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Summary. In this paper, several resampling schemes to estimate the sam-

pling distributions of median estimators of the inter-event time of a recurrent

event are introduced and studied through simulations. Two types of recur-

rent event models are considered: first is a model where the inter-event times

are independent and identically distributed, and second is a model where the

inter-event times are associated, with the association arising from a gamma

frailty model. The procedures studied are anchored on estimators proposed

in Peña, Strawderman and Hollander (2001, Journal of the American Statis-

tical Association 96, 1299-1315) and Wang and Chang (1999, Journal of the

American Statistical Association 94, 146-153). The resampling procedures
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are then employed to analyze a data set pertaining to hospital readmission

of patients with colorectal cancer.

Key words: Gamma frailty model; resampling schemes; sum-quota data

accural.

1. Introduction

Recurrent event data are ubiquitous in longitudinal studies arising in a wide

variety of settings, such as biomedicine, psychiatry, engineering, or sociology.

Some examples of recurrent events are repeated hospitalization due to a

chronic disease, epileptic seizures, small bowel motility in gastroenterology,

depression, breakdown of a mechanical or electronic system, stoppage of a

nuclear power plant, or auto insurance claims.

Statistical inference in the presence of recurrent event data has been con-

sidered by several authors such as Gill (1981), Vardi (982a),Vardi (982b) ,

McClean and Devine (1995), Soon and Woodroofe (1996), Wang and Chang

(1999) (WC), and Peña et al. (2001) (PSH). A main aspect with this type of

data is the sum-quota accrual scheme which leads to an informative stopping

rule as well as an informative censoring mechanism. Except in PSH (2001),

most papers have used restrictive data accrual and censoring schemes for

recurrent event data to avoid the two difficulties mentioned above. In PSH

(2001) it was assumed that the interoccurrence times represent independent

and identically distributed (i.i.d.) observations from an unknown continu-

ous distribution F , and that each subject is observed for a possibly random

period of time. As a consequence, the number of event occurrences for a

subject or unit is a random variable whose distribution depends on, hence

informative about, F . Moreover, the last observation for each subject is al-

2



ways right-censored, with the censoring variable depending on the length of

the observation period and on the previous interoccurrence times for that

subject, rendering the censoring mechanism to become informative.

This model is quite reasonable in engineering and reliability settings, but

in the biomedical context it is somewhat restrictive because in biomedical

settings (i) the distribution of the time of the first event may differ from the

interoccurrence distribution for succeeding events; (ii) the interoccurrence

times may be correlated; and (iii) the interoccurrence times may depend on

relevant covariates. For problem (i) the WC (1999) and PSH (2001) estima-

tors circumvented this problem by assuming that the initial occurrence of the

event is also the criterion for admission into the study. For problem (ii) the

WC (1999) estimator or another estimator proposed in PSH (2001) under the

case where the within-subject interoccurrence times follow a gamma frailty

model may be utilized. Finally, extensions of survival models based on the

Cox proportional hazards approach may be employed to take problem (iii)

into account (cf., Andersen and Gill (1982), Wei et al. (1989), and Prentice

et al. (1981), among others).

The major goal of this paper is to study bootstrapping schemes for es-

timating the sampling distribution of estimators of the median of the event

interoccurrence time distribution in the presence of recurrent event data. In

particular, this will enable us to estimate standard errors of the estimators,

and thereby construct bootstrap confidence intervals for the median. Ul-

timately, this will provide a mechanism for comparing the median survival

times for different groups of subjects, the grouping possibly arising from the

values of covariates.
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We have organized this paper as follows. In section 2 we introduce no-

tation and present the WC (1999) and PSH (2001) estimators. Different

bootstrapping schemes are described in section 3 under the the i.i.d. model

and a correlated interoccurrence times model. In section 4 a simulation is

used to compare and discuss the statistical properties of median survival

time estimated using the different bootstrap plans. Section 5 describes the

software developed to estimate the bootstrap confidence intervals of median

survival time. Finally, in Section 6 we apply these procedures to a data set of

hospitality readmissions in patients with colorectal cancer. Our conclusions

are given in Section 7.

2. Estimation of survival function

2.1 Mathematical Setting

We suppose that n independent subjects (e.g., units) are available in the

study. For the ith subject, we denote the successive interoccurrence times of

the recurrent event of interest by {Tik, k = 1, 2, . . .}. We will first assume that

the event interoccurrence times are i.i.d. nonnegative random variables with a

common absolutely continuous distribution function F (t) = P{Tij ≤ t}. We

assume that monitoring of the ith subject ceases at a possibly random time

τi, where τ1, τ2, . . . , τn are i.i.d. with a common distribution function G(w) =

P{τi ≤ w}. We also assume that τi and Tij are mutually independent. We

denote by Gn(t) the empirical distribution of the τi’s.

For each i = 1, . . . , n, let Si0=0 and Sij =
j∑

l=1

Tij, j = 1, 2, . . . . The

number of event occurrences for the ith unit is

Ki = max{k ∈ {0, 1, ...} : Sik ≤ τi}, (1)
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and the observable random variables for the ith unit are

(Ki, τi, Ti1, Ti2, . . . , TiKi
, τi − SiKi

). (2)

However, as pointed out in the Introduction, the i.i.d. assumption is re-

strictive in biomedical settings, so we also need to consider other models.

A specific type of model that results in correlated within-subject interoc-

currence times is a multiplicative frailty model (cf., Andersen et al. (1993);

Murphy (1995)). In this model it is postulated that there exists for each

subject an unobservable positive-valued frailty Zi such that, conditionally

on Zi = zi, the interoccurrence times Ti1, Ti2, . . . are i.i.d. with common con-

ditional survivor function

F̄ (t | Zi = z) = [F̄0(t)]
z = exp

(
−z

∫ t

0

λ0(u)du

)
(3)

where λ0(·) is the hazard function associated with a baseline survivor function

F̄0(·). The frailties Z1, Z2, . . ., Zn are assumed to be i.i.d. from an unknown

distribution function H. In general, the Z’s are not observed, so we are

interested in estimating the marginal survivor of Tij which under this model

is given by

F̄ (t) = E {exp(−Z1Λ0(t))} (4)

where Λ0(t) = − log[F̄0(t)] is the cumulative hazard function of F̄0.

A common choice of the unknown frailty distribution H is a gamma

distribution with shape and scale parameters both equal to an unknown

parameter α. In this case, the common marginal survivor function F̄ in (4)

becomes

F̄ (t) =

[
α

α + Λ0(t)

]α

. (5)
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The parameter α controls the degree of association between interoccurrence

times within subject. In particular, as α increases (decreases), association

between interoccurrence times decreases (increases). Letting α −→ ∞, we

obtain a model with independent interoccurrence times in which the Tij has

a common survivor function of F̄0.

2.2 PSH estimator of F̄

Peña et al. (2001) developed a nonparametric maximum likelihood esti-

mator of the inter-event time survivor function under the assumption of i.i.d.

model. This generalizes the product-limit estimator to the situation where

the event is recurrent. To describe this estimator, we first need to introduce

some notation. For a given calendar time s and a gap time t, we define by

Ki(s) =
∑∞

j=1 I{Sij ≤ s};

N(s, t) =
∑n

i=1

∑Ki(s)
j=1 I{Tij = t};

Y (s, t) =
∑n

i=1

[∑Ki(s−)
j=1 I{Tij ≥ t}+ I{min(s, τi)− SiKi(s−) ≥ t}

]
.

The PSH (2001) generalized product-limit estimator of the common survivor

function F̄ of the event interoccurrence times is given by

ˆ̄F (s, t) =
∏

{w≤t}

[
1− N(s, ∆w)

Y (s, w)

]
. (6)

If s = ∞, then a more simplified form is obtained for in this case Ki(s−) =

Ki. The resulting simplified estimator is the one utilized in the simulations

and numerical illustrations.

PSH (2001) also proposed an estimator (referred to as FRMLE in their

paper) of the common marginal distribution of the interoccurrence time dis-

tribution in the case of correlated interoccurrence times induced by a gamma
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frailty model. They showed that the estimation of α and Λ0 of (5) can be

obtained via the maximization of the marginal likelihood function of α and

Λ0(·) and with an implementation of the expectation-maximization (EM)

algorithm [see, for details, PSH (2001)]. This estimator of (5) is of form

˜̄F (s, t) =

[
α̂

α̂ + Λ̂0(s, t)

]α̂

(7)

where Λ̂0(s, t) is an estimator of the marginal cumulative hazard function

Λ0(t).

2.3 WC estimator of F̄

Wang and Chang (1999) proposed an estimator of the common marginal

survivor function in the case where within-unit interoccurrence times are

correlated. They consider a correlation structure which is quite general, and

includes as special cases both the i.i.d. and gamma frailty models. Setting

all their weights to be equal to 1, their estimator is described below. For the

ith unit, define

K∗
i = I{Ki = 0}+ KiI{Ki > 0}

and define the processes

d∗(t) =
∑n

i=1
1

K∗
i

∑Ki

j=1 I{Tij = t};

R∗(t) =
∑n

i=1
1

K∗
i

[∑Ki

j=1 I{Tij ≥ t}+ I{τi − SiKi
≥ t}I{Ki = 0}

]
,

and with T denoting the set of distinct observed complete interoccurrence

times for the n units. The WC estimator of F̄ is given by

Ŝ(t) =
∏

{Tk∈T ; Tk≤t}

[
1− d∗(Tk)

R∗(Tk)

]
. (8)
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This estimator possesses less bias than the generalized product-limit esti-

mator when interoccurrence times are correlated within subjects. For more

discussions concerning these estimators and the comparisons of their prop-

erties, refer to PSH (2001).

3. Bootstrapping Schemes

We will estimate the sampling distribution of estimators of the median sur-

vival time according to several competing bootstrap schemes described below.

Arguably, the new contribution of the present paper is the examination of

the question of how to do bootstrapping in the presence of recurrent event

data arising from a sum-quota data accrual scheme. In the schemes below,

the number of bootstrap replications is denoted by B.

Plan I: (Bootstrapping the observed data)

Obtain B i.i.d. samples of form

{(K∗
i , τ

∗
i , T ∗

i1, T
∗
i2, . . . , T

∗
iKi

, τ ∗i − S∗iKi
), i = 1, 2, . . . , n},

with replacement, from the observed sample

{(Ki, τi, Ti1, Ti2, . . . , TiKi
, τi − SiKi

), i = 1, . . . , n}.

For each sample, compute the generalized PLE ˆ̄F of F̄ , and compute the

resulting estimator of the median, i.e., median( ˆ̄F ). From these B median

estimates, a bootstrap estimate of the sampling distribution of the median

estimator is obtained. Consequently, a bootstrap estimate of the standard

error of the median estimator can be obtained, and a bootstrap confidence

interval could also be constructed.

Plan II: (Bootstrapping T ∗
ij’s from the PSH estimator)
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Let ˆ̄F be the generalized PLE estimator of F̄ . For i = 1, . . . , n, a boot-

strap sample is generated as follows:

Step 1. Take τ ∗i = τi;

Step 2. From the distribution ˆ̄F , continue generating an i.i.d sequence

of T ∗
ij’s until K∗

i where

K∗
i∑

j=1

T ∗
ij ≤ τ ∗i <

K∗
i +1∑

j=1

T ∗
ij.

Step 3. The bootstrap sample for the ith unit is

(K∗
i , τ

∗
i , T ∗

i1, T
∗
i2, . . . , T

∗
iK∗

i
, τ ∗i − S∗iK∗

i
)

where S∗ij =
∑K∗

i
l=1 T ∗

il.

Step 4. For this bootstrap sample, compute the generalized PLE ˆ̄F of

F̄ , and compute the associated median estimate.

Repeat Steps 1–4 a total of B times. The B estimates of the median pro-

vide data for obtaining the bootstrap estimates of the sampling distribution,

standard error, and for constructing a bootstrap confidence interval.

Plan III: (Bootstrapping T ∗
ij’s from ˆ̄F and τ ∗i ’s from Gn)

This scheme is analogous to that of Plan II, except that for each bootstrap

sample, τ ∗i , i = 1, 2, . . . , n, is an i.i.d. sample from the empirical distribution

Gn.

Plan IV: (Bootstrapping T ∗
ij’s from WC estimator)

Let Ŝ be the WC estimator of F̄ . For i = 1, . . . , n, a bootstrap sample is

generated as follows:

Step 1. Take τ ∗i = τi;
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Step 2. From the distribution Ŝ, continue generating an i.i.d sequence

of T ∗
ij’s until K∗

i where

K∗
i∑

j=1

T ∗
ij ≤ τ ∗i <

K∗
i +1∑

j=1

T ∗
ij.

Step 3. The bootstrap sample for the ith unit is

(K∗
i , τ

∗
i , T ∗

i1, T
∗
i2, . . . , T

∗
iK∗

i
, τ ∗i − S∗iK∗

i
)

where S∗ij =
∑K∗

i
l=1 T ∗

il.

Step 4. For this bootstrap sample, compute the WC estimator Ŝ of F̄ ,

and compute the associated median estimate.

Repeat Steps 1–4 a total of B times. The B estimates of the median pro-

vide data for obtaining the bootstrap estimates of the sampling distribution,

standard error, and for constructing a bootstrap confidence interval.

Plan V: (Bootstrapping T ∗
ij’s from Ŝ and τ ∗i ’s from Gn)

This scheme is analogous to that of Plan IV, except that for each boot-

strap sample, τ ∗i , i = 1, 2, . . . , n, is an i.i.d. sample from the empirical distri-

bution Gn.

Plan VI: (Semiparametric Bootstrap)

Let ˜̄F be the FRMLE estimator of F̄ .

Step 1. Given the data, estimate α̂, the frailty parameter, and Λ̂0, the

cumulative hazard function associated with F̄0(t). Then, estimate the F̄0

distribution using

ˆ̄F0(t) =
∏

{j: tj≤t}

[
1−∆Λ̂0(tj)

]
. (9)
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Step 2. Generate Z∗
1 , Z

∗
2 , . . . , Z

∗
n according to a Gamma(α̂, α̂)

For i = 1, . . . , n, a bootstrap sample is generated as follows:

Step 3. Take τ ∗i = τi;

Step 4. From ˆ̄F
Z∗i
0 , continue generating an i.i.d sequence of T ∗

ij’s until

K∗
i where

K∗
i∑

j=1

T ∗
ij ≤ τ ∗i <

K∗
i +1∑

j=1

T ∗
ij.

Step 5. The bootstrap sample for the ith unit is

(K∗
i , τ

∗
i , T ∗

i1, T
∗
i2, . . . , T

∗
iK∗

i
, τ ∗i − S∗iK∗

i
)

where S∗ij =
∑K∗

i
l=1 T ∗

il.

Step 6. For this bootstrap sample, compute FRMLE ˜̄F of F̄ , and com-

pute the associated median estimate.

Repeat Steps 3–6 a total of B times. The B estimates of the median pro-

vide data for obtaining the bootstrap estimates of the sampling distribution,

standard error, and for constructing a bootstrap confidence interval.

Plan VII: (Semiparametric bootstrap and bootstrapping τ ∗i ’s from Gn)

This scheme is analogous to that of Plan VI, except that for each boot-

strap sample, τ ∗i , i = 1, 2, . . . , n, is an i.i.d. sample from the empirical distri-

bution Gn.

4. Simulation Results

To assess the finite-sample performance of the proposed bootstrap schemes

a simulation was performed. The data were generated under two scenar-

ios: i.i.d. and gamma frailty models. To simulate the samples under the

i.i.d. model, we first generate the monitoring time of each subject, τi, using
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G(t|ν) = 1−exp(−t/ν), and then we simulate the interoccurrence times, Tij,

through F (t|θ) = 1 − exp(−t/θ). To simulate the samples under a gamma

frailty model we also generate the monitoring times using the same G distri-

bution and F0(t|θ) = 1− exp(−t/θ).

For each sample, median survival time has been estimated as we have

described for each of the resampling schemes. The true median survival time

under the i.i.d. model is −θ log(0.5) and under the gamma frailty model is

θα(1− 0.51/α)

0.51/α
.

We have simulated 2,000 samples and 500 bootstrap replicates (B=500). For

each sample, the mean square error (MSE) and the 95% bootstrap percentile

confidence interval (BPCI) have been calculated. In addition, for each BPCI

the coverage percentage was estimated by the proportion of times the BPCI

covered the true median survival time in the 2,000 samples. Mean, median,

and variance of the length of the BPCI bootstrap intervals have also been

calculated. Samples were generated using n ∈ {15, 50, 80}, θ ∈ {1/3, 1/6}
and ν = 1, and for the correlated case α ∈ {6, 2}. The simulation was

carried out with Fortran90. DRNUN subroutine from numerical libraries

has been used as a random number generator. Tables obtained are reported

for θ=1/3 because results for θ=1/6 show similar patterns.

[Table 1 about here.]

The results of the simulation are summarized in Table 1 and 2. Table 1

gives the results for the i.i.d. model except for the plans VI and VII, because

the results for these schemes showed poor coverages (less than 80%) and large
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biases (around 30% of the MSE). Table 2 gives the results for the correlated

case except for the plans I, II and III, since these plans also present large

biases (around 20%) and poor coverages (less than 80%). Figure 1 shows

the observed distribution of the median survival time under an i.i.d. model

and under a gamma frailty model, respectively.

In all simulations, as the sample size increases we obtain better coverage,

less bias and less MSE, as is intuitively expected. From Table 1 we see that,

in terms of MSE, the best schemes for the i.i.d. case are plans I, II and III.

However, plan I has a poorer coverage than both plans II and III. Regarding

the length of the BPCI, the three plans show similar average size, but both

plans II and III have the smallest variance. These conclusions are the same

for all sample sizes and for both values of θ. When we examine the observed

distribution of the median survival under the i.i.d. model (Figure 1, bottom

panels), we immediately notice that plans I and III have less variance than

plan V. We can also see that the three plans obtain a sample distribution

centered at the true median survival. Similar results are obtained for sample

sizes set equal to 15 and 80.

[Table 2 about here.]

From Table 2 we see that the best schemes for the correlated case in

terms of MSE are both semiparametric bootstrap schemes (plans VI and VII).

These plans have also the shortest BPCIs and smallest variances. Evidently,

the performance of all plans degrades as the level of association among the

within-unit interoccurrence times increases. These conclusions are the same

for all sample sizes and for both values of θ. Figure 1 (top panels) shows the
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observed distribution of the median survival under a gamma frailty model.

Examining these graphs, we see that resampling plan III outperforms plan

V in in the i.i.d. model, whereas plan VII is best under the gamma frailty

model. The performance of the resampling plan using the WC estimator

seems intermediate between those based on the PSH and the FRMLE under

the i.i.d. and the gamma frailty model, so in a sense this scheme may provide a

robust procedure when uncertain about the model that generated the data.

And this robustness property was the intent of Wang and Chang’s (1999)

proposing this estimator.

[Figure 1 about here.]

5. Software developed

González et al. (2002) have created an R package which calculates WC and

PSH estimators called survrec. We have also written a function which is now

included in this package which implements the bootstrap plans mentioned

above (survdiffr function). Version 1.1-1 of survrec which is available at

http://www.r-project.org/ contains this function. This function allows the

calculation of the normal, studentized, percentile, and bias-corrected acceler-

ated (BCa) confidence intervals. For this, we use the boot package included

in the R project.

6. Application to a Hospital Readmission Data

The median survival time of data from a study concerning hospital readmis-

sions of patients with colorectal cancer have been compared. To do so, we

will use some of the bootstrap plans discussed in the preceding sections. The

aim of the analyzed data is to investigate whether there are differences re-

garding the time of the recurrent hospitalizations due to social-demographic
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or clinical outcomes. Four hundred and three patients with colon and rec-

tum cancer have been included in the study. Information about their sex

(male or female), age (≤ 60, 60-74 or ≥ 75), and tumoral stage using Dukes

classification (A-B, C, or D) have been recorded. All patients included in

the study have been operated between January 1996 and December 1998.

For each patient, we have considered this date as the beginning of the obser-

vational period. All patients were followed until June 2002. Consequently,

the length of the monitoring period can differ for each patient, depending on

its surgery date. The first interoccurrence time has been considered as the

time between the surgical intervention and the first hospitalization related

to cancer. The following interoccurrence times have been considered as the

difference between the last hospitalization and the current one. Only read-

missions related to cancer have been considered. This data can be obtained

upon request from the first author.

[Table 3 about here.]

Table 3 shows hospital readmission distribution for patients included in

the study. We can observe that most of the patients have none or one readmis-

sion and only about five percent of subjects have more than 5 readmissions.

We can also see that male patients have more readmissions than women,

the number of hospitalizations decreases when age increases, and when the

tumoral stage becomes more severe, the number of readmissions increases.

We started our analysis of this data set by first employing the differ-

ent bootstrap schemes for the sex variable. Table 4 shows a comparison

among males and females. The agreement with the simulation results can
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be seen. Plans II and III show the narrowest bootstrapped confidence inter-

vals, followed by plan I. Both plans IV and V show the longest bootstrapped

confidence intervals. If we can accept an i.i.d. model, plans II and III are

the most appropriate for making decisions. In our example, under this as-

sumption we could conclude that there are differences between the median of

readmission times for males and females because confidence intervals do not

overlap. We would obtain the same conclusion regarding plan I. However, we

will conclude that no sex differences exists if we utilized either plans IV or

V. Because of this differing conclusions, it is imperative that we determine if

the i.i.d. model is viable.

[Table 4 about here.]

Peña et al. (2001) suggested that since formal statistical methods for

checking this i.i.d. assumption are not yet available, a graphical method may

be employed to assess the viability of the i.i.d. model by comparing the agree-

ment among the PSH, WC, and FRMLE estimators. The idea is if the model

is viable, then these three estimators should not differ too much from each

other. Employing this idea we estimated the distribution function of read-

mission using WC, PSH, and FRMLE estimators in order to compare them.

The resulting estimates of the readmission time distribution are presented in

Figure 2. We have displayed the estimates of the distribution function instead

of the survival function because in this study, the investigator is interested

in analyzing the probability of readmission instead of the probability of not

visiting the hospital. A considerable difference between these three estimates

is obviously evident. The difference is clear between PSH and both WC and
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FRMLE estimators. Thus, basing on the idea of Peña, Strawderman and

Hollander’s idea, we may conclude that the i.i.d. model is not appropriate

for this readmission data set. In making practical conclusions, it behooves

therefore to use the inference obtained from the gamma frailty model.

[Figure 2 about here.]

Table 5 shows the comparison among the variables analyzed using both

FRMLE and WC estimators. We observe that the median survival time of

readmission for patients diagnosed with stage D is smaller than for patients

diagnosed with stage A-B or C, since in both cases the BPCI do not overlap.

However, there are no differences in median time to readmission across gen-

der, nor with respect to the age of the patients. The results using FRMLE

or WC estimators agree in this context.

[Table 5 about here.]

7. Concluding Remarks

In this paper we have studied several bootstrapping schemes to estimate

the sampling distribution of median survival time estimators in the presence

of recurrent event data and in consideration of the sum-quota data accrual

which induces informative stopping and censoring. We proposed several re-

sampling plans under the i.i.d. model and a correlated interoccurrence times

model. From this study, we conclude that the best bootstrapping scheme to

estimate the median survival sample distribution under an i.i.d. model are

plans I, II or III. For a correlated interoccurrence times models, both semi-

parametric plans (VI and VII) are the best ones. Plan IV, which is anchored

in using the Wang and Chang (1999) estimator of the inter-event survivor
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function appears to offer a robust procedure when uncertain about the model

that generated the data. Based on the simulation studies, it appears that

bootstrapping from the empirical distribution of the monitoring times do not

provide improvements. The results of this study provides impetus to further

study resampling schemes in this recurrent event setting from a theoretical

context, and this will be attempted in future research.
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i.i.d. model (alpha=∞)

gamma frailty model gamma frailty model

gamma frailty model gamma frailty model

i.i.d. model (alpha=∞)

Figure 1. Observed distribution of the median survival for a i.i.d. model
and a gamma frailty model in 1,000,000 replications, for selected bootstrap
plans. Each panel shows the observed distribution for all combinations of
θ and α that we have simulated. Vertical lines represent the true median
survival time.
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Figure 2. Plots of the three distribution function estimators (PSH,WC and
FRMLE) for the hospitality readmission data set.
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95% bootstrap percentile
confidence interval

Length
MSE % due % Emp. Var.
(×106) to Bias Cov. Mean Median (×106)

n=15
Plan I 2,836 8.1 88.4 0.19 0.17 10,625
Plan II 2,914 11.3 94.3 0.21 0.19 10,760
Plan III 2,916 11.9 95.2 0.22 0.20 11,748
Plan IV 7,037 10.3 93.6 0.32 0.28 33,831
Plan V 6,879 10.4 94.2 0.32 0.28 35,398
n=50
Plan I 667 3.1 93.3 0.10 0.10 772
Plan II 662 3.7 94.6 0.10 0.10 653
Plan III 662 3.7 94.8 0.10 0.10 668
Plan IV 1418 3.2 94.9 0.15 0.15 2050
Plan V 1425 3.2 94.5 0.15 0.15 2026
n=80
Plan I 391 2.1 94.1 0.08 0.08 357
Plan II 385 2.5 95.4 0.08 0.08 293
Plan III 387 2.6 95.2 0.08 0.08 290
Plan IV 847 1.9 95.3 0.12 0.12 903
Plan V 847 1.9 95.4 0.12 0.12 941

Table 1
Simulation results for 2,000 samples and 500 bootstrap replicates under the
i.i.d. model. Mean square error (MSE) (×106) and proportion of MSE due
to bias. Coverage and mean, median and variance of the length (×106) of

95% bootstrap percentile confidence intervals. Results for the first five
bootstrap schemes, varying sample sizes, θ = 1/3 and ν=1.
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95% bootstrap
confidence interval

Length
MSE % due % Emp. Var.
(×106) to Bias Cov. Mean Median (×106)

α=2
n=15 Plan IV 25,760 15.2 93.4 0.57 0.45 169,858

Plan V 23,622 15.6 93.8 0.58 0.46 169,358
Plan VI 18,764 7.2 92.1 0.45 0.34 131,154
Plan VII 18,858 7.3 92.3 0.45 0.34 135,060

n=50 Plan IV 4,569 5.4 94.2 0.26 0.24 15,422
Plan V 4,569 5.5 94.2 0.26 0.23 16,193
Plan VI 2,582 0.1 93.8 0.20 0.19 5,187
Plan VII 2,563 0.1 94.1 0.20 0.19 5,262

n=80 Plan IV 2,653 5.6 94.8 0.20 0.19 4,262
Plan V 2,679 5.8 95.1 0.20 0.19 4,346
Plan VI 1,676 0.2 94.4 0.16 0.15 2,069
Plan VII 1,684 0.2 94.8 0.16 0.15 2,009

α=6
n=15 Plan IV 12,034 12.7 92.9 0.40 0.33 71,607

Plan V 11,549 12.9 93.1 0.41 0.33 70,850
Plan VI 9,276 16.7 92.2 0.31 0.26 38,316
Plan VII 9,217 16.9 92.7 0.31 0.26 46,671

n=50 Plan IV 2,093 4,0 93.7 0.18 0.17 3,192
Plan V 2,085 4.1 93.9 0.18 0.17 3,523
Plan VI 1,274 2.0 93.7 0.14 0.13 1,537
Plan VII 1,271 2.0 93.5 0.14 0.13 1,514

n=80 Plan IV 1,208 3.7 95.3 0.14 0.14 1,579
Plan V 1,217 3.9 95.4 0.14 0.14 1,584
Plan VI 727 1.0 95.3 0.11 0.10 788
Plan VII 725 1.0 95.2 0.11 0.10 777

Table 2
Simulation results for 2,000 samples and 500 bootstrap replicates under a

gamma frailty model with shape and scale parameter set equal to α=2 and
α=6. Mean square error (MSE) (×106) and proportion of MSE due to bias.

Coverage and mean, median, and variance of the length (×106) of 95%
bootstrap percentile confidence intervals. Results for the last four bootstrap

plans, varying sample sizes, θ = 1/3 and ν=1.
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Number of Hospitalizations
0 1 2 3 4 ≥5 mean

Sex
Male 112(46.9) 57(23.8) 34(14.2) 13(5.4) 10(4.2) 13(5.4) 2.3
Female 87(53.0) 48(29.3) 11(6.7) 8(4.9) 5(3.0) 5(3.0) 1.9

Age
<60 47(42.3) 32(28.8) 11(9.9) 7(6.3) 8(7.2) 6(5.4) 2.4
60-74 98(50.5) 44(22.7) 27(13.9) 12(6.2) 7(3.6) 6(3.1) 2.1
≥75 54(55.1) 29(29.6) 7(7.1) 2(2.0) 0(0.0) 6(6.1) 1.8

Dukes
A-B 103(57.2) 43(23.9) 16(8.9) 8(4.4) 7(3.9) 3(1.7) 1.8
C 67(45.3) 40(27.0) 20(13.5) 7(4.7) 6(4.1) 8(5.4) 2.2
D 29(38.7) 22(29.3) 9(12.0) 7(3.2) 4(1.8) 8(3.7) 2.7

Table 3
Distribution of the variables analyzed in hospital readmission data set.
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Male Female
Median Bootstrap Median Bootstrap

Estimator Survival CI95% Survival CI95%
Plan I PSH 343 (219,483) 748 (504,1437)
Plan II PSH 343 (230,436) 748 (468,1288)
Plan III PSH 343 (242,436) 748 (462,1268)
Plan IV WC 909 (524,1230) 1222 (731,2175)
Plan V WC 909 (523,1171) 1222 (721,2175)
Plan V FRMLE 799 (539,1171) 1427 (755,2175)
Plan V FRMLE 799 (539,1171) 1427 (755,2175)

Table 4
Median survival comparison among males and females using the bootstrap

plans mentioned in section 3 for the hospital readmission data.
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Semiparametric (plan VII) T ∗ij from WC (plan V)
Median Median

α (days) CI95% (days) CI95%
Sex

Male 0.99 799 (539,1171) 909 (524,1230)
Female 1.50 1427 (755,2175) 1222 (721,2175)

Age
<60 1.22 799 (415,983) 718 (474,1134)
60-74 1.05 1230 (597,1427) 1104 (646,1547)
≥75 0.94 1188 (551,2175) 1188 (510,2175)

Dukes
A-B 1.11 2175 (1188,∞) 1736 (1188,2175)
C 1.45 1073 (450,1288) 1028 (489,1325)
D 2.19 199 (109,297) 199 (161,350)

Table 5
Median survival time and 95% bootstrap percentile confidence interval

(CI95%) of readmission time for the covariate analyzed using both
semiparametric bootstrap and bootstrapping T ∗

ij from WC schemes.
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