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Abstract

This paper considers the problem of estimating the dispersion parameter in a Gaussian model
which is intermediate between a model where the mean parameter is fully known (fixed) and
a model where the mean parameter is completely unknown. One of the goals is to understand
the implications of the two-step process of first selecting a model among a finite number of
sub-models, and then estimating a parameter of interest after the model selection, but using
the same sample data. The estimators are classified into global, two-step, and weighted-type
estimators. While the global-type estimators ignore the model space structure, the two-step
estimators explore the structure adaptively and can be related to pre-test estimators, and the
weighted estimators are motivated by the Bayesian approach. Their performances are compared
theoretically and through simulations using their risk functions based on quadratic loss function.
It is shown that in the variance estimation problem efficiency gains arise by exploiting the
sub-model structure through the use of two-step and weighted estimators, especially when the
number of competing sub-models is few; but that this advantage may deteriorate or be lost
altogether for some two-step estimators as the number of sub-models increases or as the distance
between them decreases. Furthermore, it is demonstrated that weighted estimators outperform
two-step estimators when there are many competing sub-models or when the sub-models are
close to each other, whereas two-step estimators are preferred when the sub-models are highly
distinguishable. The results have implications regarding model averaging and model selection
issues.
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1 Model Selection and Inference

In a variety of settings in statistical practice, it is common to encounter the following situation:

we observe data X from a distribution F which is only known to belong to one of p (possibly

nested) sub-models M1,M2, . . . ,Mp; and given X, we want to estimate a common parameter,

or a functional, of F , denoted by τ(F ). For example, we might observe X ∼ F where F belongs

to either the gamma or Weibull family of distributions, and wish to estimate the mean of F . Or,

in a multiple regression setting with p possible predictors, we might want to choose one of the 2p

competing sub-models (Breiman (1992); Zhang (1992b,a)), and then estimate a common parameter

such as dispersion or the conditional distribution function of the response variable.

The most frequent strategies for estimating τ(F ) are: (i) utilizing an estimator developed under

a larger model M, which contains all sub-models; (ii) using data X to first choose a sub-model,

and then applying the estimator developed for the chosen sub-model to the same data X; and

(iii) assigning to each sub-model a plausibility measure, possibly using X, and then forming a

weighted combination of the estimators developed under each of the sub-models. In this paper

we are interested in determining whether there is a preferred strategy, and whether that preferred

strategy depends on the interplay among the competing sub-models, and possibly the parameter

we are estimating.

Issues pertaining to the two-step process of inference after model selection and the consequences

of “data double-dipping” in strategy (ii) have been discussed in the econometric literature (Judge,

Bock, and Yancey (1974), Leamer (1978), Yancey, Judge, and Mandy (1983), and Wallace (1977)).

To further investigate these issues in other settings see also Potscher (1991), Buhlmann (1999), and

Burnham and Anderson (1998). The third strategy has been discussed mostly in the context of

model averaging, a notion that naturally arises in the Bayesian paradigm (Madigan and Raftery

(1994); Raftery, Madigan, and Hoeting (1997); Hoeting, Madigan, Raftery, and Volinsky (1999);

Burnham and Anderson (1998), among many others). The first strategy on the other hand may

be viewed as having a nonparametric flavor. Though it is clearly intuitive that the first strategy

will entail some loss in efficiency, it is not apparent whether (and when) the second strategy is

preferred over the third strategy. Clearly, an examination of this problem in the general framework

is important to provide guidance to practitioners regarding which strategy is better in general

situations. However, a general treatment of the problem may not yield exact results, and one may

need to rely on asymptotics, or local asymptotics such as in the recent work by Claeskens and

Claeskens and Hjort (2003) and Hjort and Claeskens (2003).

In this paper, we focus our attention on a prototype Gaussian model which admits exact re-
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sults and thereby enables concrete comparison of the three strategies. Though the specific model

examined in this paper may be perceived as restrictive, it highlights the difficulties inherent in

this problem. In addition, the specific estimation problem examined – the estimation of dispersion

parameter – is still the subject of very active research (Arnold and Villasenor (1997), Brewster and

Zidek (1974), Gelfand and Dey (1977), Maatta and Casella (1990), Ohtani (2001), Pal, Ling, and

Lin (1998), Rukhin (1987), Vidaković and DasGupta (1995), and Wallace (1977)).

The paper is outlined as follows. Section 2 will describe the formal setting of the specific problem

considered, introduce notation, and present the global-type estimators. Section 3 will present the

classical two-step estimators, whereas the Bayes and weighted estimators will be developed in

Section 4. Distributional properties and risk comparison will be obtained in Section 5. Concluding

remarks are given in Section 6, while Appendix A gathers the technical proofs.

2 Global-Type Estimators

We first describe the specific model examined in this paper. Let X = (X1, X2, . . . , Xn)
′ be a vector

of IID random variables from an unknown distribution function F (x) = Pr{X1 ≤ x} which belongs

to the two-parameter normal family of distributions M = {N(µ, σ2) : (µ, σ2) ∈ Θ = < × <+}. If

interest is on estimating the variance σ2, then the uniformly minimum variance unbiased estimator

(UMVUE) of σ2 is

σ̂2UMV U = S2 =
1

n− 1

n
∑

i=1

(Xi − X̄)2 (1)

where X̄ = 1
n

∑n
i=1Xi (Lehmann and Casella (1998)). We adopt a decision-theoretic approach for

evaluating estimators of σ2 via the risk function based on quadratic loss L : <×Θ→ <

L(a, (µ, σ2)) =

(

a− σ2

σ2

)2

. (2)

It should be pointed that the appropriateness of this loss function has been questioned because of

Stein (1964)’s demonstration that under this loss the UMVUE of σ2 is inadmissible and dominated

by the minimum risk equivariant estimator (MRE)

σ̂2MRE =
1

n+ 1

n
∑

i=1

(Xi − X̄)2 (3)

(which also turns out to be inadmissible). However, we note that quadratic loss functions are still

predominant when dealing with the estimation of variance (Arnold and Villasenor (1997), Maatta

and Casella (1990), Ohtani (2001), Pal et al. (1998), Rukhin (1987), Vidaković and DasGupta

(1995), and Wallace (1977)).
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If the model is restricted so that µ = µ0 where µ0 ∈ < is known, soM0 = {N(µ, σ2) : (µ, σ2) ∈
Θ0 = {µ0} × <+}, the UMVUE and MRE of σ2 are given, respectively, by

σ̂2UMV U (µ0) =
1

n

n
∑

i=1

(Xi − µ0)
2 and σ̂2MRE(µ0) =

1

n+ 2

n
∑

i=1

(Xi − µ0)
2. (4)

Clearly, we are able to improve on the estimators derived under M by exploiting the knowledge

that µ = µ0 under M0: when modelM0 holds, the relative efficiency of the estimator σ̂2UMV U (µ0)

in (4) with respect to σ̂2UMV U in (1) is n/(n− 1). But suppose now that we have a model between

M and M0. Specifically, let p be a known positive integer, and µ = {µ1, µ2, . . . , µp} be a set of

known real numbers, and consider the estimation of σ2 under the model

Mp =Mp(µ) = {N(µ, σ2) : (µ, σ2) ∈ Θp ≡ {µ1, µ2, . . . , µp} × <+}.

In Mp, in contrast to M0, there is some information about the possible value of µ, but we are

not certain about this value. Model Mp can be viewed as having p sub-models, with the ith

sub-model being the normal class with unknown variance σ2 and known mean µi. This particular

model arises in a variety of practical settings. For example, it includes decision problems with a

two-element action space such as in the Neyman-Pearson hypothesis testing setting. If we further

allow the possibility that µ ∈ < \ {µ1, µ2, . . . , µp}, we obtain a generalization of the model utilized

by Stein (1964) to derive a pre-test estimator dominating σ̂2MRE (see Brewster and Zidek (1974),

Wallace (1977), and Maatta and Casella (1990)). The viewpoint in this paper differs from that of

pre-test estimators (Sen and Saleh (1987), Lehmann and Casella (1998), and Sclove, Morris, and

Radhakrishnan (1972)). The pre-test approach tests the null hypothesis (under a specified level

of significance) that the parameter equals a certain value, and if it accepts this hypothesis then

the estimator based on this parameter value is used; otherwise, an estimator under the general

model is used. Hence, while in the pre-test approach the properties of the estimator depend on the

significance level, we avoid the need for such dependence here as no testing is performed.

It is furthermore interesting to note that in problems dealing with the estimation of the normal

variance it is typically assumed that either model M or model M0 holds. Even when there are

only two sub-models, such as in the setting of the Neyman-Pearson lemma, the typical variance

estimator does not exploit the fact that there are only two possible means.

3 Classical Two-Step Estimators

Under Mp the likelihood function for the sample realization X = x = (x1, x2, . . . , xn)
′ is

L(µ, σ2) = L(µ, σ2|x) =
p
∏

i=1

Li(µi, σ
2)Mi (5)
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where, for i = 1, 2, . . . , p, with I{·} denoting the indicator function and Mi = I{µ = µi},

Li(µi, σ
2) =

(

1√
2π

)n ( 1

σ2

)
n
2

exp

{

−nσ̂
2
i

2σ2

}

and σ̂2i =
1

n

n
∑

j=1

(xj − µi)
2. (6)

Li(µi, σ
2) is maximized with respect to σ2 at σ̂2i , so Li(µi, σ̂

2
i ) = supσ2∈<+

Li(µi, σ
2). Define the

likelihood-based ‘model selector’ M̂ = M̂(X) via

M̂ = arg max
1≤i≤p

Li(µi, σ̂
2
i ) = arg min

1≤i≤p
σ̂2i = arg min

1≤i≤p
|X̄ − µi|.

One could employ model selectors different from M̂ , such as the highest posterior probability

(à la Schwartz’ Bayesian information criterion (BIC) (Schwartz (1978))) or the Akaike informa-

tion criterion (AIC) (Akaike (1973)). In this paper we restrict our attention to the selector M̂ .

This selector could also be viewed as a highest posterior probability model selector associated

with a flat prior distribution. The maximum likelihood estimator (MLE) of (µ, σ2) under Mp is

(µ̂p,MLE , σ̂
2
p,MLE) = (µM̂ , σ̂

2
M̂
) =

∑p
i=1 I{M̂ = i}(µi, σ̂2i ). It follows that the MLE of σ2 is

σ̂2p,MLE = σ̂2
M̂

=
p
∑

i=1

I{M̂ = i}σ̂2i , (7)

a two-step estimator, with the first stage selecting the sub-model and the second-stage using the

MLE of σ2 in the chosen sub-model. An alternative to the estimator (7) is to use the sub-model’s

MRE instead of MLE of σ2:

σ̂2p,MRE = σ̂2
MRE,M̂

=
p
∑

i=1

I{M̂ = i}σ̂2MRE,i =
p
∑

i=1

I{M̂ = i} nσ̂2i
(n+ 2)

. (8)

Note that the label ‘p,MRE ’ (and similar labels in the sequel) is a misnomer since this estimator

need not be minimum risk equivariant under model Mp. However, we keep the name for clarity.

4 Bayes and Weighted Estimators

We focus on the class of prior densities of (µ, σ2) which consists of the product of a multinomial

probability function and an inverse gamma density:

π(µ, σ2|θ̃, κ, β) =
( p
∏

i=1

θ̃mi
i

)

βκ−1

Γ(κ− 1)

(

1

σ2

)κ

exp

(

− β

σ2

)

, (9)

where σ2 > 0, mi = I{µ = µi} so that
∑p
1mi = 1, and 0 ≤ θ̃i ≤ 1 with

∑p
1 θ̃i = 1, β > 0, and

κ > 1. From (9) and (5), we obtain the posterior density of (µ, σ2) given X = x:

π(µ, σ2 | x) = C
p
∏

i=1

{

θ̃i

(

1

σ2

)
n
2
+κ

exp

(

− 1

σ2

[

nσ̂2i
2

+ β

])}mi

. (10)
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Note that π(µ, σ2|x) = π(m, σ2|x) because {µ = µi} = {m = 1i}, where 1i is an n× 1 vector with

ith component equal to 1 and all others equal 0. It follows that

C =
1

Γ(n/2 + κ− 1)

{ p
∑

i=1

θ̃i
(

nσ̂2i /2 + β
)n/2+κ−1

}−1
. (11)

4.1 Posterior Probabilities

From the posterior distribution in (10), the marginal posterior density (with respect to counting

measure) of µ, or equivalently of m, is

π(m | x) = C
p
∏

i=1

{

θ̃i
Γ(n/2 + κ− 1)

(

nσ̂2i /2 + β
)n/2+κ−1

}mi

=
p
∏

i=1

{θi(κ, β, n,x)}mi ,

where, for i = 1, 2, . . . , p, the posterior probability that the sub-model Mp,i is true, is

θi(κ, β, n,x) =
θ̃i
(

nσ̂2i /2 + β
)−(n/2+κ−1)

∑p
j=1 θ̃j

(

nσ̂j
2/2 + β

)−(n/2+κ−1) . (12)

Note, as expected, that if θ̃i > 0 and Mp,i is the true sub-model, θi(κ, β, n,X), when viewed as

a function of X with (µ, σ2) fixed, converges as n → ∞ to 1 with probability one (wp1). This is

because if Mp,i is the correct model, σ̂2i converges wp1 to σ2 as n→∞ by the strong law of large

numbers (SLLN); whereas, for i′ 6= i, σ̂2i′ converges wp1 to σ2 + (µi − µi′)
2.

4.2 Estimators

The marginal posterior density function of σ2 is directly obtained from (10) to be

π(σ2 | x) = C
p
∑

i=1

θ̃i

(

1

σ2

)(κ+n/2)

exp

[

− 1

σ2

(

nσ̂2i
2

+ β

)]

I{σ2 > 0}. (13)

The posterior mean, which is the Bayes estimator of σ2 under the loss function L in (2), is then

σ̂2p,Bayes(κ, β,θ) =
p
∑

i=1

θi(κ, β, n,x)

{(

n

n+ 2(κ− 2)

)

σ̂2i +

(

2(κ− 2)

n+ 2(κ− 2)

)(

β

κ− 2

)}

. (14)

Note that β/(κ− 2) is the prior mean of σ2, provided κ > 2 (the condition also needed for the

prior variance of σ2 to exist), whereas σ̂2i is the MLE of σ2 under the Mp,i model. This estimator

mixes in a data-dependent manner, using the posterior probabilities of the p sub-models, the Bayes

estimators of σ2 from each sub-model. Furthermore, the Bayes estimator of σ2 for the Mp,i sub-

model is a convex combination of the Mp,i-model MLE and the prior mean of σ2, a well-known

result.
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To obtain limiting Bayes estimators for σ2, we consider improper priors arising by setting

θ̃i = 1/p, i = 1, 2, . . . , p, and β → 0. We examine four κ values: κ → 1, κ → 3/2, κ = 2, and

κ = 3. The rationale for these choices is as follows: κ → 1 amounts to placing Jeffreys’ non-

informative prior on σ2 in each of the p sub-models, since Jeffreys’ prior for σ2 (with mean known)

is proportional to 1/σ2 (Robert (2001)); κ→ 3/2 corresponds to the Jeffreys’ prior for σ2 when the

mean is unknown in the normal model, since in this case Jeffreys’ prior is proportional to (1/σ2)(3/2);

κ = 2 and κ = 3 produce (limiting) Bayes estimators that are convex combinations of the sub-

models’ MLEs and MREs, respectively. Table 1 lists the sub-models’ posterior probabilities and

the resulting limiting Bayes estimators of σ2. Each of the set of sub-models’ posterior probabilities

Table 1: Sub-models’ posterior probabilities and limiting Bayes estimators of σ2 for different values
of κ when θ̃i = 1/p and β → 0.

κ Sub-model Posterior Limiting Bayes Estimator
Probabilities, θi(κ, 0, n,x), i = 1, 2, . . . , p σ̂2p,LBk, k = 1, 2, 3, 4

1 θi1 = (σ̂2i )
−n/2/

∑p
j=1(σ̂

2
j )
−n/2 σ̂2p,LB1 =

(

n
n−2

)

∑p
i=1 θi1σ̂

2
i

3/2 θi2 = (σ̂2i )
−(n+1)/2/

∑p
j=1(σ̂

2
j )
−(n+1)/2 σ̂2p,LB2 =

(

n
n−1

)

∑p
i=1 θi2σ̂

2
i

2 θi3 = (σ̂2i )
−(n+2)/2/

∑p
j=1(σ̂

2
j )
−(n+2)/2 σ̂2p,LB3 =

∑p
i=1 θi3σ̂

2
i

3 θi4 = (σ̂2i )
−(n+4)/2/

∑p
j=1(σ̂

2
j )
−(n+4)/2 σ̂2p,LB4 =

(

n
n+2

)

∑p
i=1 θi4σ̂

2
i

associated with κ ∈ {1, 3/2, 2, 3} given in Table 1 could also be utilized to form estimators which

are convex combinations of the sub-models’ MREs. These new estimators need not however be

limiting Bayes with respect to our class of priors. These ‘weighted’ estimators are defined as:

σ̂2p,PLB1 =

(

n− 2

n+ 2

)

σ̂2p,LB1; σ̂2p,PLB2 =

(

n− 1

n+ 2

)

σ̂2p,LB2; σ̂2p,PLB3 =

(

n

n+ 2

)

σ̂2p,LB3. (15)

Note also from (14) that the estimators σ̃2LB,i = (n/(n− 2)) σ̂2i , the ones whose convex combination

is being formed in σ̂2p,LB1, are the limiting Bayes estimators of σ2 for each of the p sub-models

under Jeffreys’ non-informative prior when the sub-model’s mean is known (arising from κ → 1).

The estimators in Table 1 and in (15) have different flavors than the MLE of σ2 given in (7): in

the latter, we choose one among the p estimators of σ2, while the Bayes and weighted estimators

are mixing sub-model estimators according to the sub-models’ posterior probabilities.

Finally, we define the two-step estimator based on the sub-models’ limiting Bayes estimators:

σ̂2p,ALB = σ̃2
LB,M̂

=

(

n

n− 2

) p
∑

i=1

I{M̂ = i}σ̂2i . (16)
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This belongs to the same class of estimators as σ̂2p,MLE and σ̂2p,MRE , differing just in the multipliers

which are functions of n only. Note that for the purposes of obtaining risk functions, it suffices to

derive formulas for the mean and variance functions of σ̂2p,MLE .

5 Comparison of Estimators

The goal of this section is to compare the performances of the estimators given in Table 1 and (15),

with the estimators developed under M (σ̂2UMV U and σ̂2MRE), and with the two-step estimators

(σ̂2p,MLE , σ̂
2
p,MRE , σ̂

2
p,MLE , and σ̂

2
p,ALB) via their risk functions arising from the loss function L in

(2). In particular, we address the following questions: (i) How much efficiency is lost by using the

estimators developed under the wider model M when model Mp holds? (ii) How do the limiting

Bayes and weighted estimators σ̂2p,LBk and σ̂2p,PLBk compare with the Mp MLE-based and MRE-

based estimators? (iii) Do the advantages of the Mp-based estimators over M-based estimators

decrease as the dimension p increases and/or the spacings among the µ1, ..., µp decrease?

5.1 Distributional Representations

It is well-known that, provided n > 1, (n− 1)σ̂2UMV U/σ
2 ∼ χ2n−1, so E

{

σ̂2UMV U/σ
2
}

= 1 and

Var
{

σ̂2UMV U/σ
2
}

= 2/(n− 1). Therefore, the risk function of σ̂2UMV U with respect to the loss

function L in (2) is R
(

σ̂2UMV U , (µ, σ
2)
)

= 2/(n− 1). By exploiting the relationship between σ̂2UMV U

and σ̂2MRE , the risk function of the latter is easily found to be R
(

σ̂2MRE , (µ, σ
2)
)

= 2/(n+ 1). This

demonstrates a known fact that σ̂2UMV U is inadmissible. To compare estimator performances, we

will use σ̂2UMV U as the baseline, so the efficiency of an estimator σ̂2 will be given by

Eff(σ̂2 : σ̂2UMV U ) =
R(σ̂2UMV U , (µ, σ

2))

R(σ̂2, (µ, σ2))
. (17)

Thus, in particular, Eff(σ̂2MRE : σ̂2UMV U ) = (n+ 1)/(n− 1) = 1 + 2/(n− 1).

We present some distributional properties of the estimators which will be used to derive the

exact expressions of the risk functions of σ̂2p,MLE , and second-order approximations to the risk

functions of σ̂2p,LBk and σ̂2p,PLBk. Let Z ∼ N(0, 1) and Z = (Z1, Z2, . . . , Zn)
′ ∼ Nn(0, I). For the

vector of means µ = (µ1, µ2, . . . , µp)
′ with µi0 being the true mean (i0 ∈ {1, 2, . . . , p}), we let

∆ ≡∆(µ, σ) =
µ− µi01

σ
(18)

where 1 = (1, 1, . . . , 1)′. Note that this will always have a zero component underMp. In the sequel,

the ‘equal-in-distribution’ relation is denoted by ‘
d
=’. To achieve a more fluid presentation, formal

proofs of lemmas, propositions, theorems, and corollaries are relegated to Appendix A.
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Proposition 5.1 Under Mp with µi0 the true mean, nσ̂2i /σ
2 d
= W + V 2i , i = 1, 2, . . . , p, where

W ∼ χ2n−1, V = (V1, V2, . . . , Vp)
′ ∼ Np(−

√
n∆,J ≡ 11′), and W and V are independent.

From Proposition 5.1, by exploiting the independence between W and V and using the iterated

expectation and covariance rules, and by noting that

E{W k/2} = (1/2)−k/2 [Γ((n+ k − 1)/2)/Γ((n− 1)/2)]

holds for any k < n− 1, the following corollary immediately follows.

Corollary 5.1 Under the conditions of Proposition 5.1, nσ̂2i /σ
2 d
= W (1+T 2i ), i = 1, 2, . . . , p, with

T = (T1, . . . , Tp)
′ = V /

√
W. The distribution of T depends on (µ, σ2) only through∆ and, provided

that n > 3, the mean vector and covariance matrix of T are given, respectively, by

E(T ) = ν ≡ −∆Cn and Cov(T ,T ) =
1

n− 3
J +

(

n

(n− 3)C2n
− 1

)

ν⊗2

with Cn =
√

n/2 [Γ((n− 2)/2)/Γ((n− 1)/2)] .

5.2 Representation and Risk Function of σ̂2p,MLE

We now give a representation of σ̂2p,MLE and obtain the exact expressions for its mean and variance,

and risk. For a given ∆, let ∆(1) < ∆(2) < . . . < ∆(p) denote the associated ordered values.

Theorem 5.1 Let µi0 be the true mean. Then under Mp,

nσ̂2p,MLE/σ
2 d
= W +

p
∑

i=1

I{L(∆(i),∆) < Z < U(∆(i),∆)}(Z −
√
n∆(i))

2

where, under the convention that ∆(0) = −∞ and ∆(p+1) = +∞,

L(∆(i),∆) = (
√
n/2)

[

∆(i) +∆(i−1)
]

and U(∆(i),∆) = (
√
n/2)

[

∆(i) +∆(i+1)
]

,

W ∼ χ2n−1, Z ∼ N(0, 1), and W and Z are independent.

Define the events Ω(i) =
{

L(∆(i),∆) < Z < U(∆(i),∆)
}

, i = 1, 2, . . . , p. The collection of sets

{{M̂ = i}, i = 1, 2, . . . , p} is in one-to-one correspondence with the collection {Ω(1),Ω(2), . . . ,Ω(p)},
as can be seen from Theorem 5.1, and thus Ω(i), i = 1, 2, . . . , p, are disjoint. Using Theorem 5.1,

we can now obtain expressions of the mean and variance of σ̂2p,MLE . For i = 1, 2, . . . , p, we let

P(i)(∆) ≡ Pr{Ω(i)} = Φ

(√
n

2
(∆(i) +∆(i+1))

)

− Φ

(√
n

2
(∆(i) +∆(i−1))

)

, (19)

where Φ(·) is the standard normal distribution function. In the sequel, we let φ(·) denote the

density function of a standard normal random variable.
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Theorem 5.2 Under the conditions of Theorem 5.1,

EpMLE(∆) ≡ E

{

σ̂2p,MLE

σ2

}

= 1− 2√
n

p
∑

i=1

∆(i)[φ(L(∆(i),∆))− φ(U(∆(i),∆))] +

p
∑

i=1

∆2(i)[Φ(U(∆(i),∆))− Φ(L(∆(i),∆))].

Next, we present an expression for the variance function of the estimator σ̂2p,MLE . Toward this

end, we introduce some notation to simplify the presentation. For k ∈ Z+ = {0, 1, 2, . . .}, define

ξ(k; Ω(i)) ≡ E
{

ZkI(Ω(i))
}

=

∫ U(∆(i),∆)

L(∆(i),∆)
zkφ(z)dz.

Using this, observe that by the binomial expansion, for m ∈ Z+,

ζ(i)(m) ≡ E
{

I(Ω(i))(Z −
√
n∆(i))

m
}

=
m
∑

k=0

(−1)(m−k)
(

m
k

)

(√
n∆(i)

)(m−k)
ξ(k; Ω(i)). (20)

To compute the quantity ξ(k; Ω(i)), observe that for k ∈ Z+ and t ∈ <,

∫ t

−∞
zkφ(z)dz = (−1)k 2

(k−1)/2
√
2π

Γ((k + 1)/2)×
{

Pr{χ2k+1 > t2} if t < 0
[

1 + (−1)k Pr{χ2k+1 < t2}
]

if t ≥ 0
.

Using the above formulas, we obtain ξ(k; Ω(i)) according to

ξ(k; Ω(i)) =

∫ U(∆(i),∆)

−∞
zkφ(z)dz −

∫ L(∆(i),∆)

−∞
zkφ(z)dz. (21)

Theorem 5.3 Under the conditions of Theorem 5.1,

VpMLE(∆) ≡ Var

{

σ̂2p,MLE

σ2

}

=
1

n







2

(

1− 1

n

)

+
1

n





p
∑

i=1

ζ(i)(4)−
( p
∑

i=1

ζ(i)(2)

)2










.

In the situation where there are only two sub-models so that p = 2, the expressions for the

mean and variance functions of σ̂2p,MLE/σ
2 can be simplified. These simplified forms are provided

in the following corollary. The proofs of these results are straightforward, hence to conserve space,

we omit them but instead refer the reader to the more detailed technical report by Dukić and Peña

(2003).

Corollary 5.2 If p = 2 so that ∆ = (0,∆), then under the conditions of Theorem 5.1

EpMLE(∆) = 1−
(

2√
n
|∆|
)

{

φ

(√
n

2
|∆|
)

−
(√

n

2
|∆|
)[

1− Φ

(√
n

2
|∆|
)]}

;
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VpMLE(∆) =
2

n
+ |∆|4Φ

(√
n

2
|∆|
)[

1− Φ

(√
n

2
|∆|
)]

− 4√
n
|∆|3Φ

(√
n

2
|∆|
)

×
∫ ∞
√

n
2
|∆|

zφ(z)dz − 4

n3/2
|∆|

{

∫ ∞
√

n
2
|∆|

z3φ(z)dz −
∫ ∞
√

n
2
|∆|

zφ(z)dz

}

+

1

n
|∆|2







6

∫ ∞
√

n
2
|∆|

z2φ(z)dz − 4

(

∫ ∞
√

n
2
|∆|

zφ(z)dz

)2

− 2

[

1− Φ

(√
n

2
|∆|
)]







.

We note from the expression in Corollary 5.2 that, for a fixed n, lim|∆|→0 EpMLE(∆)→ 1 and

lim|∆|→0VpMLE(∆)→ 2/n, the latter being the variance of the MLE of σ2 under the true model.

Also, for a fixed ∆, we see that limn→∞ EpMLE(∆)→ 1 and limn→∞ {n(VpMLE(∆))} → 2.

The next result in Corollary 5.3 shows that even though the sub-models’ MLEs are each unbiased

for σ2, the two-step estimator σ̂2p,MLE , which employs the MLE of the sub-model selected by the

model selector M̂ , is a negatively biased estimator of σ2. The result is an immediate consequence

of Corollary 5.2 by noting that the continuous function g(u) = φ(u) − u[1 − Φ(u)] is positive by

virtue of the facts that limu↓0 h(u) > 0, limu→∞ h(u) = 0, and g′(u) = φ′(u)+uφ(u)− [1−Φ(u)] =

−[1− Φ(u)] < 0 since φ′(u) = −uφ(u).

Corollary 5.3 Under the conditions of Corollary 5.2 with ∆ 6= 0, E{σ̂2p,MLE} < σ2, that is,

σ̂2p,MLE is negatively biased for σ2.

Now that we have the exact expressions for the mean and variance of σ̂2p,MLE/σ
2, we could

obtain the risk function of σ̂2p,MLE under Mp and loss L in (2) as

R
(

σ̂2p,MLE , (µi0 , σ
2)
)

= VpMLE(∆) + [EpMLE(∆)− 1]2. (22)

Finally, for σ̂2p,MLE , we address the question of what happens when p increases and the spacings

in ∆ decrease. This will indicate whether we will lose the advantage of Mp-based estimators over

M-based estimators. The proof of Theorem 5.4 is rather lengthy and hence omitted here; instead

we refer the reader to the technical report by Dukić and Peña (2003).

Theorem 5.4 Given n fixed, if p → ∞, max2≤i≤p |∆(i) − ∆(i−1)| → 0, with ∆(1) → ∆min ∈
(−∞, 0], and ∆(p) → ∆max ∈ [0,∞), then

EpMLE(∆)→ 1− 1

n

∫

√
n∆max

√
n∆min

w2φ(w)dw +
2√
n

{

∆minφ(
√
n∆min)−∆maxφ(

√
n∆max)

}

+

{

(∆min)
2Φ(
√
n∆min) + (∆max)

2[1− Φ(
√
n∆max)]

}

;

VpMLE(∆)→ 2

n

(

1− 1

n

)

+
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1

n2

[{

E[(Z −
√
n∆min)

4I(Z <
√
n∆min)] +E[(Z −

√
n∆max)

4I(Z >
√
n∆max)]

}

−
{

E[(Z −
√
n∆min)

2I(Z <
√
n∆min)] +E[(Z −

√
n∆max)

2I(Z >
√
n∆max)]

}2
]

.

Letting ∆min → −∞ and ∆max →∞, EpMLE(∆)→ 1− 1/n and VpMLE(∆)→ (2/n) (1− 1/n) .

Using Theorem 5.4 we could now address the issue of whether you lose the advantage by utilizing

the two-step estimator which was developed under model Mp over the estimator developed under

the more general model M when p increases. For this purpose we have the following corollary.

Corollary 5.4 With n > 1 fixed, if as p → ∞, max2≤i≤p |∆(i) − ∆(i−1)| → 0, ∆(1) → −∞, and

∆(p) →∞, then (i) Eff
(

σ̂2p,MLE : σ̂2UMV U

)

→ 2n2/[(n− 1)(2n− 1)] > 1; (ii) Eff
(

σ̂2p,MRE : σ̂2UMV U

)

→ 2(n+ 2)2/[(n− 1)(2n+ 7)] > 1; (iii) Eff
(

σ̂2p,MRE : σ̂2p,MLE

)

→ (2n− 1)(n+ 2)2/[(2n+ 7)n2] >

1; and (iv) Eff
(

σ̂2p,MRE : σ̂2MRE

)

→ 2(n+ 2)2/[(n+ 1)(2n+ 7)] < 1. In addition, σ̂2p,ALB is domi-

nated by σ̂2UMV U .

The fourth result in Corollary 5.4 indicates that when the number of sub-models increases

indefinitely the estimator σ̂2MRE (which is the minimum risk estimator under the general model

M) dominates the two-step estimator σ̂2p,MRE (which was developed by exploiting the sub-model

structure ofMp). Using the limiting results for p = 2 and as |∆| → 0, stated after Corollary 5.2, we

find that the limiting risk function of σ̂2p,MRE is 2/(n+2), which is smaller than 2/(n+1), the risk

function of σ̂2MRE . This shows that when the number of sub-models is small, we can gain efficiency

by using the two-step estimator developed under modelMp. These results agree with our intuition:

when the number of sub-models increases it is better to utilize the best estimator developed under

the more general model. However, as it will be seen in the simulation studies reported later in the

paper, the weighted and Bayes-type estimators’ performance seems not degraded by an increase in

the number of sub-models.

5.3 Representation of Limiting Bayes and Weighted Estimators

We now provide distributional representations useful for the limiting Bayes estimators σ̂2p,LBks and

the weighted estimators σ̂2p,PLBks underMp, in order to find an approximation to the risk functions

of these estimators. For α > 0, define the “umbrella” estimator as

σ̂2p,LB ≡ σ̂2p,LB(α) =
p
∑

i=1

{

(σ̂2i )
−α

∑p
j=1(σ̂

2
j )
−α

}

σ̂2i . (23)

Individual estimators are easily derived from this umbrella estimator by choosing an appropriate

α. For example:

σ̂2p,LB1 =

(

n

n− 2

)

σ̂2p,LB(n/2) and σ̂2p,PLB1 =

(

n

n+ 2

)

σ̂2p,LB(n/2).
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Theorem 5.5 UnderMp where µi0 is the true mean, for a fixed α > 0, nσ̂2p,LB/σ
2 d
=W (1+H(T )),

where

H(T ) ≡ H(T ;α) =
p
∑

i=1

θi(T )T 2i with θi(T ) ≡ θi(T ;α) =
(1 + T 2i )

−α
∑p

j=1(1 + T 2j )
−α , i = 1, 2, . . . , p.

Consequently, the distribution of σ̂2p,LB/σ
2 depends on (µ, σ2) only through ∆.

From the distributional representation in Theorem 5.5, a closed-form expression for the risk

function of σ̂2p,LB will be difficult to obtain because of the adaptive, i.e., data-dependent, nature

of the mixing probabilities θi(T ) and the fact that these are rational functions of T . To obtain

an approximation to the risk function of σ̂2p,LB we used a second-order Taylor expansion of the

function H(T ) about T = ν, the mean vector of T . For notation, let

H ≡ H(ν); H(1) ≡ ∇TH(T )|T=ν ; and H(2) ≡ ∂2

∂T ∂T ′H(T )|T=ν .

A second-order Taylor approximation for σ̂2p,LB/σ
2 is provided by

σ̂2p,LB
σ2

d≈ W

n

{

1 +H +H(1)′(T − ν) +
1

2
(T − ν)′H(2)(T − ν)

}

. (24)

From this approximate representation, we are able to obtain approximate expressions for the mean

and variance of the Bayes estimator. These mean and variance expressions, which involve the

constant Cn defined in Corollary 5.1, are given in the next two theorems. The proofs require

several intermediate results (contained in lemmas), and these are presented in Appendix A.

Theorem 5.6 Under Mp, a second-order approximation to the mean of σ̂2p,LB/σ
2 is

E2(∆) ≡
(

1− 1

n

)

(1 +H) +
1

2

(

1

C2n
− 1 +

3

n

)

(ν ′H(2)ν)− 1

n

{

(H(1)′ν)− 1

2
(1′H(2)1)

}

.

Theorem 5.7 Under Mp, a second-order approximation to the variance of σ̂2p,LB/σ
2 is V2(∆) ≡

1
n{VE(∆) + EV(∆)}, where

VE(∆) ≡ 2

(

1− 1

n

)(

1 +H −H(1)′ν +
1

2
ν ′H(2)ν

)2

+

(

n− 1

C2n
− (n− 2)2

n

)

×
(

H(1)′ν − ν ′H(2)ν
)2

+ 2

(

1− 2

n

)(

1 +H −H(1)′ν +
1

2
ν ′H(2)ν

)

(

H(1)′ν − ν ′H(2)ν
)

;

EV(∆) ≡ 1

2n

(

1′H(2)1
)2

+

(

1− 1

n

)

(

H(1)′1− 1′H(2)ν
)2

+

2

(

1− 2

n

)

(

H(1)′1− 1′H(2)ν
) (

1′H(2)ν
)

+
1

C2n

(

1′H(2)ν
)2
.

13



From these expressions, we can compute second-order approximations to the risk functions of

σ̂2p,LB1 according to the formula

R
(

σ̂2p,LB1, (µi0 , σ
2)
)

≈
(

n

n− 2

)2

V2(∆;α = n/2) +

[(

n

n− 2

)

E2(∆;α = n/2)− 1

]2

, (25)

where E2(∆;α) ≡ E2(∆) and V2(∆;α) ≡ V2(∆) are given in Theorem 5.6 and Theorem 5.7,

respectively. For other limiting Bayes and weighted estimators in Table 1 and (15), analogous

approximate risk expressions can be obtained similarly as for σ̂2p,LB1.

Lastly, still for a given α > 0, we present a few expressions for the components H
(1)
k (T ), k ∈

{1, 2, . . . , p} of the p × 1 vector H (1)(T ) and the components H
(2)
kl (T ), k, l ∈ {1, 2, . . . , p} of the

p × p matrix H(2)(T ), which when evaluated at T = ν yield H (1) and H(2), respectively. From

the expressions for H(T ) and θi(T ) in Corollary 5.1, we find that for j, k ∈ {1, 2, . . . , p},

H
(1)
k (T ) ≡ ∂

∂Tk
H(T ) = 2θk(T )Tk +

∑p
i=1 θ

(1)
ik (T )T 2i ;

H
(2)
kl (T ) ≡ ∂2

∂Tk∂Tl
H(T ) = 2θk(T )I{k = l}+ 2[θ

(1)
kl (T )Tk + θ

(1)
lk (T )Tl] +

∑p
i=1 θ

(2)
ikl (T )T 2i ;

where, for i, k ∈ {1, 2, . . . , p}, θ(1)ik (T ) = (2α)
(

Tk/(1 + T 2k )
)

θk(T )[θi(T ) − I{k = i}]; and, for

i, k, l ∈ {1, 2, . . . , p},

θ
(2)
ikl (T ) = (2α)

{

I{k = l}
(

1− T 2k
(1 + T 2k )

2

)

θk(T )[θi(T )− I{k = i}]+
(

Tk
(1 + T 2k )

2

)

[

θ
(1)
kl (T )[θi(T )− I{k = i}] + θk(T )θ

(1)
il (T )

]

}

.

5.4 Assessing the Second-Order Approximations via Simulation

To assess the goodness of the second-order approximations, we compared the values for means,

variances, and risks of σ̂2p,LB(α = n/2)/σ2 based on 10,000 simulated datasets to their second-order

approximations. The results revealed the same pattern across all choices of ∆. For n = 3 the

approximation performs rather poorly, gradually improving with increasing n, to finally become

almost identical to the simulation-based values when n is 30. In one of the worst-case scenarios,

when n = 3 and ∆ is symmetric with a medium-size spread (such as ∆ = (−0.25, 0, 0.25)),
the approximate mean values lie generally within 20% of the simulated ones. Similar behavior

is shown by variances and risks also. Furthermore, as the model dimension p increases or as the

separations among the sub-models’ means become smaller, the differences between simulated values

and approximations also seem to diminish. With increasing n the accuracy of the approximations

improves. Therefore, the second-order approximation appears to work well overall, but when n is

small (less than 15) it seems better to use simulations. In the remainder of this paper, all analyses
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involving risks of the limiting Bayes (σ̂2p,LBks) and weighted (σ̂2p,PLBks) estimators are based on

simulations.

5.5 Comparison of Relative Efficiencies

We now carry out the comparison of relative efficiencies of the variance estimators with respect to

σ̂2UMV U , using simulated datasets with a variety of ∆ values for n ∈ {3, 10, 30}. The results are

summarized in Tables 2 and 3 and Figures 1 and 2.

Table 2 focuses on the differences in relative efficiencies between symmetric and asymmetric

∆ cases. As can be seen, there does not seem to be a strong effect of the asymmetry of ∆ on

the estimators. In all ∆ cases that we have chosen, σ̂2p,PLB1, σ̂
2
p,PLB2, σ̂

2
p,PLB3, σ̂

2
p,LB4 perform

best, with the two-step estimator σ̂2p,MRE following. Clearly, the best among theMp-based estima-

tors dominate the M-based estimators σ̂2UMV U and σ̂2MRE , with the gain in efficiency being quite

impressive for small sample sizes.

Table 3 is designed to examine the impact of increasing number of sub-models. We see that when

p is large the two-step estimator σ̂2p,MRE becomes less efficient than the global-type estimator σ̂2MRE .

This result is consistent with the theoretical result of Corollary 5.4. Note also that even for p as low

as 33, the ratios of the relative efficiency values from Table 3 start to agree (to the third decimal)

with the limiting relative efficiencies predicted by Corollary 5.4. The weighted estimators do not

seem to be affected much by the increasing p, faring much better than the two-step estimators.

Figure 1 presents two contour plots of the relative efficiencies of σ̂2p,MRE with respect to σ̂2MRE

as a function of p (where p > 3) and the range of the values in the∆ vector. In the top and bottom

contour plots symmetric and asymmetric ∆ cases are considered separately. The top contour plot

reveals a structure that is consistent with Corollary 5.4, especially in the regions of the contour

plot where p → ∞ and ∆max → ∞ (hence ∆min → −∞) which fall in the top and bottom right

corners, where σ̂2MRE starts to dominate σ̂2p,MRE . Note that the 98% relative efficiency in this

region is very close to the limiting 97% from Corollary 5.4. The bottom contour plot is constructed

using ∆ that are quite asymmetric (all ∆min = 0), and therefore could not be compared to the

predictions of Corollary 5.4. From this plot we can see however that σ̂2p,MRE seems to dominate

σ̂2MRE everywhere.

Figure 2 explores the case when p = 2 only, so ∆ = (0,∆), and for sample sizes n = 3 and

n = 10. The plots depict the efficiency of all estimators (except σ̂2p,ALB whose performance is quite

similar to σ̂2p,LB1 and not competitive at all with the rest) as a function of the magnitude of ∆

parameter. As can be seen, σ̂2p,MRE performs best when |∆| is large, with σ̂2p,LB4 giving a very

comparable performance. The estimator σ̂2p,PLB1 performs better than σ̂2p,MRE when |∆| is closer
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to zero, but degrades in performance when |∆| becomes large. Thus, we see that the estimators’

performances and regions where they perform well will depend to a large extent on the magnitude

of ∆. In particular, it appears that the best among the weighted estimators perform very well when

the |∆| is neither too large nor too small, while the two-step estimator performs very well when

|∆| is large. This points to the following intuitive explanation: when |∆| is large, the two models

are well-separated and the model selection is easier; however, when |∆| is neither too small nor too

large, it is not so clear which model to choose, and it seems better to average over the sub-models’

estimators. Finally, when |∆| is quite close to zero, i.e. when there is not much difference among

the sub-models, either approach to estimation works well.

Overall, based on the results of the risk comparison, the estimators performing best are the

Bayes-type or weighted estimators σ̂2p,PLB1 and σ̂2p,LB4, and the two-step estimator σ̂2p,MRE . We

give a slight preference to the weighted estimators because their performance does not degrade

much even when the number of sub-models increases, in contrast to the two-step estimator which

becomes dominated by the M-estimator σ̂2MRE when p, the number of sub-models, increases.

Finally, a cautionary note arising from these efficiency studies is that one ought to be very careful

in the choice of prior parameters. At least in the situation when one is concerned with variance

estimation, the limiting Bayes estimators σ̂2p,LB1 and σ̂
2
p,LB2, corresponding to the limiting cases of

κ → 1 and κ → 3/2 respectively, perform quite poorly, especially for small sample sizes. These

two estimators are dominated by the estimator σ̂2UMV U in terms of risk function. However, these

improper priors associated with the limiting values of κ are most likely the worst-case scenarios,

and other, more carefully chosen and meaningful priors should result in improved performance.

6 Concluding Remarks

We have examined some of the issues arising when considering a model with a finite number of sub-

models, where the goal is to make inference about a common parameter among these sub-models,

based on a single realization of a sample. It is of interest to determine which of the three possible

strategies is preferable: (i) to utilize a wider model that encompasses all competing sub-models;

(ii) to adopt a two-step approach: select the sub-model, and then do inference within this chosen

sub-model, but with both steps utilizing the same sample data; (iii) to do a sub-model averaging

scheme where the inference procedure is formed by weighting the sub-models’ procedures, with the

weights being also data-dependent. The second strategy may be labeled the classical approach,

while the third strategy coincides or is motivated by the Bayesian approach.

Through a simple model prototype with a finite number of Gaussian sub-models with common

variance but different means, we have studied each of the strategies, as pertaining to the estimation
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of variance. Based on the theoretical and simulated comparison of the different types of estimators,

and with the estimator performance evaluated through risk functions based on quadratic loss, we

have reached the following conclusions: (i) there could be considerable improvement in using esti-

mators developed by exploiting the structure of the sub-models, over the strategy of simply using

estimators from a wider model; (ii) however, the properties of these resulting estimators may be

extremely difficult to obtain. Furthermore, some desirable properties of the sub-model estimators,

such as unbiasedness and minimum variance, may not carry-over when they are combined to form

the estimator for the full model of interest; (iii) based on the theoretical and simulated results

for the variance parameter σ2 considered in this paper, the weighted estimators, which were moti-

vated and/or derived via the Bayesian approach, seem preferable over the two-step estimators even

though these estimators were derived using improper priors; (iv) when the number of sub-models

increases and two-step estimators are employed, it appears that their performance could degrade

relative to estimators developed under a wider model, but that the weighted estimators’ perfor-

mances are not necessarily affected; and (v) finally, when developing weighted estimators through

the Bayesian framework, caution must be observed in assigning prior parameters as a particular

parameter specification may lead to poor estimators.

Approaches similar to the one we present here could be a useful first step in many contexts

where model selection is often done and where there exist a natural notion of “distance” among

models: regression, survival analysis, or goodness-of-fit testing. For example, techniques and re-

sults presented here could be extended to settings of regression with p possible predictor variables,

where the goal is estimation of dispersion parameter associated with error components for the 2p

competing sub-models. There is clearly a need for studies of more complicated situations in varied

settings, where multiple parameters are being estimated simultaneously and/or where sub-models

are of different dimensions (Claeskens and Hjort (2003)). As was pointed out earlier, for these more

general settings, exact risk expressions may not be possible and asymptotic analysis may be needed,

in contrast to the situation considered in this paper where the Gaussian distributional assumption

allowed us to obtain concrete results. Also, many other interesting alternative options need to be

examined: for example, in the two-step approach, would it have been better to subdivide the sample

data into two parts and use the first part for model selection and the second for making inference in

the chosen sub-model, an issue alluded for instance in Hastie, Tibshirani, and Friedman (2001), and

more recently investigated by Yang (2003)? Finally, we have observed in Dukić and Peña (2003)

that in the case of estimation of the distribution function in this same specific model, a different

conclusion holds with respect to which of the three strategies is preferable. This is consistent with
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recent work by Claeskens and Hjort (2003)) where they advocate the use of a focussed information

criterion in model selection problems that is tailored to the specific parameter of interest.

A Appendix: Proofs of Technical Results

In this appendix we gather the technical proofs of the results presented in earlier sections.

Proof of Proposition 5.1: With with Z̄ = (Z1′)/n, we have nσ̂2i /σ
2 = ‖X − µi1/σ‖2 =

‖[(X − µi01)− (µi − µi0)1]/σ‖2
d
= ‖Z−∆i1‖2 = ‖Z− Z̄1‖2+n(Z̄−∆i)

2. LettingW = ‖Z− Z̄1‖2

and Vi =
√
n(Z̄ −∆i), i = 1, 2, . . . , p, it follows that W ∼ χ2n−1 with W and V = (V1, V2, . . . , Vp)

′

independent. Furthermore, since Z̄ ∼ N(0, n−1), V has representation

V = Z1−
√
n∆, (26)

so V ∼ Np(0,J) since Cov(V ,V ) = Cov{Z1−√n∆, Z1−√n∆} = 1Var(Z)1′ = J .

Proof of Theorem 5.1: By Prop. 5.1, σ̂2p,MLE/σ
2 d
=
[

W +
∑p

i=1 I{M̂ = i}V 2i
]

/n. Now,

{M̂ = i} =
{

σ̂2i
σ2

<
σ̂2j
σ2
, j = 1, 2, . . . , p; j 6= i

}

d
=
{

V 2i < V 2j , j = 1, 2, . . . , p; j 6= i
}

=
{

(Z −
√
n∆i)

2 < (Z −
√
n∆j)

2, j = 1, 2, . . . , p; j 6= i
}

by (26)

=

{

(∆j −∆i)Z <

√
n

2
(∆j +∆i)(∆j −∆i), j = 1, 2, . . . , p; j 6= i

}

=

{

Z <

√
n

2
(∆j +∆i), ∀(j 6= i,∆j > ∆i)

}

∩
{

Z >

√
n

2
(∆j +∆i), ∀(j 6= i,∆j < ∆i)

}

=

{√
n

2

(

∆i + max
{j: ∆j<∆i}

∆j

)

< Z <

√
n

2

(

∆i + min
{j: ∆j>∆i}

∆j

)}

.

But,

p
∑

i=1

I

{√
n

2

(

∆i + max
{j: ∆j<∆i}

∆j

)

< Z <

√
n

2

(

∆i + min
{j: ∆j>∆i}

∆j

)}

V 2i

=
p
∑

i=1

I

{√
n

2

(

∆(i) + max
{j: ∆j<∆(i)}

∆j

)

< Z <

√
n

2

(

∆(i) + min
{j: ∆j>∆(i)}

∆j

)}

(Z −
√
n∆(i))

2

=
p
∑

i=1

I

{√
n

2

(

∆(i) +∆(i−1)
)

< Z <

√
n

2

(

∆(i) +∆(i+1)
)

}

(Z −
√
n∆(i))

2

=
p
∑

i=1

I
{

L(∆(i),∆) < Z < U(∆(i),∆)
}

(Z −
√
n∆(i))

2.

18



Proof of Theorem 5.2: From Theorem 5.1, using
∫ b
a zφ(z)dz = φ(a)− φ(b) for a < b,

EpMLE(∆) =
1

n

{

E(W ) +E

{ p
∑

i=1

I(Ω(i))(Z −
√
n∆(i))

2

}}

=
1

n

{

(n− 1) +E(Z2)− 2
√
n

p
∑

i=1

∆(i)E{ZI(Ω(i))}+ n
p
∑

i=1

∆2(i)P(i)(∆)

}

=
1

n

{

n− 2
√
n

p
∑

i=1

∆(i)

∫ U(∆(i),∆)

L(∆(i),∆)
zφ(z)dz + n

p
∑

i=1

∆2(i)P(i)(∆)

}

= 1− 2√
n

p
∑

i=1

∆(i)
[

φ(L(∆(i),∆))− φ(U(∆(i),∆))
]

+
p
∑

i=1

∆2(i)

[

Φ(U(∆(i),∆))− Φ(L(∆(i),∆))
]

.

Proof of Theorem 5.3: From Theorem 5.1, by independence of W and Z, and because Ω(i)s

depend only on Z, we have VpMLE(∆) = n−2
{

Var(W ) +Var
[

∑p
i=1 I(Ω(i))(Z −

√
n∆(i))

2
]}

.We

already know that Var(W ) = 2(n − 1). On the other hand, Var
{

∑p
i=1 I(Ω(i))(Z −

√
n∆(i))

2
}

=
∑p

i=1Var
{

I(Ω(i))(Z −
√
n∆(i))

2
}

+
∑

i6=j Cov
{

I(Ω(i))(Z −
√
n∆(i))

2, I(Ω(j))(Z −
√
n∆(j))

2
}

.

By the variance formula and definition of ζ(i)(k), Var
{

I(Ω(i))(Z −
√
n∆(i))

2
}

= ζ(i)(4)− [ζ(i)(2)]
2;

and Cov
{

I(Ω(i))(Z −
√
n∆(i))

2, I(Ω(j))(Z −
√
n∆(j))

2
}

= −ζ(i)(2)ζ(j)(2), as I(Ω(i))I(Ω(j)) = 0

whenever i 6= j. Consequently, Var
{

∑p
i=1 I(Ω(i))(Z −

√
n∆(i))

2
}

=
∑p

i=1

[

ζ(i)(4)− [ζ(i)(2)]
2
]

+
∑

i6=j
[

−ζ(i)(2)ζ(j)(2)
]

=
∑p

i=1 ζ(i)(4)−
(

∑p
i=1 ζ(i)(2)

)2
.

Proof of Corollary 5.4: From Theorem 5.4, R
(

σ̂2p,MLE , (µi0 , σ
2)
)

= VpMLE(∆)+[EpMLE(∆)−
1]2 → (2/n) (1− 1/n) + [(1− 1/n)− 1]2 = (2n− 1)/n2. Also, since σ̂2p,MRE = (n/(n+ 2)) σ̂2p,MLE ,

we have R
(

σ̂2p,MRE , (µi0 , σ
2)
)

= (n/(n+ 2))2VpMLE(∆) + [(n/(n+ 2))EpMLE(∆)− 1]2 →
(n/(n+ 2))2 (2/n) (1− 1/n) + [(n/(n+ 2)) (1− 1/n)− 1]2 = (2n+ 7)[(n+ 2)2]. The efficiency ex-

pressions relative to σ̂2UMV U of σ̂2p,MLE and σ̂2p,MRE are obtained by dividing R
(

σ̂2UMV U , (µi0 , σ
2)
)

=

2/(n− 1) by the preceding risk expressions. Both of the resulting efficiency expressions are easily

shown to exceed 1. Taking the ratio of R
(

σ̂2p,MLE , (µi0 , σ
2)
)

and R
(

σ̂2p,MRE , (µi0 , σ
2)
)

yields the

third expression, an expression easily shown to exceed 1. In comparing σ̂2MRE and σ̂2p,MRE , we ob-

serve that Eff
(

σ̂2p,MRE : σ̂2MRE

)

= 2(n+ 2)2/[(n+ 1)(2n+ 7)]. Since 2(n+ 2)2/[(n+ 1)(2n+ 7)]−
1 = −(n− 1)/[(n+ 1)(2n+ 7)] < 0 for n > 1, then we have established that, as p → ∞,

σ̂2MRE is more efficient than σ̂2p,MRE . To show that σ̂2p,ALB is dominated by σ̂2UMV U , note that

R(σ̂2p,ALB , (µi0 , σ
2)) = (2n− 1)/[(n− 2)2], which is easily shown to exceed 2/(n − 1) whenever

n > 2.
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Proof of Theorem 5.5: Starting from (23) and using Corollary 5.1, we obtain

σ̂2p,LB
σ2

d
=

p
∑

i=1











[

W
n (1 + T 2i )

]−α

∑p
j=1

[

W
n (1 + T 2j )

]−α











[

W

n
(1 + T 2i )

]

=
W

n

{

1 +
p
∑

i=1

θi(T )T 2i

}

.

The following lemma will be needed for proving Theorems 5.6 and 5.7.

Lemma A.1 Under the conditions of Proposition 5.1, (i) E{T − ν|W} =
(√

n/(
√
WCn)− 1

)

ν;

(ii) E{(T −ν)(T −ν)′|W} = J/W +
(√

n/(
√
WCn)− 1

)2
ν⊗2; (iii) E{W (T −ν)} = −ν; and (iv)

E{W (T − ν)(T − ν)′} = J + n
(

1/C2n − 1 + 3/n
)

ν⊗2, with constant Cn given in Corollary 5.1.

Proof of Lemma A.1: Since E(T |W ) = E(V /
√
W |W ) = E(V )/

√
W =

√
nν/(

√
WCn), then

the first result immediately follows. Using that E(W ) = n − 1 and E(
√
W ) = (n − 2)Cn/

√
n, the

third result follows trivially from the first identity. To prove the second result, observe that

E(TT ′|W ) =
1

W
E(V V ′) =

1

W
E{(Z1−

√
n∆)⊗2} = 1

W

(

J +
n

C2n
ν⊗2

)

;

and E{Tν ′|W} = −√n∆ν ′/
√
W =

√
nν⊗2/(

√
WCn). Consequently,

E{(T − ν)(T − ν)′|W} = E(TT ′|W )− 2E(Tν ′|W ) + ν⊗2 =
J

W
+

( √
n√

WCn

− 1

)2

ν⊗2.

Finally, by the iterated expectation rule, and using the expressions for E(W ) and E(
√
W ),

E{W (T − ν)(T − ν)′} = E{WE[(T − ν)(T − ν)′|W ]}

= E

{

J +

(

n

C2n
− 2

√
n

Cn

√
W +W

)

ν⊗2
}

= J +

(

n

C2n
− 2(n− 2) + (n− 1)

)

ν⊗2.

Simplifying leads to the expression given in the statement of the lemma.

Proof of Theorem 5.6: First, note that by using the fourth result in Lemma A.1, we have

E{W (T − ν)′H(2)(T − ν)} = E{tr[H (2)W (T − ν)(T − ν)′]}

= tr

(

H(2)
[

J + n

(

1

C2n
− 1 +

3

n

)

ν⊗2
])

= (1′H(2)1) + n

(

1

C2n
− 1 +

3

n

)

(ν ′H(2)ν).

From (24), and using Lemma A.1 and the preceding result, the approximation to the mean of

σ̂2p,LB/σ
2 is obtained to be

E2(∆) =
1

n

{

(1 +H)(n− 1)−H (1)′ν +
1

2
(1′H(2)1) +

n

2

(

1

C2n
− 1 +

3

n

)

(ν ′H(2)ν)

}

,
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which simplifies to the expression in the statement of the theorem.

To obtain second-order approximation to the variance of σ̂2p,LB/σ
2, we first establish two inter-

mediate lemmas concerning the conditional mean and variance, given W , of the variable

Q ≡ 1 +H +H(1)′(T − ν) +
1

2
(T − ν)′H(2)(T − ν), (27)

which is the second-order Taylor approximation of the function 1 +H(T ) (see equation (24)).

Lemma A.2 Under conditions of Prop 5.1, E(Q|W ) =

{

1 +H − (H(1)′ν) +
1

2
(ν ′H(2)ν)

}

+
√
n

Cn

{

(H(1)′ν)− (ν ′H(2)ν)
}

1√
W

+ 1
2

{

(1′H(2)1) + n
C2

n
(ν ′H(2)ν)

}

1
W .

Proof of Lemma A.2: From the proof of and results in Lemma A.1, it follows that

E
{

(T − ν)′H(2)(T − ν)|W
}

= 1
W (1′H(2)1) +

(

n
WC2

n
− 2

√
n√

WCn
+ 1

)

(ν ′H(2)ν).

From the first result in Lemma A.1 and the preceding result, E(Q|W ) = 1+H+
( √

n√
WCn

− 1
)

H(1)′ν+
1
2

{

1
W (1′H(2)1) +

(

n
WC2

n
− 2

√
n√

WCn
+ 1

)

(ν ′H(2)ν)
}

, and the result follows.

Lemma A.3 Under conditions of Prop 5.1, Var(Q|W ) =
{

(H(1)′1)− (1′H(2)ν)
}2

1
W+

2
√
n

Cn

{

(H(1)′1)− (1′H(2)ν)
}

(1′H(2)ν) 1
W 3/2 +

{

1
2(1

′H(2)1)2 + n
C2

n
(1′H(2)ν)2

}

1
W 2 .

Proof of Lemma A.3: First, observe that we have

Var{H(1)′(T − ν)|W} =
1

W
H(1)′Cov(V )H(1) =

1

W
H(1)′JH(1) =

1

W
(H(1)′1)2;

Var{(T − ν)′H(2)(T − ν)|W} = Var{T ′H(2)T |W}+ 4Var{ν ′H(2)T |W}

−4Cov{T ′H(2)T ,ν ′H(2)T |W};

Var{T ′H(2)T |W} = Var

{

V ′
√
W

H(2) V√
W
|W
}

=
1

W 2
Var{V ′H(2)V }.

From the representation of V in (26), we obtain

Var{V ′H(2)V } = Var{(Z1−√n∆)′H(2)(Z1−√n∆)}2(1′H(2)1)2 + 4n
C2

n
(1′H(2)ν)2

since Var(Z2) = 2, Var(Z) = 1, and Cov(Z2, Z) = 0. Thus,

Var{T ′H(2)T |W} = 4

W 2

{

1

2
(1′H(2)1)2 +

n

C2n
(1′H(2)ν)2

}

.

We also have

Var{ν ′H(2)T |W} = ν ′H(2)Cov(T |W ) 1W ν ′H(2)JH(2)ν = 1
W (1′H(2)ν)2;

Cov{T ′H(2)T ,ν ′H(2)T |W} = 1
W 3/2Cov{V ′H(2)V ,ν ′H(2)V }.
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Again, by utilizing the representation for V in (26), we obtain

Cov{V ′H(2)V ,ν ′H(2)V } =
2
√
n

Cn
(1′H(2)ν)2,

so Cov{T ′H(2)T ,ν ′H(2)T |W} = 2
√
n

W 3/2Cn
(1′H(2)ν)2. Combining these results, we obtain

Var{(T − ν)′H(2)(T − ν)|W} =
4

W 2

{

1

2
(1′H(2)1)2 +

n

C2n
(1′H(2)ν)2

}

+ 4

{

1

W
(1′H(2)ν)2

}

− 4

{

2
√
n

W 3/2Cn
(1′H(2)ν)2

}

.

Also,

Cov{H(1)′(T − ν), (T − ν)′H(2)(T − ν)|W} = H(1)′
[

Cov(T ,T ′H(2)T |W )− 2Cov(T |W )H (2)ν
]

.

But, once again,

Cov(T ,T ′H(2)T |W ) = 1
W 3/2Cov(V ,V H(2)V ) = − 2

√
n

W 3/21(1
′H(2)∆) = 2

√
n

W 3/2Cn
(1′H(2)ν)1,

while H(1)′Cov(T |W )H(2)ν = 1
W (H(1)′1)(1′H(2)ν). Thus, we have

Cov{H(1)′(T − ν), (T − ν)′H(2)(T − ν)|W} =
2
√
n

W 3/2Cn
(1′H(2)ν)1− 2

W
(H(1)′1)(1′H(2)ν).

Now, by using these intermediate results, we find that

Var(Q|W ) = Var{H(1)′(T − ν)}+ 1

4
Var{(T − ν)′H(2)(T − ν)|W}+

(2)

(

1

2

)

Cov{H(1)′(T − ν), (T − ν)′H(2)(T − ν)|W}

=
1

W
(H(1)′1)2 +

1

4

{

4

W 2

[

1

2
(1′H(2)1)2 +

n

C2n
(1′H(2)ν)2

]

+

4

W
(1′H(2)ν)2 − (4)(2)

W 3/2

√
n

Cn
(1′H(2)ν)2

}

+

2

W 3/2

√
n

Cn
(H(1)′1)(1′H(2)ν)− 2

W
(H(1)′1)(1′H(2)ν).

and the result follows after simplification.

Proof of Theorem 5.7: From (24) and (27), and by the iterated variance rule, an approximate

variance of σ̂2p,LB/σ
2 is V2(∆) ≡ Var

{

1
nWQ

}

= 1
n

[

Var
{

W√
n
E(Q|W )

}

+E
{

W 2

n Var(Q|W )
}]

≡
1
n {VE(∆) + EV(∆)} . The final expression of VE(∆) follows from the Lemma A.2, the identities

Var(W ) = 2(n−1), Var(
√
W ) = (n−1)− (n− 2)2C2n/n, and Cov(W,

√
W ) = (n− 2)Cn/

√
n, and

VE(∆) =
1

n

[

Var

{

W

[

1 +H −H(1)′ν +
1

2
ν ′H(2)ν

]

+
√
W

√
n

Cn

(

H(1)′ν − ν ′H(2)ν
)

}]

=
1

n

{

[

1 +H −H(1)′ν +
1

2
ν ′H(2)ν

]2

Var(W )+
n

C2n

(

H(1)′ν − ν ′H(2)ν
)2
Var(

√
W )

+
2
√
n

Cn

[

1 +H −H(1)′ν +
1

2
ν ′H(2)ν

]

(

H(1)′ν − ν ′H(2)ν
)

Cov(W,
√
W )

}

.
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Also, from Lemma A.3,

EV(∆) =
1

n

{

E(W )
(

H(1)′1− 1′H(2)ν
)2

+

2
√
n

Cn

(

H(1)′1− 1′H(2)ν
)

(1′H(2)ν)E(
√
W ) +

1

2
(1′H(2)1)2 +

n

C2n
(1′H(2)ν)2

}

,

which simplifies to the expression of EV(∆) in the statement of the theorem upon substituting the

expressions E(W ) = n− 1 and E(
√
W ) = (n− 2)Cn/

√
n. This completes the proof.
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Table 2: Efficiencies (relative to of the UMVU estimator σ̂2UMV U ) of the different variance estimators
for different combinations of p,∆, and n. For the limiting Bayes and weighted estimators, the values
are based on simulation studies with 10000 replications for each combination.

Combinations Efficiency %

of p and ∆ n MRE pMLE pMRE ALB LB1 LB2 LB3 LB4 PLB1 PLB2 PLB3

3 200 174 222 14 10 60 152 230 240 236 233
∆=(-0.25,0,0.25) 10 122 117 124 71 62 89 113 128 129 129 128

p=3 30 107 106 107 91 89 99 107 105 112 112 112

3 200 183 209 17 11 66 160 217 235 226 221
∆=(-0.5,0,0.5) 10 122 119 124 73 59 86 110 127 129 128 127

p=3 30 107 106 110 89 84 95 104 109 111 111 111

3 200 164 226 13 9 51 135 227 238 234 232
∆=(0,0.25, 0.50) 10 122 114 127 66 53 78 103 131 129 128 128

p=3 30 107 105 109 88 81 92 100 107 108 108 108

3 200 166 222 13 8 47 128 222 233 228 224
∆=(0,0.5,1) 10 122 115 128 65 51 76 102 126 126 126 126

p=3 30 107 105 110 87 83 94 103 109 110 110 110

3 200 174 222 14 10 58 149 234 241 238 235
∆=(-0.25:2−4:0.25) 10 122 117 123 71 61 88 112 127 130 130 129

p=9 30 107 105 106 91 88 98 106 109 111 111 111

3 200 174 222 14 10 57 145 234 239 237 234
∆=(-0.25:2−5:0.25) 10 122 117 123 71 60 86 109 130 127 127 126

p=17 30 107 105 106 91 87 97 105 108 110 110 110

3 200 164 225 13 9 52 137 230 243 240 238
∆=(0:2−4:0.5) 10 122 114 126 66 53 77 102 129 128 127 127

p=9 30 107 104 108 88 76 87 97 109 107 107 107

3 200 164 225 13 10 55 145 235 249 246 243
∆=(0:2−5:0.5) 10 122 114 126 66 54 79 106 130 134 133 133

p=17 30 107 104 108 88 76 87 97 111 107 107 108
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Table 3: Efficiencies (relative to the UMVU estimator σ̂2UMV U ) of the different variance estimators
for different combinations of p, ∆, and n. For the limiting Bayes and weighted estimators, 10000
simulation replications were performed for each combination.

Combinations Efficiency %

of p and ∆ n MRE pMLE pMRE ALB LB1 LB2 LB3 LB4 PLB1 PLB2 PLB3

3 200 170 232 13 8 52 143 229 243 237 234
∆=(0, 1) 10 122 115 134 63 55 81 107 130 129 130 130

p=2 30 107 104 111 85 85 96 105 109 112 112 112

3 200 195 216 18 10 63 162 221 255 237 228
∆=(-1, 0, 1) 10 122 120 134 67 51 77 103 129 126 127 128

p=3 30 107 104 111 85 84 95 103 110 111 111 111

3 200 185 199 19 11 66 162 208 246 230 221
∆=(-1: 2−1 :1) 10 122 119 124 73 52 78 103 125 126 126 125

p=5 30 107 106 110 89 81 92 101 107 108 108 108

3 200 182 195 20 11 64 153 210 232 219 211
∆=(-1: 2−2 :1) 10 122 118 120 74 56 82 106 126 126 125 125

p=9 30 107 106 107 91 82 92 100 105 106 106 106

3 200 181 194 20 11 65 155 207 234 220 213
∆=(-1: 2−3 :1) 10 122 117 119 75 55 81 104 126 125 124 123

p=17 30 107 105 106 92 80 90 99 107 107 107 107

3 200 181 194 20 12 72 168 206 240 226 217
∆=(-1: 2−4 :1) 10 122 117 119 75 57 82 106 125 126 125 124

p=33 30 107 105 105 92 82 93 101 105 108 108 108

3 200 181 194 20 11 65 156 208 234 221 214
∆=(-1: 2−5 :1) 10 122 117 119 75 58 84 109 123 128 127 127

p=65 30 107 105 105 92 82 93 102 107 109 109 109

3 200 181 194 20 11 69 163 207 237 224 216
∆=(-1: 2−6 :1) 10 122 117 119 75 56 82 106 126 126 125 125

p=129 30 107 105 105 92 81 91 99 108 106 106 106

3 200 181 194 20 11 67 159 205 236 223 215
∆=(-1: 2−7 :1) 10 122 117 119 75 57 83 107 124 128 127 126

p=257 30 107 105 105 92 82 92 101 108 108 108 108

3 200 181 194 20 11 66 156 206 233 221 213
∆=(-1: 2−8 :1) 10 122 117 119 75 58 84 108 127 128 127 126

p=513 30 107 105 105 92 80 91 99 106 107 107 107
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Figure 1: Relative efficiencies of pMRE with respect to MRE in a symmetric and asymmetric
∆ cases, as a function of ∆max and number of sub-models p for sample size of n = 10. The
symmetric case is of form ∆ = [−∆max : ∆max/(p − 1) : ∆max], while the asymmetric case is of
form ∆ = [0 : ∆max/(2(p− 1)) : ∆max].
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Figure 2: Efficiencies of the 11 estimators of σ2 relative to the UMVUE σ̂2UMV UE for p = 2 and
∆ = (0,∆), with ∆ varying, for n = 3, 10. For the limiting Bayes (pLBk) and weighted (pPLBk)
the (connected) scatterplot represents the simulated estimates of relative efficiency based on 10000
replications for each ∆.
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