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Abstract

Probabilistic and statistical models for the occurrence of an event

of interest over time are described. These models have applicability

in the reliability, engineering, biomedical, and other areas where a

series of events occur for an experimental unit as time progresses.

Nonparametric inference methods, in particular estimation procedures

and goodness-of-fit methods, for the model parameters are presented,

and their properties described.
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1 Introduction

In a variety of situations in reliability, as well as in other sciences, there

could be a series of observations made on an experimental unit, with these
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observations representing times to the occurrence of an event of interest. For

example, in monitoring a machine (such as a piece of medical equipment),

failure of the machine will occur as time progresses, and each time there is a

failure, the failed component may be repaired or replaced in order to bring

the machine to a functioning state. The process of repairing or replacing a

failed component impacts the mechanism for the next failure occurrence.

It is therefore important to have probabilistic and statistical models for

the occurrence of the event of interest over time, and there has been active

research on this aspect. Furthermore, it is also imperative that methods

for making inference about the parameters of these probabilistic models be

developed in order to be able to utilize these models for practical purposes,

such as predicting the next occurrence of the event, information that could

be important regarding safety issues as well as in developing maintenance

schedules.

In this paper we discuss several models that have been proposed in

modelling the occurrence of an event of interest. These models represent

areas where the nonparametric approach is highly useful. These models take

into account the type of repair that has been performed after the occurrence

of an event. Some methods for making inference, in particular the nonpara-

metric estimation of the model parameters are also presented, and some of

the properties of the estimators are described. In Section 2 we present some

classes of models that have been put forward, mostly in the reliability area.

Section 3 presents inference methods for a general repair model proposed
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by Dorado, Hollander, and Sethuraman (1997), while Section 4 describes

estimation methods for the renewal model when each experimental unit is

monitored over a random observation period. A more general model allowing

for dependence among the unit’s inter-event times, modeled through unob-

servable frailties, is also considered. Section 5 reviews goodness-of-fit testing

of the distribution of the time until the first failure in the Block, Borges, and

Savits (1985)’s minimal repair (BBS) model.

2 Repair Models

The construction and analysis of repair models is an important topic because

many systems in industrial and health settings are subject to repair after

failure. Replacing the failed system by a completely new one is impractical.

Thus most repairs restore the system to a status that is not as good as that

achieved by replacing the system by a new one. In this section we consider

repairable systems (items, units) where, upon failure, the system is repaired

in negligible time. We let F denote the distribution of the time to first

failure of a new item that is put into operation at time S0 = 0. We let

F̄ = 1 − F denote the survival function, Λ(t) =
∫ t
0 dF (s)/F̄ (s−) denote the

(cumulative) hazard function of F and λ(t) = dΛ(t)/dt denote the failure

rate. Let {Sj}j≥1 denote the sequence of failure times and let Tj = Sj−Sj−1

denote the interfailure times. Repair models can be specified by specifying

the joint distribution of the interfailure times. Such joint distributions will

depend on F and the nature of the repairs. We list some examples of repair
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models below.

a. Perfect Repair or Renewal Model. Upon failure, the failed system is

replaced by a new one stochastically identical to the original so that T1, T2, . . .

are independent and identically distributed (iid) according to F .

b. Minimal Repair Model. In minimal repair, the system, upon failure, is

restored to its state just before failure. Thus if it fails at age t, it is restored

to the status of a functioning system of age t. Under this model, {Sj} is a

Markov process with

P (Sj > x|Sj−1 = y) =
F̄ (x)

F̄ (y)
, x > y.

Let N(t) denote the number of failures by time t in a process of minimal

repair. Then N(t) is a nonhomogeneous Poisson process with mean value

function E(N(t)) = Λ(t) and intensity function λ(t). For a proof of this

result, see Resnick (1994), Section 4.11.

c. BP Model. Brown and Proschan (1983) generalized the minimal repair

model by allowing two types of repairs. Upon failure, with probability p a

perfect repair is performed and with probability 1 − p a minimal repair is

performed. Denote by Fp the distribution of the time to the first perfect

repair and let λp denote its failure rate.

Theorem 1 (Brown and Proschan (1983)) For the BP model, (i) λp(t) =

pλ(t) and (ii) F̄p(t) = F̄ p(t).
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Proof: (i) Conditional on no perfect repairs having occurred in [0, t) the

item at time t acts as an item of age t, and thus has failure rate λ(t). After

a failure, a perfect repair is made with probability p. Hence the conditional

intensity of a perfect repair at time t, given there have been no perfect repairs

in [0, t), is λp(t) = pλ(t).

(ii) F̄p(t) = exp{− ∫ t0 λp(s)ds} = exp{− ∫ t0 pλ(s)ds} = F̄ p(t).

d. BBS Model. Block et al. (1985) generalized the BP model by allowing

the probability of a perfect repair to depend on the age of the failed item.

In the BBS model p(·) is a measurable function p : [0,∞) → [0, 1]. BBS

showed that for continuous F , the waiting time between perfect repairs is

almost-surely finite with distribution H given by

H(t) = 1− exp

{
−
∫ t

0

p(s)

F̄ (s)
dF (s)

}
, t ≥ 0. (2.1)

The generalization of this result to possibly discontinuous F is given by

Hollander, Presnell, and Sethuraman (1992).

e. Kijima Models. Kijima (1989) introduced models that allow repairs that

are better than minimal repairs but not necessarily as good as perfect repairs.

Kijima’s models restore the repaired item to an effective age that depends on

its age just before failure as well as on “degree-of-repair” random variables.

We let Aj+1 denote the effective age of the system after the jth repair with

A1
def
=0. Let Dj, j = 1, 2, . . ., denote the degree of repair random variables.

They are assumed to be independently distributed on [0, 1] and independent
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of other processes.

In Kijima’s model I

P (Tj > x|T1, . . . , Tj−1, D1, · · · , Dj−1) =
F̄ (x+ Aj)

F̄ (Aj)
, (2.2)

where

Aj =
j−1∑

i=1

DiTi, j > 1. (2.3)

Thus, in Kijima I, Aj+1 = Aj +DjTj.

In Kijima’s model II, P (Tj > x|T1, . . . , Tj−1, D1, . . . , Dj−1) is also given

by the right-hand-side of (2.2) but with the specification

Aj =
j−1∑

k=1




j−1∏

i=k

Di


Tk, j > 1. (2.4)

Thus, in Kijima II, Aj+1 = Dj(Aj + Tj). With Dj = 1 with probability p

and = 0 with probability 1− p, Kijima II reduces to the BP model.

f. DHS Model. Dorado et al. (1997) defined a general repair model that

contains many of the models in the literature and introduces new models as

well. They consider the family of survival functions F̄ θ
a (x) = F̄ (θx+a)/F̄ (a).

The family of distributions {F θ
a } are stochastically ordered in θ. That is, θ ≤

θ′ implies F θ
a

st
≥ F θ′

a , for each a, so that F θ
a (t) ≤ F θ′

a (t) for every t. The DHS

general repair model depends on two sequences {Aj}j≥1 and {θj}j≥1 known as

the effective ages and life supplements, respectively. These sequences satisfy

A1 = 0, θ1 = 1, Aj ≥ 0, θj ∈ (0, 1],
Aj ≤ Aj−1 + θj−1Tj−1, j ≥ 2.

(2.5)
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The joint distributions of the interfailure times are given as

P (Tj ≤ t|A1, . . . , Aj, θ1, . . . , θj, T1, . . . , Tj−1) = F
θj
Aj
(t), (2.6)

for t > 0, j ≥ 1. From (2.5) and (2.6) we see that for j ≥ 1, the effective age

of the system after the jth repair is less than the effective age Xj
def
=Aj + θjTj

just before the jth failure, and since θj ≤ 1, Xj is less than the actual age Sj.

Some special cases of the DHS model are as follows. If we set θj = 1,

Aj = 0 for j ≥ 1, we obtain the perfect repair model. If we set θj = 1,

Aj = Sj−1, j ≥ 1, we obtain the minimal repair model. If we set θj = 1 for

each j and let Aj be defined by (2.3), we obtain the Kijima I model. Setting

θj = 1 for each j and letting Aj be defined by (2.4), yields the Kijima II

model. If we set θ1 = 1, Aj =
∑j−1

i=1 θiTi and 0 < θj < 1 for j > 1 we obtain

a model we call the supplemented life repair model. Our use of the term

“supplemental life” has the following motivation. If a minimal repair were

performed at the time of the first failure, T2 would have the distribution F 1T1
.

A longer expected life for T2 is provided, however, if we use the distribution

F θ2
T1

for some θ2 satisfying 0 < θ2 < 1. Starting with the distribution F θ2
T1

for

T2 and applying minimal repair after the second failure, T3 would have the

distribution F 1A3
where A3 = T1 + θ2T2. If we seek a longer expected life for

T3, we can use the distribution F θ3
A3

for some θ3 satisfying 0 < θ3 < 1. By

continuing in this way, we obtain the supplemented life model. Under this

model, the system has a larger expected remaining life than it would have

under minimal repair.
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It is of interest to consider monotonicity properties of the expected

interfailure times. Theorem 2, due to Dorado (1995), is a typical result. We

first give the definition of a “decreasing mean residual life” distribution. The

mean residual life (mrl) function corresponding to F is

εF (x) =
{∫ ∞

x
F̄ (y)dy

}
/F̄ (x).

Definition 1 A failure distribution F is said to be a decreasing mean resid-

ual life (DMRL) distribution if the mean, εF (0), is finite and

εF (s) ≥ εF (t) for all 0 ≤ s ≤ t. (2.7)

F is said to be an increasing mean residual life (IMRL) distribution if εF (0)

is finite and the inequality in (2.7) is reversed.

Theorem 2 (Dorado (1995)) Assume, in the DHS model of (2.6), that

the {θj}j≥1 and {Aj}j≥1 are increasing sequences and F is DMRL. Then

E(Tj) is decreasing in j.

Proof: E(Tj) =
∫ ∞

0
P (Tj > t) dt

=
∫

Ω

∫ ∞

0

F̄ (θjt+ Aj)

F̄ (Aj)
dtdP

≤
∫

Ω

∫ ∞

0

F̄ (θjt+ Aj−1)

F̄ (Aj−1)
dtdP

≤
∫

Ω

∫ ∞

0

F̄ (θj−1t+ Aj−1)

F̄ (Aj−1)
dtdP = E (Tj−1) .
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The first inequality follows from the fact that F is DMRL and that the Aj’s

are increasing. The second inequality holds since the θj’s are increasing.

g. Last and Szekli Model. The restriction θj ∈ (0, 1] imposed in the DHS

model does not allow for deterioration due to repair. Last and Szekli (1998)

extended the Kijima II model by allowing the larger range [0,∞) for the

degree-of-repair variables {Di}. Values of Di greater than 1 correspond to

deterioration due to repair. Last and Szekli (1998) showed that their repair

model contains many proposed in the literature including those proposed by

Stadje and Zuckerman (1991) and Baxter, Kijima, and Tortorella (1996).

Doyen and Gaudoin (2002) have pointed out a number of other models

that are special cases of the DHS model. For example, Wang and Pham

(1996) proposed a model that corresponds to the DHS model with the settings

θi = 1/αi−1 and Ai = 0. The failure process is a quasi-renewal process in

that the interfailure times are independent but not identically distributed.

Since the DHS model covers a number of repair models in the literature,

as well as many new models not studied in detail, we devote the next section

to nonparametric inference for the DHS model.

3 Nonparametric Inference for DHS Model

There is a connection between repair models and censored data models that

gives insight for the study of repair models and suggests inference methods

that parallel those developed for censored data. Suppose we observe the
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repair process until a fixed time T . The effective age Xj prior to the jth

failure is Aj + θj(Sj − Sj−1) if Sj ≤ T . If Sj−1 ≤ T < Sj, we cannot observe

Xj and the effective age of the system at time T is Aj + θj(T − Sj−1), which

can be written as Xj ∧ (Aj + θj(T − Sj−1)), a representation similar to that

encountered in censored data. We define the processes

N(t) =
∑

j

I (Xj ≤ t, Sj ≤ T ) ;

Y (t) =
∑

j

I (Aj < t ≤ (Xj ∧ [Aj + θj (T − Sj−1)])) .

Let δj = I(Sj ≤ T ) and set X̃j = Xj ∧ [Aj + θj(T −Sj−1)]. Then the random

variables {(X̃1, δ1), (X̃2, δ2), . . .} can be thought of as observations coming

from a censored model. A repair model observed during [0, T ] is similar to a

survival study where a subject enters the study at Aj (the system at failure

time Sj−1 is repaired to effective age Aj) and either dies during the study

at age Xj (a failure occurs) or leaves the study by Aj + θj(T − Sj−1) (the

system that was repaired at time Sj−1 has not yet by time T suffered its next

failure). From this viewpoint, N(t) is the number of observed (uncensored)

deaths by time t and Y (t) is the number at risk at time t.

Next, we define the process

M(t) = N(t)−
∫ t

0
Y (s)dΛ(s).

Typically, analogous to results in censored data theory (Aalen (1978); Flem-

ing and Harrington (1991)), it is natural to try to establish that M is a

martingale with respect to the history of N . This proved to be difficult but
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Dorado et al. (1997) were able to show that the M process does have the

same mean and covariance structure as if it were a martingale. They proved

E (M(t)) = 0; (3.8)

cov (M(t),M(t′)) =
∫ t∧t′

0
E(Y )(1−∆Λ)dΛ. (3.9)

These results and techniques of Gill (1980) are sufficient to obtain asymptotic

properties of the estimator of F . We sketch the development here and refer

the reader to Dorado et al. (1997) for details.

We suppose we observe n independent copies of the processes N and

Y on a finite interval [0, T ], and let Nn and Yn denote the sum of the first

n copies. We wish to estimate F based on these observations. A natural

estimator of the failure rate is Nn/Yn, the ratio of observed deaths at time t

to the number at risk at time t. Thus a natural estimator of the cumulative

hazard function is the Nelson-Aalen estimator

Λ̂n(t) =
∫ t

0

JndNn

Yn

where Jn(t) = I(Yn(t) > 0) for t ∈ (0, T ]. It is easy to see that F satisfies

F (t) =
∫ t

0
(1− F (s−)) dΛ(s)

and hence we want an estimator F̂n of F to satisfy

F̂n(t) =
∫ t

0

(
1− F̂n(s−)

)
dΛ̂n(s).

The solution of this Volterra integral equation is

̂̄F (t) =
∏

s≤t

(
1− dΛ̂n(s)

)
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where
∏

s≤t(1− dΛ̂n(s)) denotes the product integral (see Gill and Johansen

(1990); Andersen, Borgan, Gill, and Keiding (1993)).

LetMn = Nn−
∫
YndΛ. This is the sum of n iid processes inD[0, T ] with

mean 0 and covariance function given by (3.9). Thus Wn(t) = n−1/2Mn(t),

0 ≤ t ≤ T , will converge to a Gaussian process if tightness can be established.

This is done in Theorem 5.1 of Dorado et al. (1997). Dorado et al. (1997)

showed that

F̂n(t)− F (t)

F̄ (t)
=
∫ ̂̄F n(s−)Jn(s)
F̄ (s)(Yn(s)/n)

dMn(s). (3.10)

Let

C(t) =
∫ t

0

dF

EY (1− F )
.

Assume that F (T ) < 1 and F is an increasing failure rate distribution. From

the continuous mapping theorem (see Billingsley (1968)), and a result on the

uniform convergence of the integrand in (3.10), Corollary 5.1 of Dorado et al.

(1997) shows
√
n

(
F̂n − F

F̄

)
⇒ B(C) on D[0, T ]

where B denotes the Brownian motion on [0,∞). They also proved

√
n
K̄

F̄
(F̂n − F )⇒ B0(K) on D[0, T ]

where B0 denotes a Brownian bridge on [0, 1] and K = C/(1 + C).

Dorado et al. (1997) also derived a simultaneous confidence band for

F . For t ∈ [0, T ], let Ln = I(F̂n(t) < 1) and set

Ĉn(t) =
t∫
0
JnLndF̂n/[(Yn/n)(1− F̂n)] and K̂n(t) = Ĉn(t)/(1 + Ĉn(t)).

12



For t such that F̂n(t) = 1, set K̂n(t) = 1. A nonparametric asymptotic simul-

taneous confidence band for F with confidence coefficient at least 100(1−α)%

is
[
F̂n ± n−1/2λα

̂̄F n/
̂̄Kn

]
(3.11)

where λα is such that P
(
supt∈[0,1]|B0(t)| ≤ λα

)
= 1−α. Values of λα can be

obtained from Hall and Wellner (1980) and Koziol and Byar (1975).

Let X(1), X(2), . . . , X(r) be the distinct ordered values of the X’s whose

corresponding failure times are within [0, T ]. Also, let δj be the number of

observations with value X(j). Then for computational purposes one can use

the simplified formulas

̂̄F n(t) =
∏

X(j)≤t

(
1− δj

Yn(X(j))

)
;

Ĉn(t) = n
∑

X(j)≤t

F̂n(X(j))− F̂n(X(j−1))

Yn(X(j))
̂̄F n(X(j))

.

In practice, it may be that the data obtained lead to F̂n(t0) = 1 for some

0 < t0 < T . When this happens, the data yield a confidence band only on

the interval [0, σ) where σ = inf{t ∈ [0, T ] : F̂n(t) = 1}.

Gill (1981) considered the testing with replacement scenario where one

observes X1, X2, . . . nonnegative iid random variables with distribution F .

He derives a nonparametric product limit estimator of F based on the first

n of an infinite sequence of independent realizations of

Ñ(t) = #



j :≥ 1 :

j∑

i=1

Xi ≤ t



 ,
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each observed over a fixed interval [0, T ]. If we set Aj = 0, θj = 1 for all j in

the DHS model, then the DHS estimator reduces to Gill’s estimator and the

nonparametric simultaneous confidence band given by DHS provides a band

for F in Gill’s testing with replacement situation.

4 Renewal Model with Random Termination

Peña, Strawderman, and Hollander (2001) generalized Gill’s estimator by

allowing each process to be observed over a random time where the times are

iid according to a distribution G. Their model postulates that for unit i out

of n units, the recurrent event process is observed over the random period

[0, τi] where τi, i = 1, 2, . . . , n, are iid according to the distribution G. The

successive inter-event times Tij, j = 1, 2, . . ., are assumed to be iid from the

unknown continuous distribution F . The successive calendar times of event

occurences for the ith unit are denoted by

0 ≡ Si0 < Si1 < Si2 < Si3 < . . . with Sij =
j∑

k=1

Tij.

The number of events that occurred on or before calendar time s for unit i

is denoted by N †
i (s), so that

N †
i (s) = max{j ∈ {0, 1, 2, . . .} : Sij ≤ min(s, τi)} =

∞∑

j=1

I{Sij ≤ min(s, τi)}.

We denote by Ki = N †
i (∞), the total number of observed events over [0, τi]

for the ith unit. We define doubly-indexed processes for the ith unit by

Ni(s, t) =
∑N†

i
(s)

j=1 I{Tij ≤ t} (4.12)
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Yi(s, t) =
∑N†

i
(s−)

j=1 I{Tij ≥ t}+ I{min(s, τi)− SiKi(s−) ≥ t}. (4.13)

The process Ni(s, t) represents the number of events that occurred on or

before time s whose inter-event times are at most t, whereas Yi(s, t) represents

the number of events over [0, s] whose inter-event times are at least t plus a

count on whether the right-censored last inter-event time is also at least t.

The aggregated processes based on n units are denoted by

N(s, t) =
n∑

i=1

Ni(s, t) and Y (s, t) =
n∑

i=1

Yi(s, t).

The resulting product-limit type estimator of F̄ = 1−F based on data that

have accrued over the calendar time [0, s] for n units is

ˆ̄F n(s, t) =
t∏

w=0

[
1− N(s, dw)

Y (s, w)

]
. (4.14)

Following ideas of Sellke (1988) and Gill (1980), the following asymptotic

properties of this product-limit type estimator were established in Peña et al.

(2001).

Theorem 3 Let ρ(·) =
∑∞

k=1 F
∗k(·) be the renewal function and Λ be the

hazard function of F , respectively. Define Gs(t) = G(t)I{t < s}+ I{t ≥ s},

Ḡ = 1−G, and

y(s, t) = F̄ (t)Ḡs(t−)
{
1 +

1

Ḡs(t−)
∫ ∞

t
ρ(w − t)dGs(w)

}
.

Then, if t∗ ∈ (0,∞) is such that y(s, t∗) > 0 and Λ(t∗) <∞, as n→∞,

(i) sup0≤t≤t∗

∣∣∣ ˆ̄F n(s, t)− F̄ (t)
∣∣∣ converges in probability to zero;
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(ii) the process {Wn(s, t) =
√
n[ ˆ̄F n(s, t) − F̄ (t)] : 0 ≤ t ≤ t∗} converges

weakly in Skorohod’s space D[0, t∗] to a zero-mean Gaussian process

{W∞(s, t) : 0 ≤ t ≤ t∗} whose covariance function is

Cov{W∞(s, t1),W
∞(s, t2)} = F̄ (t1)F̄ (t2)

∫ min(t1,t2)

0

Λ(dw)

y(s, w)
.

A possible estimator of the variance of ˆ̄F n(s, t) is given by

σ̂2n(s, t) =
ˆ̄F n(s, t)

2
∫ t

0

N(s, dw)

Y (s, w)[Y (s, w)−N(s,∆w)]
.

Together with the weak convergence result, this estimate of the variance

could be utilized to form a 100(1 − γ)% asymptotic confidence interval for

F̄ (t) given by
[
ˆ̄F n(s, t)± zγ/2σ̂n(s, t)

]
,

where zγ/2 is the 100(1−γ/2)% percentile of the standard normal distribution.

It is still open to develop a simultaneous confidence band in this setting,

although by virtue of the form of the limiting covariance function in Theorem

3 a Hall-Wellner (1980) type of band is possible.

Notice that these results are analogous to properties of the product-

limit estimator for single-event settings, except that the limiting covariance

function in the recurrent event setting now involves the renewal function

ρ of the distribution F . The entry of this renewal function in the limiting

covariance function is a manifestation of the sum-quota accrual scheme which

forces the number of events for the ith unit which were observed over [0, τi]
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to be informative and makes the censoring mechanism of the last event to be

informative as well.

Peña et al. (2001) also considered a model wherein the inter-event times

for a unit are correlated. This dependence among the inter-event times is in-

duced by an unobserved latent or frailty variable. To describe this correlated

recurrent event model, it is postulated that there is an unobserved Zi, with

Z1, Z2, . . . , Zn iid random variables from a distribution HZ , which is taken in

particular to be a gamma distribution with mean 1 and variance 1/α, where

α > 0 is unknown. Note that the gamma distribution for this frailty vari-

able has the same shape and scale parameter, and this is in order to achieve

model identifiability. Given Zi = z, it is assumed that the inter-event times

Ti1, Ti2, . . . are iid with survivor function

F̄ (t|z) = P{Tij > t|Zi = z} = [F̄0(t)]
z. (4.15)

This is equivalent to postulating that the conditional hazard function of Tij,

given Zi = z, is Λ(t|z) = zΛ0(t) where Λ0 = − log F̄0 is the hazard function

of F0. As a consequence, the joint survivor function of (Ti1, Ti2, . . . , Tik) for

fixed k is given by

P{Ti1 > t1, Ti2 > t2, . . . , Tik > tk}

=
∫ ∞

0




k∏

j=1

F̄0(tj)



z
αα

Γ(α)
zα−1 exp{−αz}dz =

[
α

α +
∑k

j=1 Λ0(tj)

]α
.

From this, by setting tj = t and tl = 0, l 6= j, we immediately see that the

inter-event times are dependent and the common marginal survivor function
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of the inter-event times is

F̄ (t) = P{Tij > t} =
[

α

α+ Λ0(t)

]α
. (4.16)

The semiparametric estimation of this marginal survivor function was dis-

cussed in Peña et al. (2001). Mimicking ideas of Nielsen, Gill, Andersen, and

Sorensen (1992), the computation of the estimator relies on the expectation-

maximization (EM) algorithm (see Dempster, Laird, and Rubin (1977)),

where the frailty values are considered as missing values. Given values of

(Z1, Z2, . . . , Zn), say (ẑ1, ẑ2, . . . , ẑn), the first part of the M-step of the algo-

rithm is to obtain the conditional estimate of Λ0 given by

Λ̂0(s, t|ẑ1, . . . , ẑn) =
∫ t

0

∑n
i=1Ni(s, dw)∑n
i=1 ẑiYi(s, w)

.

The second part of the M-step of the algorithm is to maximize a marginal

likelihood function for α, given values of Λ̂0 and ẑis. To describe this marginal

likelihood, define

Y †i (s) = I{τi ≥ s} and Ri(s) = s− SiN†
i
(s−).

Note that Ri(s) is the backward recurrence time at s. Then, the marginal

likelihood for obtaining the estimate of α is given by

LF (s;α) =
n∏

i=1




Γ(α+N †

i (s))

Γ(α)

[
α

α +
∫ s
0 Y

†
i (v)dΛ0[Ri(v)]

]α+N†
i
(s)

×


∏

v≤s

[
Y †i (v)dΛ0[Ri(v)]

α

]N†
i
(∆v)







.
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Given Λ̂0(s, t|ẑ1, . . . , ẑn), dΛ0[Ri(v)] is replaced by the jump of Λ̂0(s, ·) at

t = Ri(v). The maximization of this marginal likelihood with respect to α is

facilitated by iterative procedures, such as the Newton-Raphson algorithm.

On the other hand, the E-step of the algorithm proceeds by obtaining the

values of the Zis, given α̂ and Λ̂0 according to the formula

ẑi =
α̂ +N †

i (s)

α̂+
∫ s
0 Y

†
i (v)dΛ̂0[s,Ri(v)]

, i = 1, 2, . . . , n.

The E- and M-steps are then iterated alternately until convergence is achieved.

Finally, having obtained the estimate Λ̂0(s, ·) and α̂, the estimate of the

marginal survivor function F̄ is

ˆ̄F (s, t) =

[
α̂

α̂ + Λ̂0(s, t)

]α̂
. (4.17)

A competing estimator was that proposed by Wang and Chang (1999),

which applies even if the frailty components are not gamma distributed, hence

their estimator is more general. In Peña et al. (2001), these two estimators,

as well as the estimator which ignored the frailty components, were compared

in terms of their bias and mean-squared error functions. It was found that if

the gamma frailty model holds, then the semiparametric estimator in (4.17)

outperforms the Wang-Chang estimator. The comparisons, which were done

through computer simulation studies, also demonstrated that the estimator

which ignored the frailty components have a non-negligible systematic bias,

hence is not a viable estimator of the marginal survivor function of the inter-

event times.
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The two estimators of the marginal survivor function discussed above,

together with the estimator of Wang and Chang (1999), were illustrated

in Peña et al. (2001) using a data set pertaining to small bowel motility

found in Aalen and Husebye (1991). This data set which consisted of 19

subjects is depicted in the first plot in Figure 1, which provides the successive

MMC periods for each unit. Note that each unit has a right-censored last

observation. The object of the study leading to the data set was to estimate

the mean length of the migratory motor complex (MMC) period. The plots

of the three survivor function estimates are provided in the second plot of

Figure 1. As pointed out in Peña et al. (2001), the fact that the three

curves are quite close to each other, indicating that there is no need for

the frailty component, or equivalently that the renewal assumption is viable.

The resulting estimate of α obtained from the EM algorithm was α̂ = 10.18,

which was judged to indicate a weak association among the inter-event times.

5 Goodness-of-Fit for the BBS Model

The inferential procedures in the preceding sections dealt with the estimation

of the marginal survivor function of the inter-event times. Another type of

problem is to test hypothesis concerning this marginal survivor function.

In Agustin and Peña (2001) the problem of testing that the distribution

of the time to the occurrence of the first event for a unit under the BBS

model (Block et al. (1985)) equals some pre-specified distribution function

was considered. The basic idea utilized in constructing the goodness-of-

20



fit procedures relies on an embedding approach with origins from Neyman

(1937)’s paper on smooth goodness-of-fit tests (see also Rayner and Best

(1989)), and implemented in the context of hazard and failure-time analysis

in Peña (1998b,a).

Let T = [0, τ ], where τ ≤ ∞ is known, and consider observing n in-

dependent BBS processes each up to their first perfect repair, which occurs

at the index νj. With Wjk, k = 1, 2, . . ., representing the successive (cal-

endar) times in which failures occur for the jth unit, the observables are

therefore {Wjk : 1 ≤ j ≤ n; 1 ≤ k ≤ νj}. We adopt the stochastic process

formulation of the BBS model in Hollander et al. (1992). To proceed, define

the multivariate counting process N∗ = {(N ∗
1 (t), . . . , N

∗
n(t)) : t ∈ T } with

N∗
j (t) =

∑∞
k=1 I{Wjk ≤ t}, j = 1, . . . , n, and the filtration F∗ = {F∗t : t ∈ T }

by F∗t = F0 ∨
∨n

j=1F∗jt, where F∗jt = σ
{
{N∗

j (s) : s ≤ t} ∪ {Ujk : k ≥ 1}
}
,

and with F0 containing all null sets of F . The Ujk’s are iid standard uni-

form variates, with Ujk determining whether a minimal or a perfect repair is

performed after failure at Wjk. The relevant multivariate counting process

is N = {(N1(t), . . . , Nn(t)) : t ∈ T } with

Nj(t) = N ∗
j (t ∧Wjνj), j = 1, . . . , n,

and the corresponding observable filtration F = {Ft : t ∈ T } is given by

Ft =
∨n

j=1F∗j(t∧Wjνj
). The F-compensator of N is A = {(A1(t), . . . , An(t)) :

t ∈ T } with

Aj(t) =
∫ t

0
Yj(s)λ(s) ds, j = 1, . . . , n,
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where Yj(s) = I{Wjνj ≥ s} and λ(·) is the unknown baseline hazard function

associated with F , the distribution of the time to the first event.. Denote

by λ0(·) the hazard rate associated with F0(·), the hypothesized distribution

function. The goodness-of-fit problem is to test the null hypothesis

H0 : λ(·) = λ0(·) versus H1 : λ(·) 6= λ0(·).

The main idea in developing the test is to embed the hypothesized hazard

rate λ0(·) into a larger parametric family of hazard rate functions. This

family is obtained by smoothly transforming λ0(·). Let us define the family

of order k smooth alternatives via

Ak = {λk(·;θ) = λ0(·) exp[θ′Ψ(·)] : θ ∈ IRk}, (5.18)

where k is some fixed positive integer, and Ψ(·) = (ψ1(·), ψ2(·), . . . , ψk(·))′

is a k × 1 vector of locally bounded predictable processes. Note that by

setting θ = 0 in (5.18), the hypothesized hazard rate function is recovered.

Hence, the null hypothesis H0 : λ(·) = λ0(·) can be restated as H∗
0 : θ = 0.

To derive the score test for this hypothesis, we obtain the score process

associated with θ. Under the model in (5.18), the compensator of N(·) is

A(·;θ) = (A1(·;θ), . . . , An(·;θ)), where

Aj(·;θ) =
∫ ·

0
Yj(s)λ0(s) exp[θ

′Ψ(s)] ds.

From the relevant partial likelihood process obtained via Jacod (1975)’s for-

mula (see Andersen et al. (1993)), straightforward derivation leads to the
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score process

Uθ(t;θ) =
n∑

j=1

∫ t

0
Ψ(s) dMj(s;θ),

where Mj(s;θ) = Nj(s)− Aj(s;θ), j = 1, 2, . . . , n.

To obtain the score test procedure, the distribution of Uθ(t;θ) under

the null hypothesis is required. In Agustin and Peña (2001) it was shown, us-

ing Rebolledo’s martingale central limit theorem (see Andersen et al. (1993)),

that under the conditions

(C1)
∫ τ
0 λ0(s) ds <∞;

(C2) There exists a k × k matrix function D such that as n→∞,

sup
t∈T

∥∥∥∥∥∥
1

n

n∑

j=1

Ψ(t)Ψ(t)′Yj(t)−D(t)

∥∥∥∥∥∥
pr−→ 0;

(C3) The matrix Σ(τ) =
∫ τ
0 D(t)λ0(t) dt is positive definite;

(C4) For each ε > 0, ` = 1, . . . , k, and for every t ∈ T ,

1

n

n∑

j=1

∫ t

0
ψ`(s)

2I{|ψ`(s)| ≥
√
nε}Yj(s)λ0(s) ds

pr−→ 0,

we have the following asymptotic result.

Theorem 4 Under the BBS model and H∗
0 : θ = 0, as n→∞,

n−1/2Uθ(τ ;0)
d−→ N(0,Σ(τ)).

We focus on the case where Ψ(·) is deterministic. By Glivenko-Cantelli

Theorem, it is seen that the limiting covariance matrix is

Σ(τ) =
∫ τ

0
Ψ(s)Ψ(s)′ exp

[
−
∫ s

0
p(u)λ0(u) du

]
λ0(s) ds.
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Since the probability of perfect repair p(·) is unknown, we need to estimate

Σ(τ). A possible consistent estimator of this is

Σ̂(τ) =
1

n

n∑

j=1

∫ τ

0
Ψ(s)Ψ(s)′Yj(s)λ0(s) ds.

By virtue of these results, an asymptotic α-level (smooth) goodness-of-fit

test of H0 versus H1 is:

Reject H0 if S(τ) ≡ 1
n
U θ(τ ;0)

′Σ−(τ)U θ(τ ;0) ≥ χ2k∗;α,

where Σ−(·) is a generalized inverse of Σ(·) and χ2k∗;α is the (1−α)100th per-

centile of the chi-square distribution with degrees of freedom k∗ = rank[Σ(τ)].

It is apparent in the form of the test statistic that the choice of the

process Ψ(·) is crucial. In fact, Ψ(·) determines the family of alternatives for

which the test will have good power. We focus on a polynomial specification

of this process. We consider the specification of Ψ(·) given by

Ψ(t : PWk) = [1, Λ0(t), . . . , Λ0(t)
k−1]′, (5.19)

where k ∈ {1, 2, . . .} is a specified order and Λ0(t) =
∫ t
0 λ0(s)ds. The label

PWk is adopted to distinguish this polynomial specification from other forms

of Ψ explored in Peña (1998b,a) and Agustin and Peña (1999).

The process Ψ(·) in (5.19) yields the score statistic vector

1√
n
Uθ(τ ;0) ≡ Q(τ : PWk) =

1√
n

n∑

j=1



Nj(τ)∑

i=1

(Rji)
`−1 −

(Rτ
jνj

)`

`



`=1,...,k

,

where Rji = Λ0(Wji), (i = 1, 2, . . . , νj) and Rτ
jνj

= Λ0(τ ∧Wjνj). The Rijs

and Rτ
iνj
s are generalized residuals (cf., Cox and Snell (1968)) in this BBS
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model. The limiting covariance matrix is obtained via

Σ(τ : PWk) =

[(∫ τ

0
Λ0(t)

`+`′−2 exp{−Λ∗0(t)} dΛ0(t)
)

`,`′=1,...,k

]
,

where Λ∗0(t) =
∫ t
0 p(u)λ0(u)du. A consistent estimator of the limiting covari-

ance matrix is

Σ̂(τ : PWk) =
1

n

n∑

j=1





(Rτ

jνj
)`+`′−1

`+ `′ − 1




`,`′=1,...,k


 .

Consequently, the asymptotic α-level “polynomial” test of H0 becomes:

Reject H0 if S (τ : PWk) ≡ Q(τ : PWk)
′Σ̂(τ : PWk)

−Q(τ : PWk) ≥ χ2

k ;α.

We demonstrate a few special cases of this test. If the smoothing order

is k = 1, we obtain the test statistic

S(τ : PW1) =

{∑n
j=1[Nj(τ)−Rτ

jνj
]
}2

∑n
j=1R

τ
jνj

. (5.20)

This is a generalization of the Pearson-type test statistic studied by Akritas

(1988). Furthermore, suppose we allow for right-censoring and set p(t) =

1, which results in the randomly right-censored model without covariates.

Denote the minimum of the failure time and the censoring variable for the

jth unit by Zj, and let δj be the correponding censoring indicator. If there

are no ties among the Zj’s, then (5.20) simplifies to

S(τ : PW1) =

[∑n
j=1(δj −Rτ

j )
]2

∑n
j=1R

τ
j

, (5.21)

where Rτ
j = Λ0(Zj ∧ τ). The statistic in (5.21) is that of Hyde (1977) for

right-censored data.
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An added bonus to this development of goodness-of-fit tests is that the

individual components of S(τ : PWk) are asymptotically χ21-distributed and

can be used as directional tests. For i = 1, . . . , k, the ith directional test

statistic is

Si(τ : PWk) =
Q2i (τ : PWk)

σ̂2i (τ : PWk)
,

where σ̂2i (τ : PWk) is the (i, i)th element of Σ̂(τ : PWk). Note that these

directional test statistics need not be independent of each other.

If one desires asymptotically independent directional tests, an alterna-

tive choice for the Ψ(·) process is obtained by replacing the polynomial-type

specification by orthogonal polynomials. In the classical density-based for-

mulation, Neyman (1937) obtained orthogonal polynomials by choosing the

components of Ψ to be orthonormal with respect to the density specified

under the null hypothesis. In the hazard-based formulation, this corresponds

to choosing the vector Ψ such that

∫ τ

0
Ψ(w)Ψ(w)′ exp

(
−
∫ w

0
p(u)λ0(u) du

)
λ0(w) dw = Ik,

where Ik is the identity matrix of order k. In the case of a constant proba-

bility of perfect repair, i.e., p(t) ≡ p, then the vector of interest is Ψ∗ which

satisfies the condition

∫ Λ0(τ)

0
Ψ∗(w)Ψ∗(w)′ exp(−pw) dw = Ik.

The Gram-Schmidt orthogonalization procedure may be applied to obtain the

elements of Ψ∗. In the limiting case τ → ∞, the Gram-Schmidt procedure
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produces

ψ∗i (w) = (−1)i−1√p
i−1∑

`=0

(
i− 1
`

)
(−wp)`
`!

, i = 1, . . . , k, (5.22)

where

(
i
`

)
is the combination of i objects taken ` at a time. The functions

in (5.22) are the scaled Laguerre polynomials. Note that ψ∗i (·) depends on the

unknown parameter p, which needs to be estimated. A consistent estimator of

p is p̂ = n/N•, where Nj = Nj(∞) and N• =
n∑

j=1

Nj. Consequently, the score

statistic is Q(τ ; ORk) = (Q1(τ ; ORk), Q2(τ ; ORk), . . . , Qk(τ ; ORk))
′ with

Qh(τ ; ORk) =
1√
n
(−1)h−1

√
p̂×

h−1∑

`=0





(
h− 1
`

)
(−p̂)`
`!

n∑

j=1




Nj∑

i=1

(Rji)
` −

(Rτ
jνj

)`+1

`+ 1





 .

What do we gain by using orthogonal polynomials? As in the case

of the “polynomial” test, the components of S(ORk) are χ
2
1-distributed and

can be used as directional tests. Whereas the directional tests based on the

polynomial specification are asymptotically dependent, the component test

statistics from this orthogonal specification are asymptotically independent.

Furthermore, simulation studies in Agustin and Peña (2001) demonstrated

that the directional components of the test based on the polynomial specifi-

cation tend to be anticonservative when the sample size is small, in contrast

to the behavior of the directional components of the test based on the orthog-

onal specification. Also, each component of the test based on the orthogonal

specification has the potential of detecting specific departures from the hy-

pothesized hazard rate. To cite an example, the simulation results in Agustin
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and Peña (2001) showed that S1(τ ; OR4) is sensitive against scale changes,

while the other components are not sensitive to these alternatives.

There are many other issues not discussed in this review pertaining to

this goodness-of-fit problem. For instance, there is the issue of how to choose

the smoothing order k in a data-dependent or adaptive manner. The resolu-

tion of this problem is still incomplete, but work is in progress. Furthermore,

there is the problem of testing that the distribution to the first failure in this

BBS model belongs to some pre-specified parametric family of distributions,

which is the situation of a composite null hypothesis. This case has been

dealt with in Agustin and Peña (2003) in the context of a generalized BBS

model.

References

Aalen, O. (1978), “Nonparametric inference for a family of counting pro-
cesses,” Annals of Statistics, 6, 701–726.

Aalen, O. and Husebye, E. (1991), “Statistical analysis of repeated events
forming renewal processes,” Statistics in Medicine, 10, 1227–1240.

Agustin, M. Z. N. and Peña, E. A. (1999), “Order statistic properties, random
generation, and goodness-of-fit testing for a minimal repair model,” J.
Amer. Statist. Assoc., 94, 266–272.

— (2001), “Goodness-of-fit of the distribution of time-to-first-occurrence in
recurrent event models,” Lifetime Data Anal., 7, 289–306.

Agustin, Z. and Peña, E. (2003), “A Basis Approach to Goodness-of-Fit
Testing in Recurrent Event Models,” Tentatively accepted by JSPI.

Akritas, M. (1988), “Pearson-type goodness-of-fit tests: the univariate case,”
Journal of the American Statistical Association, 83, 222–230.

Andersen, P., Borgan, O., Gill, R., and Keiding, N. (1993), Statistical Models
Based on Counting Processes, New York: Springer-Verlag.

28



Baxter, L., Kijima, M., and Tortorella, M. (1996), “A point process model for
the reliability of a maintained system subject to general repair,” Stochastic
Models, 12, 37–65.

Billingsley, P. (1968), Convergence of Probability Measures, New York: John
Wiley & Sons.

Block, H., Borges, W., and Savits, T. (1985), “Age-dependent minimal re-
pair,” J. Appl. Prob., 22, 51–57.

Brown, M. and Proschan, F. (1983), “Imperfect repair,” J. Appl. Prob., 20,
851–859.

Cox, D. and Snell, E. (1968), “A general definition of residuals,” Journal of
the Royal Statistical Society, 30, 248–275.

Dempster, A., Laird, N., and Rubin, D. (1977), “Maximum likelihood esti-
mation from incomplete data via the EM algorithm (with discussion),” J.
Roy. Statist. Soc. B, 39, 1–38.

Dorado, C. (1995), “On a General Repair Model for Repairable Systems,”
Ph.D. thesis, Florida State University.

Dorado, C., Hollander, M., and Sethuraman, J. (1997), “Nonparametric es-
timation for a general repair model,” Ann. Statist., 25, 1140–1160.

Doyen, L. and Gaudoin, O. (2002), “Models for assessing maintenance effi-
ciency,” In Mathematical Methods in Reliability: Communications of the
3rd International Conference, Eds. Langseth, H. and Lindqvist, B., 207–
210.

Fleming, T. and Harrington, D. (1991), Counting Processes and Survival
Analysis, New York: Wiley.

Gill, R. (1980), “Nonparametric Estimation Based on Censored Observa-
tions of a Markov Renewal Process,” Z. Wahrscheinlichkeitstheorie verw.
Gebiete, 53, 97–116.

Gill, R. and Johansen, S. (1990), “A survey of product-integration with a
view toward application in survival analysis,” Ann. Statist., 18, 1501–1555.

Gill, R. D. (1981), “Testing with replacement and the product-limit estima-
tor,” The Annals of Statistics, 9, 853–860.

Hall, W. and Wellner, J. (1980), “Confidence bands for a survival curve from
censored data,” Biometrika, 67, 133–143.

29



Hollander, M., Presnell, B., and Sethuraman, J. (1992), “Nonparametric
methods for imperfect repair models,” Ann. Statist., 20, 879–896.

Hyde, J. (1977), “Testing survival under right censoring and left truncation,”
Biometrika, 64, 225–230.

Jacod, J. (1975), “Multivariate point processes: Predictable projection,
Radon-Nikodym derivatives, representation of martingales,” Z. Wahrsch.
verw. Geb, 31, 235–253.

Kijima, M. (1989), “Some results for repairable systems with general repair,”
J. Appl. Prob., 26, 89–102.

Koziol, J. and Byar, D. (1975), “Percentage points of the asymptotic dis-
tributions of one and two sample K-S statistics for truncated or censored
data,” Technometrics, 17, 507–510.

Last, G. and Szekli, R. (1998), “Asymptotic and monotonicity properties of
some repairable systems,” Adv. in Appl. Probab., 30, 1089–1110.

Neyman, J. (1937), ““Smooth test” for goodness of fit,” Skand. Aktuarietid-
skrift, 20, 149–199.

Nielsen, G., Gill, R., Andersen, P., and Sorensen, T. (1992), “A counting
process approach to maximum likelihood estimation in frailty models,”
Scand. J. Statist., 19, 25–43.

Peña, E. A. (1998a), “Smooth goodness-of-fit tests for composite hypothesis
in hazard based models,” Ann. Statist., 26, 1935–1971.

— (1998b), “Smooth goodness-of-fit tests for the baseline hazard in Cox’s
proportional hazards model,” J. Amer. Statist. Assoc., 93, 673–692.

Peña, E. A., Strawderman, R. L., and Hollander, M. (2001), “Nonparametric
estimation with recurrent event data,” J. Amer. Statist. Assoc., 96, 1299–
1315.

Rayner, J. and Best, D. (1989), Smooth Tests of Goodness of Fit, New York:
Oxford University Press.

Resnick, S. (1994), Adventures in Stochastic Processes, Boston: Birkhauser.

Sellke, T. (1988), “Weak convergence of the Aalen estimator for a censored
renewal process,” In Statistical Decision Theory and Related Topics IV
(eds., S. Gupta and J. Berger), 2, 183–194.

Stadje, W. and Zuckerman, D. (1991), “Optimal maintenance strategies for
repairable systems with general degree of repair,” J. Appl. Prob., 28, 384–
396.

30



Wang, H. and Pham, H. (1996), “A quasi-renewal process and its application
in imperfect maintenance,” International Journal of System Science, 27,
1055–1062.

Wang, M. C. and Chang, S. H. (1999), “Nonparametric estimation of a re-
current survival function,” Journal of the American Statistical Association,
94, 146–153.

31



0 100 200 300 400 500 600 700

0
5

10
15

20

MMC Data Set

Calendar Time

Un
it N

um
be

r

Migrating Moto Complex (MMC) Time, in minutes

Su
rv

ivo
r P

ro
ba

bi
lity

 E
st

im
at

e

50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IIDPLE
WCPLE
FRMLE

Figure 1: Pictorial representation of the MMC data set and plots of the three
survivor function estimates for this data set. IIDPLE is the estimate obtained
by assuming the no-frailty renewal model, WCPLE is the estimate of Wang
and Chang (1999), and FRMLE is the gamma frailty-based semiparametric
estimate. The maximum likelihood estimate of the frailty parameter α under
the gamma frailty model is α̂ = 10.17562, or, equivalently, ξ̂ = α̂/(1 + α̂) =
0.9105.
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