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Abstract

In statistical models with nuisance parameters, a general asymptotic result of test statistics ob-
tained by substitution of estimators of the nuisance parameters for their unknown values in quantities
whose asymptotic distributions are known is provided. Applications of the main result in obtaining
asymptotic distributions of statistics formed from residuals of the classical linear model as well as in
goodness-of-�t testing and model validation for Andersen and Gill's (1982) multiplicative intensity
model are illustrated. The asymptotic results can be viewed as further extensions of those by Pierce
(1982) in models where the plug-in estimators may not be fully eÆcient.

1. Introduction

Consider a statistical model (X ;A;P) with the class of probability measures of form P = fP(�;�) : (�; �) 2
N � B � <r � <sg. Denote by X the random entity observed in this model, so X 2 X . The parameter

vector of the model, (�; �), is viewed as a nuisance parameter, and it will be assumed that the true, but

unknown, value of (�; �) is (�0; �0). Of interest is the distribution of a A-measurable quantity

Q : X �N �B ! <q

after the substitution of an estimator (�̂; �̂), which is a A-measurable mapping from X into N � B, for
the unknown (�; �) in Q(X; �; �)). In the sequel and for economy of notation, provided no confusion

could arise, we suppress writing X in the expressions of these quantities, e.g., Q(�; �) is Q(X; �; �).

The structures of the estimator (�̂; �̂) of (�; �) are as follows: The estimator �̂ of � is obtained by

solving an estimating equation of form

S(X; �) = 0; (1.1)

where the mapping S : X � B ! <s does not depend on �. After obtaining �̂ from (1.1), the estimator

of �, denoted by �̂, is obtained by solving the estimating equation

R(X; �; �̂) = 0; (1.2)
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where R : X �N �B ! <r. The estimator �̂ may therefore be written via �̂ = �̂(�̂). The (test) statistic

whose distribution is of main interest is

Q̂ � Q(X; �̂; �̂): (1.3)

A setting where the results of this paper are relevant and important is in the context of models

where the estimator �̂ of � is obtained from a partial likelihood for �. The use of a partial likelihood

may be practically necessary because of the diÆculty of obtaining an estimator from the full likelihood

of (�; �). In some situations, the estimating equations in (1.1) and (1.2) may be obtained from intuitive

considerations and they need not coincide with estimating equations arising from likelihood functions.

Upon obtaining an estimator of �̂ from an estimating equation that depends only on �, the estimator of

� may then be obtained through the use of the pro�le likelihood, which is obtained by plugging in for �

the estimator �̂ in the full likelihood for (�; �). More generally, the result is useful when the estimators

of � and � are obtained via an estimating equation approach. In addition, the results are applicable in

determining the asymptotic distributions of model validation statistics based on estimated generalized

residuals, such as residuals arising from the Cox proportional hazards model and its extensions, as well

as in other models. Some of the earlier papers that have dealt with these issues are those of Cox and

Snell (1971), Durbin (1973), Pierce and Kopecky (1979), Pierce (1982), and Randles (1982, 1984). More

recently in the context of survival analysis and reliability models, the papers by Baltazar-Aban and Pe~na

(1995), Pe~na (1998), and Aban and Pe~na (1999) dealt with some consequences of plugging-in estimators

for unknown parameters to obtain model residuals, and the use of these residuals in model validation.

A speci�c application of this procedure is in the context of goodness-of-�t testing in the Cox

proportional hazards model where the problem is to test the composite null hypothesis that the baseline

hazard function belongs to a parametric class of hazard functions parameterized by �. The parameter

� is the regression coeÆcient in the Cox model. In this testing problem, (�; �) is considered a nuisance

parameter. Under this model, the parameter � is usually estimated using the maximum partial likelihood

estimator, while � is estimated from the resulting pro�le likelihood. The functional form of the quantity

Q(X; �; �) is usually chosen such that the (asymptotic) distribution of Q(X; �0; �0) is fully known. This

speci�c setting will be used for our demonstration of the utility of the asymptotic result in section 3,

aside from an application dealing with determining asymptotic distributions of test statistics formed from

estimated model residuals in the classical linear model.

2. Asymptotic Results

Generally, �nite-sample properties of Q̂ are not usually easy to obtain, so we instead focus on its asymp-

totic distribution. As such we will be considering a sequence of models (Xn;An;Pn) with n = 1; 2; 3; : : :.

For the nth model, the associated estimators and quantities are Qn, Rn, Sn, �̂n, �̂n, and Q̂n. We will

assume that the true parameter value (�0; �0) does not change with n. From hereon, for brevity, we

shall drop the superscript n if no confusion could arise. In order to make progress we state conditions
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which are needed to get the asymptotic distribution of Q̂. For our notation, if f(x; y) is a di�erentiable

function of (x; y), and if the partial derivative with respect to x is fx(x; y), then fx(x0; y0) will represent

this partial derivative evaluated at (x; y) = (x0; y0). The following conditions will be assumed.

(A) As n ! 1, 1p
n

2
4 Q(�0; �0)
R(�0; �0)
S(�0)

3
5 d�! Nq+r+s

2
4
0
@ 0

0
0

1
A ;� �

0
@ �11 �12 �13

�21 �22 �23

�31 �32 �33

1
A
3
5 ; where � is a

positive de�nite matrix.

(B) Each of the components of the mappings (�; �) 7! Q(�; �), (�; �) 7! R(�; �), and (�; �) 7! S(�)

have �rst-order partial derivatives with respect to the components of � and �, and these partial

derivatives are continuous at (�0; �0). A subscript of � or � for Q, R, or S will then represent

the partial derivative of the matrix function with respect to the component of the parameter. For

example, Q�(�; �) is a q�r matrix consisting of the partial derivatives @
@�k

Qj(�; �) for j = 1; 2; : : : ; q

and k = 1; 2; : : : ; r.

(C) There exist a q � r matrix A1, a q � s matrix A2, an r � r nonsingular matrix B1, an r � s matrix

B2, and an s� s matrix C such that as n!1,

1

n

�
Q�(�0; �0) Q�(�0; �0)

� pr�! �
A1 A2

�
;

and
1

n

�
R�(�0; �0) R�(�0; �0)

0 S�(�0)

�
pr�!

�
B1 B2

0 C

�
:

(D) There exists a sequence f�̂g satisfying S(�̂) = 0 with
p
n(�̂ � �0) = Op(1) as n!1. In addition,

there exists a sequence f�̂ � �̂(�̂)g satisfying R(�̂; �̂) = 0 with
p
n(�̂��0) = Op(1). These conditions

require that derivatives up to the second-order of the components of R and S with respect to

the components of � and � exist, and furthermore, that the second derivatives are bounded in a

neighborhood of (�0; �0).

We now state and prove the main asymptotic results.

Theorem 2.1: As n!1, 1p
n
Q̂ = 1p

n
Q(�̂; �̂) has representation

1p
n
Q̂ =

�
I �A1B

�1
1 �fA2 �A1B

�1
1 B2gC�1

� 1p
n

2
4 Q(�0; �0)
R(�0; �0)
S(�0)

3
5+ op (1) : (2.1)

Consequently, 1p
n
Q̂ converges to a q � 1 Gaussian random vector with asymptotic mean vector � = 0

and asymptotic covariance matrix � given by

� = �11 +A1B
�1
1 �22B

�1
1 At

1 + (A2 �A1B
�1
1 B2)C

�1�33C
�1(A2 �A1B

�1
1 B2)

t

�2A1B
�1
1 �21 � 2(A2 �A1B

�1
1 B2)C

�1�31 + 2A1B
�1
1 �23C

�1(A2 �A1B
�1
1 B2)

t: (2.2)

Proof : To establish the above results, �rst we note that by �rst-order Taylor expansion, S(�) =

S(�0) + S�(�
�)(� � �0) where �� 2 [�; �0]. Since S(�̂) = 0, then 0 = S(�0) + S�(�

�)(�̂ � �0) with
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�� 2 [�̂; �0]. Because
p
n(�̂ � �0) = Op(1), by the continuity of the �rst partial derivative S�(�), and

since 1
n
S�(�0)

pr�! C, then 0 = 1p
n
S(�0) + C

p
n(�̂ � �0) + op(1). Therefore, we have the representation

p
n(�̂ � �0) = �C�1 1p

n
S(�0) + op(1): (2.3)

Again, by �rst-order Taylor expansion,

R(�; �̂) = R(�; �0) +R�(�; �
�)(�̂ � �0)

= R(�0; �0) +R�(�
�; �0)(� � �0) +

�
R�(�0; �

�) + (� � �0)
tR��(�

�; ��)
	
(�̂ � �0);

with �� 2 [�̂; �0] and �� 2 [�; �0]. [Note the slight abuse of notation in the last term. If one is to

be more precise in writing this, then there is a need to consider each of the component of R, and

the jth component of the term (� � �0)
tR��(�

�; ��)(�̂ � �0) should be written as the quadratic form

(� � �0)
tRj��(�

�; ��)(�̂ � �0).] Now, since �̂ satis�es R(�̂; �̂) = 0, then

0 =
1p
n
R(�0; �0) +

�
1

n
R�(�

�; �0)

�p
n(�̂ � �0) +�

1

n
R�(�0; �

�)

�p
n(�̂ � �0) +

1p
n
[
p
n(�̂ � �0)]

t

�
1

n
R��(�

�; ��)

�
[
p
n(�̂ � �0)];

where �� 2 [�̂; �0] and �� 2 [�̂; �0]. Because
p
n(�̂ � �0) = Op(1),

p
n(�̂ � �0) = Op(1), the partial

derivatives are continuous, 1
n
R�(�0; �0)

pr�! B1,
1
n
R�(�0; �0)

pr�! B2, the boundedness of R��(�; �) in

a neighborhood of (�0; �0), and using the representation (2.3), it follows after an obvious sequence of

manipulations that

0 =
1p
n
R(�0; �0) +B1

p
n(�̂ � �0)�B2C

�1 1p
n
S(�0) + op(1):

This implies the following representation for �̂:

p
n(�̂ � �0) = �B�11

1p
n
R(�0; �0) +B�11 B2C

�1 1p
n
S(�0) + op(1): (2.4)

By �rst-order Taylor expansion,

1p
n
Q̂ =

1p
n
Q(�0; �0) +

�
1

n
Q�(�

�; ��)

�p
n(�̂ � �0) +

�
1

n
Q�(�

�; ��)

�p
n(�̂ � �0);

where �� 2 [�̂; �0] and �
� 2 [�̂; �0]. Since

1
n
Q�(�

�; ��) = A1 + op(1) and
1
n
Q�(�

�; ��) = A2 + op(1), then

1p
n
Q̂ =

1p
n
Q(�0; �0) +A1

p
n(�̂ � �0) +A2

p
n(�̂ � �0) + op(1):

Using the representations in (2.3) and (2.4), we arrive at the representation

1p
n
Q̂ =

�
I �A1B

�1
1 �(A2 �A1B

�1
1 B2)C

�1 � 1p
n

2
4 Q(�0; �0)
R(�0; �0)
S(�0)

3
5+ op(1):

Finally, it follows from condition (A) that 1p
n
Q̂ converges in distribution to a Gaussian random vector

whose mean vector is zero and whose covariance matrix

� =
�
I �A1B

�1
1 �(A2 � A1B

�1
1 B2)C

�1 �
2
4 �11 �12 �13

�21 �22 �23

�31 �32 �33

3
5
2
4 I

�B�11 At
1

�C�1(A2 �A1B
�1
1 B2)

t

3
5 ;
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which is the expression in (2.2). This completes the proof. k
An immediate extension of Theorem 2.1 is when the asymptotic mean vector of

1p
n

�
Q(�0; �0)

t R(�0; �0)
t S(�0; �0)

t
�t

is � =
�
�t1 �t2 �t3

�t
. This situation is relevant in problems where the distribution of 1p

n
Q̂ is desired

under a sequence of local alternatives converging to (�0; �0). It is easy to see that the only change in

Theorem 2.1 pertains to the asymptotic mean � of 1p
n
Q̂, which will now equal

� = �1 �A1B
�1
1 �2 � (A2 �A1B

�1
1 B2)C

�1�3: (2.5)

We remark that one may view the asymptotic result in Theorem 2.1 as a further extension of results

in Pierce (1982). However, note that his result may not apply if the plug-in estimators are not eÆcient,

and indeed, his proof is shorter because the nuisance parameter estimators are eÆcient.

3. Two Applications

We now demonstrate the applicability of the preceding results in two situations. The �rst situation deals

with the classical linear model, while the second one deals with a popular counting process model in

survival analysis and reliability settings.

3.1 On Statistics Based on Linear Model Residuals

Consider the classical linear model Y = X� + �, where Y is an observable n � 1 vector, X is an

observable and �xed n�p design matrix of full rank, � is a p�1 vector of unknown regression coeÆcients,

and � is an unobserved n � 1 error vector whose distribution is multivariate normal with mean vector

0 and covariance matrix Covf�; �g = �2In, with �
2 unknown. For our notation, for i = 1; 2; : : : ; n, let

�i(�) = Xi� be the mean of Yi. Let

�̂ = (XtX)�1(XtY) and �̂2 =
1

n
(Y �X�̂)t(Y �X�̂) (3.1)

be the maximum likelihood estimators of � and �2. Let  (�) be a di�erentiable real-valued function

on < with derivative  0(�), and such that if Z is the standard normal variable, then Ef (Z)2g < 1,

Ef (Z)g = 0, and Ef[ 0(Z)]2g <1. Of interest is the asymptotic distribution of the statistic

Q̂ =

nX
i=1

 

 
Yi � �i(�̂)

�̂

!
: (3.2)

Notice that the statistics Ri = (Yi ��i(�̂))=�̂; i = 1; 2; : : : ; n, are the estimated model residuals. We now

put this in the framework in which Theorem 2.1 is directly applicable.

The correspondence of the parameters in this model and those in Theorem 2.1 will be �2 $ � and

� $ �. The starting quantity leading to Q̂ is

Q(�2; �) =
nX
i=1

 

�
Yi � �i(�)

�

�
:
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The relevant estimating equations for obtaining the estimators �̂ and �̂2 are

S(�) � Xt(Y �X�) =

nX
i=1

Xt
i(Yi � �i(�)) = 0 (3.3)

where Xi is the ith row of X, and

R(�2; �) �
nX
i=1

"�
Yi � �i(�)

�

�2

� 1

#
= 0: (3.4)

If �0 and �
2
0 are the true values of � and �2, respectively, then by noting that Zi � (Yi � �i(�0))=�0; i =

1; 2; : : : ; n are independent and identically distributed standard normal variables, it follows by the mul-

tivariate central limit theorem that

1p
n

2
4 Q(�20 ; �0)
R(�20 ; �0)
S(�0)

3
5 d�! N

2
4
0
@ 0

0
0

1
A ;� =

0
@ �11 �12 �13

�t
12 �22 0

�t
13 0 �33

1
A
3
5 ;

where �11 = Varf (Z)g = Ef (Z)2g, �22 = 2, �33 = �2V, �12 = Covf (Z); Z2g = EfZ2 (Z)g, and
�13 = �Covf (Z); Zg� = �EfZ (Z)g�, where � and V are such that, as n!1,����� 1n

nX
i=1

Xi � �

�����! 0 and

����� 1n
nX
i=1

Xt
iXi �V

�����! 0:

Straightforward calculations yield the following quantities:

Q�2(�
2; �) = � 1

2�2

nX
i=1

�
Yi � �i(�)

�

�
 0
�
Yi � �i(�)

�

�
;

Q�(�
2; �) = � 1

�

nX
i=1

Xi 
0
�
Yi � �i(�)

�

�
;

R�2(�
2; �) = � 1

�2

nX
i=1

�
Yi � �i(�)

�

�2

;

R�(�
2; �) = �2

nX
i=1

Xi

�
Yi � �i(�)

�

�
;

S�(�) = �
nX
i=1

Xt
iXi:

Consequently,

1

n

�
Q�2(�

2
0 ; �0); Q�(�

2
0 ; �0)

� pr�!
�
A1 � � 1

2�20
EfZ 0(Z)g; A2 � � 1

�0
Ef 0(Z)g�

�
;

1

n

�
R�2(�

2
0 ; �0) R�(�

2
0 ; �0)

0 S�(�
2
0 ; �0)

�
pr�!

�
B1 � � 1

�2
0

B2 � 0

0 C � �V
�
:

Direct substitution of these expressions for � in (2.2) and straightforward simpli�cations now yield

� = Varf (Z)g+ 1

2
EfZ 0(Z)g�EfZ 0(Z)g � 2EfZ2 (Z)g	+

Ef 0(Z)g fEf 0(Z)g � 2EfZ (Z)gg (�V�1�t); (3.5)
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where we recall that Z is a standard normal variable. Note that the asymptotic variance of Q(�20 ; �0)

equals Varf (Z)g, so that from the above expression, the e�ect of substituting the maximum likelihood

estimators for the associated unknown parameters in the quantity Q to obtain the statistic Q̂ is contained

in the last two sets of terms in (3.5).

We now consider some speci�c choices of  (�). First, suppose that

 (z) �  1(z) = z: (3.6)

Then, it is immediate that EfZ 0(Z)g = 0, Ef 0(Z)g = 1, EfZ (Z)g = 1, and EfZ2 (Z)g = 0.

Consequently, from (3.5),

� � � 1 = 1� �V�1�t: (3.7)

Therefore, under the linear model,

1p
n
Q̂ 1 =

1p
n

nX
i=1

"
Yi �Xi�̂

�̂

#
(3.8)

converges in distribution to a zero-mean normal with variance 1��V�1�t. The e�ect of the substitution

of estimators for the unknown parameters is the reduction in the variance given by � = �V�1�t. By the

de�nitions of � and V, we must have j�̂� �V�1�tj ! 0, where

�̂ =

"
1

n

nX
i=1

Xi

# "
1

n

nX
i=1

Xt
iXi

#�1 "
1

n

nX
i=1

Xi

#t
:

Interestingly, note that if the Xi's are properly centered so that � = 0, then the plug-in procedure will

not have an e�ect, at least asymptotically.

However, this is usually not the case since oftentimes the model will have an intercept term, which

will make the design matrix X to have as its �rst column 1n = (1; 1; : : : ; 1)t. Let us examine the value

of �̂ under this linear model with intercept term. We have

�̂ =
1

n
1tnX(XtX)�1Xt1n =

1

n
1tn1n = 1; (3.9)

with the second to last equality obtaining since 1n is in the column space of X and X(XtX)�1Xt is a

projection matrix. Thus, consequently, when the linear model contains an intercept term, the statistic in

(3.8) has asymptotic variance equal to 0. This is not surprising, and indeed is to be expected, since the

sum of the estimated model residuals in this linear model should always be zero, hence even for �nite n,

the variance of Q̂ 1 is always zero.

If one is to take  (z) =  2(z) = z2 � 1, then it is easily seen by direct calculation from (3.5) that

� 2 = 0. This, of course, is expected since for this choice of  , 1p
n
Q̂ 2 = 0 as seen by plugging in the

estimators. However, notice that the quantity

1p
n
Q 2(�

2
0 ; �0) =

1p
n

nX
i=1

"�
Yi �Xi�0

�0

�2

� 1

#
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converges in distribution to a normal variable with mean zero and variance 2. Thus, in this situation as

is the case with  1, there is a dramatic e�ect by replacing the unknown parameters by their maximum

likelihood estimates!

Next, consider the  (�) function given by

 (z) �  3(z) = z3: (3.10)

Since  0(z) = 3z2, and by using moment properties of the standard normal distribution, we immedi-

ately obtain Varf (Z)g = EfZ6g = (5)(3)(1) = 15, EfZ 0(Z)g = 3EfZ3g = 0, Ef 0(Z)g = 3, and

EfZ (Z)g = EfZ4g = 3. Consequently, from (3.5), we obtain

� 3 = 15 + 0 + 3[3� 2(3)](�V�1�t) = 15� 9(�V�1�t):

For the linear model with intercept term so that �̂ = 1 from (3.9), an estimate of this asymptotic variance

will then be �̂ 3 = 15�9 = 6. When p = 2, this asymptotic result for the \skewness-based" test statistic

1p
n
Q̂ 3 =

1p
n

nX
i=1

 
Yi � �̂0 � �̂1Xi

�̂

!3

(3.11)

was �rst obtained in Pierce (1982). Again, notice the e�ect of the plug-in procedure, which for the linear

model with intercept term is a 60% reduction in the asymptotic variance relative to when the parameters

are known. This skewness-type statistic could be used for validating the linear model assumption, e.g., a

5%-level asymptotic test will declare the model inappropriate whenever j 1p
n
Q̂ 3 j > (1:96)

p
6 = 4:80.

A \kurtosis-based" test statistic is obtained by taking

 (z) =  4(z) = z4 � 3: (3.12)

For this choice,  0(z) = 4z3, and soVarf (Z)g = EfZ8g�[E(Z4)]2 = (7)(5)(3)(1)�32 = 96, Ef 0(Z)g =
0, EfZ 0(Z)g = 4EfZ4g = 12, and EfZ (Z)g = EfZ5 � 3Zg = 0. Consequently, from (3.5),

� = � 4 = 96 +
1

2
(12)[12� 2(12)] + 0 = 24; (3.13)

which, interestingly, is not a�ected by the behavior of the matrix X. Thus, under the linear model, the

kurtosis-avored statistic

1p
n
Q̂ 4 =

1p
n

nX
i=1

2
4 Yi �Xi�̂

�̂

!4

� 3

3
5 (3.14)

is asymptotically normal with mean zero and variance 24. This could be used for testing the validity

of the model, e.g., an asymptotic 5%-level test will be to declare the linear model inappropriate if

j 1p
n
Q̂ 4 j > (1:96)(2)

p
6 = 9:60. Again, note the impact of the plug-in procedure, which is a four-fold

decrease in the asymptotic variance relative to the asymptotic variance if the parameters were known.

More generally, for a positive integer k, we could take  (z) =  2k(z) = z2k � 2k, where 2k �Qk
j=1(2k � 2j + 1); k = 1; 2; : : : : This leads to the statistic

1p
n
Q̂ 2k =

1p
n

nX
i=1

2
4
 
Yi �Xi�̂

�̂

!2k

� 2k

3
5 : (3.15)
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Analogously to preceding calculations, it is then immediate that the asymptotic variance of (3.15) is

given by � 2k = (4k � 22k)� 2k2k
�
2(k+1) � (k � 1)2k

�
: As in the case of earlier  choices, this more

general statistic could be utilized for model validation purposes. Indeed, an interesting possibility is to

consider a vector-valued  . For example, for a given positive even integer K > 3, one may take

 (z) =
�
z3; z4 � 4; z

5; z6 � 6; � � � ; zK � K
�t

(3.16)

which will generate a statistic of form

1p
n
Q̂K =

1p
n

nX
i=1

�
R3
i ; R

4
i � 4; R

5
i ; R

6
i � 6; � � � ; RKi � K

�t
; (3.17)

where Ri = (Yi�Xi�̂)=�̂; i = 1; 2; : : : ; n; are the estimated linear model residuals. The limiting distribu-

tion of the statistic in (3.17) could be obtained using Theorem 2.1.

For example, if K = 6 and under the linear model with intercept term so (3.9) obtains, the statistic

1p
n
Q̂6 =

1p
n

nX
i=1

�
R3
i ; R

4
i � 3; R5

i ; R
6
i � 15

�t
(3.18)

has, upon applying Theorem 2.1 and straightforward simpli�cations, an asymptotic mean equal to the

zero vector and asymptotic covariance matrix

�6 =

2
664

15 0 105 0
0 96 0 900
105 0 945 0
0 900 0 10170

3
775�

2
664

9 0 45 0
0 72 0 540
45 0 225 0
0 540 0 4050

3
775 =

2
664

6 0 60 0
0 24 0 360
60 0 720 0
0 360 0 6120

3
775 : (3.19)

The �rst 4� 4 matrix in (3.19) is the asymptotic covariance matrix of 1p
n
Q6(�

2
0 ; �0), i.e., when the true

values of the parameters are known and are not being estimated; while the second 4 � 4 matrix is the

adjustment factor arising from the substitution of the estimators for the unknown parameters. Clearly,

this adjustment term is non-negligible. Furthermore, notice that, asymptotically, the �rst and third

components of Q̂6 are independent from the second and fourth components, which implies that these

two sets of components are detecting di�erent features of the distribution of the estimated residuals. A

possible model validation test statistic is

S2
6 =

1

n
Q̂t

6�
�1
6 Q̂6;

which, if the linear model assumptions are valid, will have an asymptotic chi-squared distribution with

degrees-of-freedom equal to 4. Such a test statistic may have the potential of detecting varied types

of deviations from the linear model assumption, thereby generating an omnibus-type and formal model

validation procedure.

For the more general test statistic Q̂K , there is certainly the problem of determining an appropriate

value of the order K. We defer though a thorough discussion of these issues in future work as the intent

of the present paper is on the general asymptotic result. Instead, we now provide another application of

the asymptotic theory in a popular stochastic process model arising in survival analysis and reliability.
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3.2 Goodness-of-Fit Testing in a Counting Process Model

LetN = f(N1(t); : : : ; Nn(t)) : t 2 [0; � ]g be an observable multivariate counting process with respect
to a �ltration F = fFt : t 2 [0; � ]g. Let the compensator of N be A = f(A1(t); : : : ; An(t)) : t 2 [0; � ]g
with

Aj(t) =

Z t

0

Yj(s)�(s) expf�tZj(s)gds; (3.20)

where Y = f(Y1(t); : : : ; Yn(t)) : t 2 [0; � ]g is an observable nonnegative predictable process, Z =

f(Z1(t); : : : ; Zn(t)) : t 2 [0; � ]g is an observable bounded predictable matrix of processes consisting of

the s � 1 covariate processes Zj 's, �(�) is an unknown hazard rate function, and � = (�1; : : : ; �s)
t is

an unknown s� 1 regression coeÆcient vector. This is the multiplicative intensity model considered by

Andersen and Gill (1982), which includes as a special case the Cox proportional hazards model (Cox,

1972).

Suppose it is of interest in this multiplicative intensity model to test the composite null hypothesis

that the hazard rate function �(�) belongs to a parametric class of hazard rate function given by C0 =

f�0(�; �) : � 2 N � <rg, where the functional form of �0(�; �) is known except for the parameter �. The

alternative hypothesis is that �(�) =2 C0. To develop a formal goodness-of-�t test, let f( 1(t);  2(t); : : :) :
t 2 [0; � ]g be a set of basis functions for functions de�ned on [0; � ], e.g., trigonometric, polynomial,

wavelets, etc., such that if �(�) is the true hazard rate function, then for any �0(�; �) 2 C0,

log

�
�(t)

�0(t; �)

�
=

1X
k=1

�k k(t); t 2 [0; � ]: (3.21)

See Pe~na (1998) for an application of this hazard-based smooth goodness-of-�t formulation in a simpler

model and for other aspects of this approach, such as the choice of the  j 's. The idea behind the `Neyman

truncation' (cf., Neyman (1937); Rayner and Best (1989); Fan (1996)) is that it is usually suÆcient to

truncate the in�nite sum on the right-hand side of (3.21) to obtain an acceptable approximation as later

coeÆcients of the expansion will be small in magnitude owing to Parseval's Theorem. Therefore, choose

a smoothing order K such that we may expand the left-hand side of (3.21) via

log

�
�(t)

�0(t; �)

�
�

KX
k=1

�k k(t) = �t	(t); t 2 [0; � ]; (3.22)

where � = (�1; : : : ; �K)
t and 	 = ( 1; : : : ;  K)

t. If the null hypothesis holds, then for some �0 2 N ,

� = 0. This amounts to embedding the class of possible �(�)'s in the wider class

CK =
�
�(�; �; �) = �0(�; �) expf�t	(�)g : � 2 <K ; � 2 N

	
: (3.23)

With this embedding the testing problem is reduced to testing the composite hypothesis H0 : � =

0; (�; �) 2 N � B versus the alternative hypothesis H1 : � 6= 0; (�; �) 2 N � B. Note in this testing

problem that the parameters � and � are nuisance parameters.
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The score function associated with � based on a realization of f(N(t); Y (t)) : t 2 [0; � ]g, when
evaluated at � = 0, could be easily shown to be (cf., Borgan (1984); Andersen, Borgan, Gill and Keiding

(1993); Pe~na (1998))

Q(�; �) =

nX
j=1

Z �

0

	
�
dNj � Yj�0(�) expf�tZjgdt

	
; (3.24)

where, for economy of notation, we suppress the argument t in 	(t), Nj(t), Yj(t), �0(t; �), and Zj(t).

However, this is not a statistic since � and � are unknown, so the need to substitute estimators for � and

� in Q(�; �). It is usual to estimate � under this model by solving the estimating equation S(�) = 0,

where

S(�) =

nX
j=1

Z �

0

[Zj �E(�)]dNj (3.25)

with E(t; �) = S(1)(t; �)=S(0)(t; �) and S(m)(t; �) =
Pn

j=1 Z

m
j Yj expf�tZjg;m = 0; 1; 2: This is the

estimation procedure for � arising from the partial likelihood function, and the resulting estimator is

denoted by �̂. Upon obtaining �̂, we estimate � by solving in � the pro�le estimating equation R(�; �̂) = 0,

where

R(�; �) =

nX
j=1

Z �

0

�(�)
�
dNj � Yj�0(�) expf�tZjgdt

	
; (3.26)

where �(t; �) = f@=@�g log�0(t; �). The resulting estimator is denoted by �̂ � �̂(�̂). The test statistic for

H0 versus H1 is some function, e.g., a quadratic form, of the estimated score statistic

Q̂ = Q(�̂; �̂) =
nX
j=1

Z �

0

	
n
dNj � Yj�0(�̂) expf�̂tZjgdt

o
: (3.27)

Thus, the asymptotic distribution of Q̂ under H0 becomes of interest.

Under certain regularity conditions, if �0 is the true parameter value when �(�) is in C0 and �0 is

the true regression parameter vector, it can be shown that (see, for instance, the technical report Agustin

and Pe~na (2000))

1p
n

2
4 Q(�0; �0)
R(�0; �0)
S(�0)

3
5 d�! N

2
4
0
@ 0

0
0

1
A ;� =

0
@ �11 �12 0

�21 �22 0
0 0 �33

1
A
3
5 ; (3.28)

where, with s(m)(�; �) being the limit in probability of 1
n
S(m)(�; �), we have

�11 =

Z �

0

	
2s(0)(�0; �0)�0(�0)ds;

�12 = �t
21 =

Z �

0

	�(�0)
ts(0)(�0; �0)�0(�0)dt;

�22 =

Z �

0

�(�0)

2s(0)(�0; �0)�0(�0)dt;

�33 =

Z �

0

v(�0)s
(0)(�0; �0)�0(�0)dt;
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where v(�; �) = s(2)(�; �)=s(0)(�; �)�e(�; �)
2 and e(�; �) = s(1)(�; �)=s(0)(�; �). It is also easy to verify

that
1

n
Q�(�0; �0)

pr�! A1 � ��12 and
1

n
Q�(�0; �0)

pr�! A2 � ��1;

with �1 =
R �
0 	e(�0; �0)

ts(0)(�0; �0)�0(�0)dt. Furthermore,

1

n
R�(�0; �0)

pr�! B1 � ��22;
1

n
R�(�0; �0)

pr�! B2 � ��2; and
1

n
S�(�0; �0)

pr�! C � ��33;

with �2 =
R �
0
�(�0)e(�0; �0)

ts(0)(�0; �0)�0(�0)dt.

By applying Theorem 2.1, we therefore obtain that, under H0, the statistic 1p
n
Q̂ converges in

distribution to a zero-mean normal random vector whose covariance matrix is given by

� = �11 ��12�
�1
22 �21 + (�1 � �12�

�1
22 �2)�

�1
33 (�1 ��12�

�1
22 �2)

t: (3.29)

A more general result is obtained by considering the distribution under the sequence of alternative

hypotheses of form Hn
1 : � = =

p
n+ o(1), where  is a q � 1 direction vector. Under this situation, the

asymptotic mean of 1p
n

�
Q(�0; �0)

t R(�0; �0)
t S(�0)

t
�t
, under Hn

1 , is given by

� =

2
4 �1
�2
�3

3
5 =

2
4 �11

�12

0

3
5 : (3.30)

Consequently, under Hn
1 ,

1p
n
Q̂ converges in distribution to a normal random vector whose covariance

matrix is given in (3.29) and whose mean vector is equal to

� =
�
�11 � �12�

�1
22 �12

�
: (3.31)

Several things are worth observing from these results. From the covariance matrix in (3.29), we

see that plugging-in of (�̂; �̂) for (�; �) to obtain the statistic Q̂ has no asymptotic e�ect if �12 =

0 and �1 = 0. Under these conditions, we would say that \adaptiveness" (see for instance Bickel,

Ritov, Klaasen and Wellner (1993)) obtains in the sense that it does not matter that the nuisance

parameters (�; �) are unknown in Q(�; �) since they can be replaced by their estimators and still have

the asymptotic distributions of Q(�0; �0) and Q(�̂; �̂) to be identical. The conditions �12 = 0 and �1 = 0

are orthogonality conditions between 	 and e(�0; �0) and between �(�0)) and e(�0; �0), respectively, with

the orthogonality de�ned with respect to the inner product on the space of square-integrable functions

L2f[0; � ]; �0g. The inner product is de�ned, for f; g 2 L2f[0; � ]; �0g, by hf; gi =
R �
0 fg�0(dt); where for a

Borel set A � [0; � ], �0(A) =
R
A
s(0)(�0; �0)�0(�0)dt.

On the other hand, if these orthogonality conditions are not satis�ed, the process of substituting the

estimators (�̂; �̂) for (�0; �0) in Q(�0; �0) have an impact on the resulting asymptotic distribution of Q̂.

The e�ect is contained in the last two terms in the expression for �. In particular, if the net e�ect of these

two terms is negative, then quantitatively, the e�ect is to decrease the variance of Q after the process of

plugging-in the estimators. Clearly, ignoring such variance reduction could have dire consequences in the
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resulting testing procedure. For instance, ignoring such reductions may result in a highly conservative test

and thus lead into concluding model appropriateness when in fact the model is inappropriate. Looking

at the asymptotic mean in (3.31) associated with the sequence of local alternatives, one notices that

the substitution of the estimator has a dampening e�ect on the power of the test, as the true
p
n-

di�erence between the null and the true model, which is �11 when (�0; �0) are known, gets decreased to

[�11 � �12�
�1
22 �21] after the substitution of the estimators, unless �12 = 0 holds. For more elaborate

and detailed discussions of some of the consequences of plugging-in estimators of nuisance parameters in

a model without covariates, see Pe~na (1998).
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