accumulating event occurrences is a propor-
tional increase (if �0 > 1) in the intensity rate relative to the preceding
intensity rate. This could serve as a simple and natural model for the
weakening of the subject caused by the stresses of event occurrences.
Under this speci�cation the intensity process becomes

�(sjX) = �0(s� SN(s�))�
N(s�)
0 expf�tXg: (15)

It is of course possible to couple this speci�cation to the other forms of
E(s) considered in the preceding examples, and by doing so the class of
models becomes quite rich and wide-ranging. k

Example 4.8: Our �nal example is a generalization of the Gail, Sant-
ner and Brown (1980) model. This extension is obtained by taking

�[N(s�)] = maxfB0 � g[N(s�)]; 0g; (16)

where B0 is some positive real number, and g(�) is some nondecreasing
function. One could interpret the parameter B0 as an initial measure
of defectiveness (or in the biomedical setting, event occurrence prone-
ness) of the subject, and g(�) speci�es the rate at which this unit is
becoming stronger as the event occurrences accumulate. If we then take
E(s) = s�SN(s�), then the resulting model has the interesting property
that the subject's defects contribute to the event occurrence intensity
according to the baseline hazard rate function �0(�). The special case
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of this model wherein we take g[N(s�)] = N(s�) and �0(s) = �0,
where �0 is some positive constant, leads to the Jelinski-Moranda model
(Jelinski and Moranda, 1972) in software reliability with covariates hav-
ing been incorporated, or to the Gail, Santner and Brown (1980) tumor
occurrence model. k

If model (12) holds, then the compensator of the counting process
fN(s) : s 2 [0; � ]g is given by fA(sjX) : s 2 [0; � ]g, where

A(sjX) =

Z s

0
Y (s)�0[E(s)]�[N(s�)] (�tX)ds; (17)

where fY (s) : s 2 [0; � ]g is the at-risk process for this subject. To
describe models with frailties, let there be n subjects or units in the
study which are being subjected to the same type of intervention, with
the ith, (i = 1; 2; : : : ; n), subject having covariate Xi = (X1i; : : : ;Xqi)

t.
Denote by fNi(s) : s 2 [0; � ]g and fYi(s) : s 2 [0; � ]g the observable
processes for the ith subject counting the number of event occurrences
and the at-risk indicator, respectively. The intensity rate process of the
ith subject is modeled via

�i(sjXi) = �0[Ei(s)]�[Ni(s�)] (�
tXi); i = 1; : : : ; n; (18)

so the compensator of Ni(�), (i = 1; : : : ; n), is

Ai(sjXi) =

Z s

0
Yi(u)�0[Ei(u)]�[Ni(u�)] (�

tXi)du:

This model could be enhanced by introducing an unobservable frailty in
order to incorporate associations among the subjects and the interoc-
currence times of events. For example, we could specify the intensity
process of the ith subject to be

�i(sjXi; Z) = Z�0[E(s)]�i[Ni(s�)] (�
tXi); i = 1; : : : ; n; (19)

where Z is an unobservable nonnegative variable with a parametric dis-
tribution. Note that, as in the case where only one event is observed per
subject, the model is nonidenti�able with respect to scaling. To elim-
inate this nonidenti�ability, the form of the distribution for the frailty
needs to be restricted, for instance to a gamma distribution with the
same shape and scale parameters. By incorporating a frailty compo-
nent, the proposed class of models for recurrent data becomes richer.
Through the incorporation of this frailty component, one may also be
able to use the enriched model to validate the original frailty-less model.
Through the above examples and with the option of incorporating

frailties in the models, we see that the proposed class of models is very
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general and encompasses many of the models considered in the literature.
Furthermore, its development is based on the intuitive consideration that
a model should incorporate the improvement induced by the interven-
tion performed upon event occurrence and the e�ects on the subject of
accumulating event occurrences. The class of models proposed in this
paper could also be applied in many areas, aside from the health and
medical sciences, wherein a dynamic modeling of the intensity rates of
event occurrence is desired, such as those in Hollander, Presnell and
Sethuraman (1992) and Presnell, Hollander and Sethuraman (1994) for
the minimal repair models; in Hollander and Pe~na (1995) in the con-
text of dynamically modeling the lifetime of a coherent system; and in
Dorado, Hollander and Sethuraman (1997).

5. Statistical Identi�ability Issue

An important issue that needs to be resolved pertaining to this new
class of models is that of identi�ability. Here we consider the statistical
model where the observable is

f(N(s); Y (s);X(s)) ; s 2 [0; � ]g ; (20)

where � is an upper endpoint of the study period. The family of com-
pensator processes of fN(s); s 2 [0; � ]g, which determines the family of
probability measures of the statistical model, is given by

dA�(s) = Y (s)�0[E(s)]�[N(s�); �] [X(s)t�]ds; (21)

where � = (�0(�); �; �) is the relevant parameter vector, �(�; �) is a func-
tion of known form with �(0; �) = 1, and  (�) is a link function of known
form. We assume that X(0) could take the value 0, for if this is not
so, then one could achieved this condition by subtracting an appropriate
quantity. Furthermore, we assume that  (�) is continuous at zero and is
not an even function. The relevant notion of identi�ability is de�ned as
follows:

De�nition 5.1: Let

�(1) = (�
(1)
0 (�); �(1); �(1)) and �(2) = (�

(2)
0 (�); �(2) ; �(2))

be two parameter values. If

�(1)� � f(�
(1)
0 (s); �(1); �(1)); s 2 [0; � ]g

= f(�
(2)
0 (s); �(2); �(2)); s 2 [0; � ]g � �(2)�

whenever, for almost all sample paths of f(N(s); Y (s);X(s)) : s 2 [0; � ]g,

dA�(1)(s) = dA�(2)(s); s 2 [0; � ]; (22)
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then we say that the statistical model is identi�able. k

We now establish the following theorem which addresses the identi�-
ability of the statistical model.

Theorem 1 If

(i) for each � = (�0(�); �; �), the support of E(T1) contains [0; � ], where
T1 is the time to the occurrence of the �rst event; and

(ii) �(�; �) satis�es the property that
n
8k 2 f0; 1; 2; : : :g

h
�(k; �(1)) = �(k; �(2))

io
!
n
�(1) = �(2)

o
;

then the statistical model is identi�able in the sense of De�nition 5.1.

Proof: From (22), for s 2 [0; � ],

�
(1)
0 [E(s)]�[N(s�); �(1)] [X(s)t�(1)]

= �
(2)
0 [E(s)]�[N(s�); �(2) ] [X(s)t�(2)]: (23)

Setting s = 0, and since E(0) = e0 by Condition (I), N(0�) = 0, and
�(0; �) = 1, it follows that

�(1)(e0) [X(0)t�(1)] = �(2)(e0) [X(0)t�(2)]:

This equality holds true for almost all X(0), in particular, it should
hold when X(0) = 0. This would imply that �(1)(e0) = �(2)(e0), and
consequently, we must have

 [X(0)t�(1)] =  [X(0)t�(2)]: (24)

Take X(0) = (x; 0; : : : ; 0)t, so that (24) becomes  (x�
(1)
1 ) =  (x�

(2)
1 )

for all x. Because  (�) is non-trivial, then if either one of �
(1)
1 or �

(2)
1

is zero, then necessarily the other must also be zero. Thus, consider
the case where both of these coeÆcients are nonzero. Without loss of
generality, assume that j�

(1)
1 j � j�

(2)
1 j, and denote by r = �

(2)
1 =�

(1)
1 , so

jrj � 1. With y = x�
(1)
1 , we therefore have the identity

 (y) =  (ry):

Iterating this identity, we obtain for every m 2 f1; 2; : : :g,

 (y) =  (ry) =  (r2y) = : : : =  (rmy) = : : : :

Suppose jrj < 1. Since  (�) is continuous at 0, then by letting m!1,
we must have  (y) =  (0) for every y which will imply that  (�) is a
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constant function. This is a contradiction, hence jrj = 1. Since  (�) is

not an even function, then r = 1, or �
(1)
1 = �

(2)
1 . Analogously, we must

have �
(1)
j = �

(2)
j for j = 2; 3; : : : ; q.

From (23) it now follows that for s 2 [0; � ],

�
(1)
0 [E(s)]�[N(s�); �(1)] = �

(2)
0 [E(s)]�[N(s�); �(2) ]: (25)

Recalling that T1 represents the time to occurrence of the �rst event,
and since N(s�) = 0 for s � T1, we therefore obtain, by also using the
condition that �(0; �) = 1, that

�
(1)
0 [E(s)] = �

(2)
0 [E(s)]; s 2 [0; � ]:

Since the support of E(T1) contains [0; � ] by condition (i) of the Theorem,

then it follows that �
(1)
0 (s) = �

(2)
0 (s); s 2 [0; � ].

Finally, from (23) and using the just-established results that �
(1)
0 (s) =

�
(2)
0 (s); s 2 [0; � ] and �(1) = �(2), we obtain

�[N(s�); �(1)] = �[N(s�); �(2)]:

By condition (ii) of the theorem, it follows that �(1) = �(2). This com-
pletes the proof of the identi�ability of the statistical model in the sense
of De�nition 5.1. k
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