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Abstract

A class of tests for the hypothesis that the baseline hazard function in Cox’s proportional
hazards model and for a general recurrent event model belongs to a parametric family C ≡
{λ0(·; ξ) : ξ ∈ Ξ} is proposed. Finite properties of the tests are examined via simulations,
while asymptotic properties of the tests under a contiguous sequence of local alternatives are
studied theoretically. An application of the tests to the general recurrent event model, which
is an extended minimal repair model admitting covariates, is demonstrated. In addition, two
real data sets are used to illustrate the applicability of the proposed tests.
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1. Introduction and Setting

Goodness-of-fit testing is an integral part of statistical modeling and has pervaded statisti-

cal theory and practice since Pearson’s (1900) pioneering paper. In this paper we propose a class

of goodness-of-fit procedures for testing whether the baseline hazard function in a Cox’s (1972)

proportional hazards model (CPHM) and a general recurrent event model belongs to a specified

parametric family. In dealing with the CPHM, attention is mostly on the vector of regression

coefficients; however, when one is interested in prediction and model validation, then inference

on the baseline hazard function becomes necessary. The problem of goodness-of-fit pertaining

to the baseline hazard function will be our focus in this paper. In particular, interest is on
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testing whether the baseline hazard function belongs to a parametric family of hazard functions,

an important issue for instance in certain cancer studies where there are substantive reasons

for testing whether the baseline hazard function belongs to the Weibull class. One advantage

in knowing that the baseline hazard belongs to a parametric class is it enables the adoption of

inferential methods which are more efficient relative to those which are purely nonparametric.

This issue has been discussed for example in Lin and Spiekerman (1996) and Ying, Wei, and

Lin (1992), among others.

We seek to develop goodness-of-fit procedures that possess optimality properties. This

leads to three possible approaches: likelihood ratio tests, Wald tests, or score tests. Rayner and

Best (1989) present an interesting discussion of the properties of these tests. In particular, they

conclude that though all three tests are asymptotically equivalent, the score test is usually the

simplest to implement. Therefore, we focus on the development of a goodness-of-fit score test

which is a hazard-based adaptation of Neyman’s (1937) smooth goodness-of-fit tests.

Neyman’s (1937) smooth goodness-of-fit tests were derived by embedding the hypothesized

class of density functions in a wider class whose members are obtained as “smooth” transforma-

tions from the members of the hypothesized class (cf., Rayner and Best, 1989). Recent papers

dealing with smooth goodness-of-fit tests are Bickel and Ritov (1992), Eubank and Hart (1992),

Inglot, et al. (1994), Ledwina (1994), Kallenberg and Ledwina (1995), and Fan (1996). Gray

and Pierce (1985) proposed an extension of this class of tests in the presence of right-censored

data, but some difficulties arose when this embedding is through the density functions. With

the advent of the modern stochastic process approach ushered by Aalen’s (1978) paper in deal-

ing with failure-time models, hazard functions have proven to be the natural parameter in this

framework. Within this framework, Neyman’s smooth tests were reformulated through hazard

functions in Peña (1998a) for the simple hypothesis case in the CPHM with right-censored data,

and in Peña (1998b) for the composite hypothesis case in a no-covariate setting. This hazard

approach eliminated some technical difficulties encountered using the density embedding, and al-
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lowed the use of counting process and martingale theory to resolve technical issues. The present

paper further generalizes results in Peña (1998ab) by considering the composite hypothesis test-

ing problem for the CPHM and a general recurrent event model. The mathematical framework

of this paper will therefore be counting processes and martingales (cf., Fleming and Harrington

(1991); Andersen, Borgan, Gill and Keiding (1993)).

Consider a multivariate counting process N = {(N1(t), N2(t), . . . , Nn(t)) : t ∈ T } defined

on a filtered probability space (Ω,F = (Ft : t ≥ 0),P). The time index T maybe (0, τ)

or (0, τ ], τ ≤ ∞ and the filtration is typically the natural filtration. For the CPHM or the

multiplicative intensity model (see Andersen and Gill (1982)), the F -compensator of N is A =

{(A1(t; ξ, β), A2(t; ξ, β), . . . , An(t; ξ, β)) : t ∈ T } with

Aj(t; ξ, β) =

∫ t

0
Yj(s)λ(s; ξ) exp{β′Xj(s)} ds,

where Y = {(Y1(t), Y2(t), . . . , Yn(t)) : t ∈ T } is a vector of predictable “at-risk” processes,

λ(·; ξ) is some baseline hazard function, β is a q × 1 vector of regression coefficients, and

X1(·),X2(·), . . . ,Xn(·) are q×1 vectors of locally bounded predictable processes. The goodness-

of-fit problem is to test the composite null hypothesis H0 : λ(·) ∈ C ≡ {λ0(·; ξ) : ξ ∈ Ξ} versus

the alternative hypothesis H1 : λ(·) 6∈ C, where the functional form of λ0(·; ξ) is known, except

for the p× 1 vector ξ. The parameter ξ is a nuisance parameter in this testing problem.

Following Peña (1998b), let λ(·) be the true, but unknown hazard function, and consider

the class of functions K = {κ(·; ξ) : ξ ∈ Ξ} where

κ(t; ξ) = log

{

λ(t)

λ0(t; ξ)

}

.

If the hypothesized class C is a reasonable one, then the functional class K will possess certain

properties such as being a Hilbert space. We shall therefore assume that there exists a basis set of

functions {(ψ1(t; ξ), ψ2(t; ξ), . . .) : t ∈ T }, which maybe composed of trigonometric, polynomial,
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or wavelet functions. Therefore,

κ(t; ξ) = log

{

λ(t)

λ0(t; ξ)

}

=
∞
∑

i=1

θiψi(t; ξ), t ∈ T . (1.1)

By Parseval’s Theorem, coefficients in the later terms of the right hand side of (1.1) will be

small, so a reasonable approximation can be obtained by truncating the infinite sum at some

point k, called a smoothing order. Such a truncation was referred to as a ‘Neyman truncation’

by Fan (1996). We will partially address the choice of the value of k in Section 4. Thus, (1.1)

may be expressed as

κ(t; ξ) = log

{

λ(t)

λ0(t; ξ)

}

≈
k
∑

i=1

θiψi(t; ξ) = θ
′ψ(t; ξ), t ∈ T ,

where θ and ψ are k×1 vectors. This results in an embedding class for the hazard rate functions

given by

Ak = {λk(·;θ, ξ, β) = λ0(·; ξ) exp[θ′ψ(·; ξ)] : θ ∈ IRk}. (1.2)

Note that C ⊂ Ak since it obtains by setting θ = 0. Consequently, within this embedding, we

could test for the composite hypotheses

H∗0 : (θ, ξ, β) ∈ {0} × Ξ× B versus H∗
1 : (θ, ξ, β) ∈ <k \ {0} × Ξ× B.

In this formulation, the proposed class of tests will be the score tests for the above hypotheses.

Such tests will possess certain local optimality properties intrinsic to score tests (cf., Cox and

Hinkley, 1974; Choi, et al., 1996). Another desirable property of this class of tests is its power

to detect a wide range of alternatives. See, for instance, Rayner and Best (1989) for the classical

density-based formulation, and Peña (1998ab) and Agustin and Peña (2000) for the hazard-based

formulation. In addition, both omnibus and directional tests can be generated from this class

of tests. Various empirical studies such as Kopecky and Pierce (1979), Miller and Quesenberry

(1979), and Eubank and LaRiccia (1992) have shown that smooth tests possess more power than

commonly used omnibus test statistics for a larger class of feasible alternatives. In particular, the
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Cramer-von Mises (CVM) statistic has been shown to have dismal performance against almost all

but location-scale alternatives. The paper by Eubank and LaRiccia (1992) presents theoretical

justification for the observed phenomenon that smooth tests have superior power over CVM

type statistics for many non-location-scale alternatives. Furthermore, a natural consequence of

this hazard-based formulation is our ability to obtain goodness-of-fit tests based on the model’s

generalized residuals, which are usually utilized for validation purposes. For instance, we are

able to generalize existing tests based on martingale residuals. The hazard-based approach also

afforded us the machinery to extend our results to the recurrent event setting. Since situations

where the event of interest may recur are encountered in a variety of disciplines, it is important

to develop statistical inference procedures for stochastic models dealing with recurrent data. The

particular application that we deal with involves goodness-of-fit problems for the distribution of

the time-to-first-event-occurrence in a general recurrent event model, which is the Block, Borges

and Savits (1985) minimal repair model but incorporating covariates.

A major difference between the settings considered in earlier papers and this paper is the

need to contend with two sets of nuisance parameters: ξ and β. Of interest is the ascertainment

of the effects of estimating these nuisance parameters. This issue is especially important when

using generalized residuals where unknown parameters are replaced by their estimates. Results

presented later show that the use of estimates in lieu of the unknown parameters warrants

adjustments on the asymptotic variances of the test statistics, and by not doing so, erroneous

conclusions could arise since the seemingly intuitive approach of using plug-in estimates for

unknown parameters could have drastic consequences, even when the plug-in estimators are

consistent. This issue has been examined also in simpler settings, such as in Pierce (1982),

Randles (1982, 1984), Lagakos (1981), Baltazar-Aban and Peña (1995), and Peña (1995, 1998ab).

We now outline the organization of this paper. In Section 2, we present the proposed

class of goodness-of-fit tests and indicate its development. The asymptotic properties of the

test statistics under a contiguous sequence of local alternatives is provided in subsection 2.2,
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although to make the paper more readable and to conserve space, we omit the technical proofs

and simply direct the reader to the relevant references. The required technicality conditions for

the asymptotic properties are however enumerated in an appendix. An application of specific

members of the class of tests to a generalized recurrent event model is performed in Section 3

where closed-form expressions for test statistics are obtained in the case of time-independent and

Bernoulli-distributed covariates. In Section 4 simulation results pertaining to the finite sample

size properties of the tests are presented. Finally, Section 5 provides illustrative examples which

also serve as a venue for discussing issues such as censoring and other covariate structures.

2. Class of GOF Tests

2.1 Score Process

Within the embedding given in (1.2), the relevant score process for θ is

UF
θ(t;θ, ξ, β) =

n
∑

j=1

∫ t

0
ψ(s; ξ)dMj(s;θ, ξ, β), (2.1)

where Mj(s;θ, ξ, β) = Nj(s)−Aj(s;θ, ξ, β) and

Aj(t;θ, ξ, β) =

∫ t

0
Yj(s)λ0(s; ξ) exp{β′Xj(s)} exp{θ′ψ(s; ξ)} ds.

Suppose (ξ0, β0) is the true, but unknown, value of (ξ, β). Under H
∗
0 ,

M(·) = (M1(·;0, ξ0, β0), . . . ,Mn(·;0, ξ0, β0))

is a vector of local square-integrable orthogonal martingales. Hence, since ψ is predictable, the

score process evaluated at (θ, ξ, β) = (0, ξ0, β0) given by

UF
θ(t;0, ξ0, β0) =

n
∑

j=1

∫ t

0
ψ(s; ξ0) dMj(s;0, ξ0, β0) (2.2)

is a local square-integrable martingale. However, the process in (2.2) is not observable since

(ξ0, β0) is unknown, so we plug-in estimators for these unknown nuisance parameters.
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For the CPHM, it is usual to use the partial likelihood maximum likelihood estimator

(PLMLE) (cf., Keiding, et al., 1998) of β, denoted by β̂, which is a solution of the equation

UP
β (τ ; ξ, β) = 0, where

UP
β (τ ; ξ, β) =

n
∑

j=1

∫ τ

0
[Xj(s)−E(s;β)] dNj(s);

S(m)(t;β) =
1

n

n
∑

j=1

Xj(t)
⊗mYj(t) exp[β

′Xj(t)], m = 0, 1, 2;

E(t;β) =
S(1)(t;β)

S(0)(t;β)
,

and for a vector a, a⊗0 = 1, a⊗1 = a, and a⊗2 = aa′. To estimate ξ, we use the estimator that

maximizes the profile likelihood. This estimator of ξ, denoted by ξ̂ ≡ ξ̂(β̂), solves the equation

UF
ξ (τ ; ξ, β̂) ≡

n
∑

j=1

∫ τ

0
ρ(s; ξ) dMj(s;0, ξ, β̂) = 0,

where ρ(s; ξ) = ∇ξ log λ0(s; ξ) with ∇ξ = ∂/∂ξ being the gradient operator for ξ. Consequently,

the vector of score statistics for testing H∗
0 is

UF
θ(τ ;0, ξ̂, β̂) =

n
∑

j=1

∫ τ

0
ψ(s; ξ̂) dMj(s;0, ξ̂, β̂). (2.3)

Since (ξ, β) was replaced by (ξ̂, β̂), Mj(s;0, ξ̂, β̂)’s are no longer martingales. In order to con-

struct the testing procedure and to assess the effects of plugging-in estimators for the unknown

nuisance parameters, we need the sampling distribution of UF
θ(τ ;0, ξ̂, β̂). However, the exact

sampling distribution of this estimated score process is not analytically tractable, so we focus

on its asymptotic properties under a contiguous sequence of local alternatives.

2.2 Asymptotics

Consider a sequence of models indexed by n with processes {(N (n)
j , Y

(n)
j ,X

(n)
j ), j =

1, . . . , n} defined on probability spaces (Ω(n),F (n),P(n)) and adapted to the filtrations F (n) =

{F (n)
t : t ∈ T }. The sequence of compensators is {A(n)

j (·;θ(n), ξ, β) : j = 1, . . . , n;n = 1, 2, . . .}

with

A
(n)
j (t;θ

(n), ξ, β) =

∫ t

0
Y

(n)
j (s)λ0(s; ξ) exp{θ(n)′ψ(n)(s; ξ)} exp{β′X(n)

j (s)} ds.
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Notice that k, λ0(s; ξ), and β are independent of n. The sequence of hypotheses that are of

interest is

H
(n)
0 : (θ(n), ξ, β) ∈ {0} × Ξ× B;

H
(n)
1 : (θ(n), ξ, β) ∈

{

γ√
n
(1 + o(1))

}

× Ξ× B,

where γ ∈ IRk. Therefore, the sequence of score processes is given by

U
(n)
θ (t;0, ξ̂

(n), β̂(n)) =
n
∑

j=1

∫ t

0
ψ(n)(s; ξ̂(n)) dM

(n)
j (s;0, ξ̂(n), β̂(n)),

where M
(n)
j (t;0, ξ, β) = N

(n)
j (t) −

∫ t
0 Y

(n)
j (s)λ0(s; ξ) exp{β′X(n)

j (s)} ds and ξ̂(n) ≡ ξ̂(n)(β̂(n)).

Henceforth, we suppress the superscript n. We introduce the processes

P (m)(t; ξ, β) =
1

n

n
∑

j=1

ψ(t; ξ)⊗mYj(t) exp{β′Xj(t)}, m = 1, 2.

Moreover, since the ensuing discussion focuses on the results at time τ , we further simplify

our notation by suppressing the time argument. We denote by lower case letters in-probability

limiting functions of the processes denoted by the corresponding capital letters. For instance,

s(1) is the in-probability limit of S(1). Letting

e =
s(1)

s(0)
, v =

s(2)

s(0)
− e⊗2, and d(m) =

p(m)

s(0)
, (m = 1, 2),

we define the following matrices, where for brevity of notation, we have taken the liberty of

suppressing the time argument s, which is the variable of integration, in the functions/processes

of the integrands:

Σ11(ξ, β) =

∫ τ

0
d(2)(ξ, β)s(0)(β)λ0(ξ) ds,

Σ12(ξ, β) =

∫ τ

0
d(1)(ξ, β)ρ(ξ)

′s(0)(β)λ0(ξ) ds,

Σ22(ξ, β) =

∫ τ

0
ρ(ξ)⊗2s(0)(β)λ0(ξ) ds,

Σ33(ξ, β) =

∫ τ

0
v(β)s(0)(β)λ0(ξ)ds,

∆1(ξ, β) =

∫ τ

0
d(1)(ξ, β)e(β)

′s(0)(β)λ0(ξ) ds,

∆2(ξ, β) =

∫ τ

0
ρ(ξ)e(β)′s(0)(β)λ0(ξ) ds,
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and

Σ(ξ0, β0) =







Σ11(ξ0, β0) Σ12(ξ0, β0) 0

Σ21(ξ0, β0) Σ22(ξ0, β0) 0

0 0 Σ33(ξ0, β0)






.

To facilitate economy of notation in the sequel, we also define the following matrices:

Σ11.2(ξ, β) = Σ11(ξ, β)−Σ12(ξ, β)Σ22(ξ, β)
−1Σ21(ξ, β);

Υ(ξ, β) = ∆1(ξ, β)−Σ12(ξ, β)Σ22(ξ, β)
−1∆2(ξ, β).

To state the asymptotic results, certain regularity conditions are needed. These conditions

are a combination of those used in Peña (1998ab) or some variant thereof. The list of conditions

brings together those in Andersen and Gill (1982), Borgan (1984), and conditions regulating

behavior of the ψj processes. We enumerate these conditions in the Appendix. So as to conserve

space and at the same time avoid distracting the reader from the main emphasis of this paper,

which is the goodness-of-fit procedure and the examination of the impact of estimating unknown

parameters, we omitted the presentation of all intermediate results and proofs. Instead, we refer

the interested reader to technical details in Peña (1998b) and Peña and Agustin (2001). The

main asymptotic result needed in the test construction is as follows.

Theorem 2.1: If conditions (I) – (XII) in the Appendix hold, then under a sequence of

contiguous local alternatives H
(n)
1 : (θ, ξ, β) ∈

{

γ√
n
(1 + o(1))

}

× Ξ × B, the estimated score

process 1√
n
UF

θ (0, ξ̂, β̂) converges weakly on Skorokhod’s D(T )k space to Z̃(ξ0, β0), a Gaussian

process with mean function µ(ξ0, β0) = Σ11.2(ξ0, β0)γ and covariance matrix function

Γ(ξ0, β0) = Σ11.2(ξ0, β0) +Υ(ξ0, β0)Σ33(ξ0, β0)
−1Υ(ξ0, β0)

′.

¿From Theorem 2.1, it follows that the quantity

S(ξ0, β0) =
1

n

{

UF
θ (ξ̂, β̂)

′
}

{Γ(ξ0, β0)}−
{

UF
θ (ξ̂, β̂)

}

,

where Γ−(·) is a generalized inverse of Γ(·), converges in distribution, underH (n)
1 , to a noncentral

chi-square distribution with degrees of freedom k∗ = rank [Γ(ξ0, β0)] and noncentrality param-

eter δ2p(·) = µ
′(ξ0, β0)Γ

−(ξ0, β0)µ(ξ0, β0). Note that S(ξ0, β0) is not a statistic since Γ
−(ξ0, β0)
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depends on the unknown parameter vector (ξ0, β0). A possible consistent estimator of Σ(ξ0, β0)

is given by

Σ̂(ξ̂, β̂) =
1

2n

n
∑

j=1

∫ τ

0







ψ(ξ̂)

ρ(ξ̂)

Xj −E(β̂)







⊗2

{

dNj + Yjλ0(ξ̂) exp{β̂′Xj} ds
}

, (2.4)

a convex combination of the estimators based on the predictable variation and optional variation

processes. Also, ∆1(ξ, β) and ∆2(ξ, β) could be consistently estimated by

∆̂1 =

∫ τ

0
P (1)(ξ̂, β̂)E(β̂)

′λ0(ξ̂)ds and ∆̂2 =

∫ τ

0
ρ(ξ̂)E(β̂)′S(0)(β̂)λ0(ξ̂)ds.

An estimator of Γ(ξ,β), which we denote by Γ̂(ξ̂, β̂), is then immediately formed from the

aforementioned matrices. Furthermore, a consistent estimator of k∗ is k̂∗ = rank [Γ̂(ξ̂, β̂)] (cf.,

Theorem 2, Li and Doss, 1993).

The asymptotic distribution under H0 is obtained by setting γ = 0 in Theorem 2.1. Doing

so, it follows that an asymptotic α-level goodness-of-fit test for H0 : λ(·) ∈ C ≡ {λ0(·; ξ) : ξ ∈ Ξ}

rejects H0 in favor of H1 : λ(·) /∈ C whenever

S(ξ̂, β̂) =
1

n
UF

θ (ξ̂, β̂)
′Γ̂−(ξ̂, β̂)UF

θ (ξ̂, β̂) ≥ χ2
k̂∗;α

, (2.5)

where χ2
k̂∗;α

is the (1− α)100th percentile of the central chi-square distribution with k̂∗ degrees

of freedom. ¿From Theorem 2.1 it also follows that the asymptotic local power (ALP) of the

test described above for direction vector γ is

ALP(γ) = P
{

χ2
k∗ [δ

2(γ)] ≥ χ2
k∗;α

}

, (2.6)

where χ2
k∗ [δ

2] is a non-central chi-square random variable with k∗ degrees-of-freedom and non-

centrality parameter δ2. For the case at hand, the noncentrality parameter is given by

δ2(γ) = γ ′Σ11.2(ξ0,β0){Γ(ξ0,β0)}−Σ11.2(ξ0,β0)γ.
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2.3 Effects of Plug-In Procedure

We discuss in this subsection the effects of plugging the estimators (ξ̂, β̂) for the unknown

parameters (ξ, β). First, note that if the true values of (ξ0, β0) of (ξ, β) are known, then the

covariance function is simply Σ11(ξ0, β0). Hence, from the covariance matrix in Theorem 2.1,

the plug-in approach has no asymptotic effect whenever Σ12(ξ0, β0) and ∆1(ξ0, β0) are both

0. These conditions are orthogonality conditions between ψ(ξ0, β0) and ρ(ξ0) and between

ψ(ξ0, β0) and e(β0), respectively. In the event that these conditions are not met, this plug-in

approach entails adjustments in the covariance function. Such adjustments need to be taken

into account to come up with an appropriate test. Ignoring these adjustments could lead to

erroneous conclusions. In the setting with i.i.d. observations and when the restricted estimators

are obtained by maximizing the full likelihood with θ = 0, the covariance function is constituted

only by the term Σ11.2. Thus, the term ΥΣ−1
33 Υ

′ can be attributed to the use of the partial

likelihood to obtain the PLMLE of β, and this PLMLE was subsequently used in the profile

likelihood to obtain the estimator of ξ. The use of the less efficient PLMLE for estimating β

rather than the restricted MLE resulted in an increase in the variance. We opted to use the

PLMLE because this is typically the estimator that is used in practice (cf., Keiding, et al., 1998)

for Cox-type models owing to the availability of softwares that enables its computation and

because the computation of the restricted MLE will usually be more involved.

In the next section, we illustrate the magnitude of the necessary adjustments for a gen-

eralized recurrent event model. Notice that if we consider the case where the class C is fully

specified, then the covariance matrix simplifies to

Γ(ξ0, β0) = Σ11(ξ0, β0) +∆1(ξ0, β0)Σ
−1
33 (ξ0, β0)∆1(ξ0, β0)

′.

This is precisely the result in Peña (1998a) for the simple hypothesis case. On the other hand,

if we consider the no-covariate case by setting X j(s) = 0, j = 1, 2, . . . , n, then the covariance
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matrix reduces to

Γ(ξ0, β0) = Σ11(ξ0, β0)−Σ12(ξ0, β0)Σ
−1
22 (ξ0, β0)Σ21(ξ0, β0).

Hence, we recover the result in Peña (1998b) for the no-covariate composite hypothesis setting

as well. As such, the results in the present paper generalizes existing results.

3. Application to a Generalized Recurrent Event Model

The analysis of models pertaining to recurrent events arises in various fields of study

such as biomedical, engineering, economics, sociological, and financial settings. In this section,

though we will be using reliability terminology and associate recurrent events with failures or

repairs in repairable systems, the model and inferential methods that will be discussed are also

relevant and applicable in other settings. We focus on the Block, Borges and Savits (1985)

minimal repair model, hereon referred to as the BBS model. We briefly describe this model.

Consider a component that is placed on test at time 0. If the component fails at time t, either

a perfect repair is done with probability p(t) or a minimal repair is undertaken with probability

q(t) = 1 − p(t). A perfect repair restores the component to the good-as-new state, that is, its

effective age reverts to 0; whereas, a minimal repair restores the effective age to that just before

the failure. In other words, after a minimal repair, the distribution of the time to the next failure

is stochastically equivalent to that of a working system of the same effective age. Without loss

of generality, we assume that repairs take negligible time. This process of perfectly or minimally

repairing the component takes place at each subsequent failure with the probability associated

with the type of repair dependent on the effective age of the system. Though the BBS model is

primarily utilized in the reliability and operations research settings, it is also applicable to other

areas since it admits as special cases some of the models commonly encountered in practice. For

instance, if p(t) = 1, we recover the independent and identically distributed (i.i.d.) model, also

called the renewal model. A common model used for recurrent events in the biomedical setting

12



is the nonhomogeneous Poisson process. This model is a special case of the BBS model obtained

by taking p(t) = 0.

We consider a generalized BBS model which admits covariates. Denote by W0 ≡ 0 <

W1 < W2 < . . . the successive failure times of a component, and let U1, U2, . . . be a sequence of

i.i.d. Uniform[0,1] random variables which are independent of the failure times. The sequence

(W1,W2, . . . ,Wν), where ν = inf{k ∈ {1, 2, . . .} : Uk < p(Wk)}, is an epoch of the BBS model.

Consider observing n independent BBS epochs {Wjk : 1 ≤ j ≤ n, 1 ≤ k ≤ νj} associated with

n units where the jth unit has a possibly time-dependent covariate process X j(·). Define the

stochastic processes N = {N1(t), N2(t), . . . , Nn(t)} and Y = {Y1(t), Y2(t), . . . , Yn(t)}, where

Nj(t) =
∞
∑

k=1

I{Wjk ≤ t ∧Wjνj
} and Yj(t) = I{Wjνj

≥ t}.

With respect to the filtration F = {Ft : t ∈ T }, where Ft = F0 ∨
∨n

j=1 σ{(Nj(s), Yj(s)) :

s ≤ t}, and with F0 containing all information available at time 0, the compensator of N is

A = {(A1(t; ξ, β), . . . , An(t; ξ, β)) : t ∈ T } with

Aj(t; ξ, β) =

∫ t

0
Yj(s)λ(s) exp{β′Xj(s)} ds,

where λ(s) is some baseline hazard function, β is a q × 1 vector of regression coefficients, and

X1(s), . . . ,Xn(s) are q × 1 vectors of locally bounded predictable covariate processes.

In the sequel, the following condition is assumed to hold:

∫ ∞

0
p(t)λ(t) exp{β′Xj(t)} dt =∞. (3.1)

Condition (3.1) guarantees that the waiting time to the first perfect repair is almost surely

finite with hazard rate function λ∗(t) = p(s)λ(s) exp{β′Xj(s)} (c.f., Block, et al., 1985). With

this generalized BBS model, we present an example to illustrate the magnitude of the required

adjustments due to the plug-in procedure.

Example 3.1: Suppose k = 1, p(t) = p, and the hypothesized class of baseline hazard functions

consists of Λ0(t; ξ) = ξtI{t ≥ 0} corresponding to constant failure rates. The assumption that
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p(t) = p reduces the BBS model to the Brown and Proschan (1983) imperfect repair model.

Moreover, suppose that the covariate X is time-independent and Bernoulli distributed with

success parameter p∗. Then

Σ11(ξ0, β0) = ξ0

∫ τ

0
ψ2(s; ξ0) {(1− p∗) exp[−pξ0s] + p∗ exp[β0 − pξ0 exp(β0)s]} ds;

Σ12(ξ0, β0) =

∫ τ

0
ψ(s; ξ0) {(1− p∗) exp[−pξ0s] + p∗ exp[β0 − pξ0 exp(β0)s]} ds;

Σ22(ξ0, β0) =
1

pξ20
{(1− p∗)[1− exp{−pξ0τ}] + p∗[1− exp{−pξ0 exp(β0)τ}]} ;

∆1(ξ0, β0) = p∗ξ0

∫ τ

0
ψ(s; ξ0) exp[β0 − pξ0 exp(β0)s] ds;

∆2(ξ0, β0) =
p∗

pξ0
[1− exp{−pξ0 exp(β0)τ}] ;

Σ33(ξ0, β0) = p∗(1− p∗)ξ0 exp(β0)

∫ τ

0

exp[−pξ0 exp(β0)s]

(1− p∗) + p∗ exp(β0) exp[−pξ0 exp(β0 − 1)s]
ds.

If, furthermore, we focus our attention to the case where β0 = 0 and ψ(t) = exp[−Λ0(t)] =

exp[−ξ0t], then the above expressions simplify to

Σ11(ξ0, 0) =
1− exp[−(p+ 2)ξ0τ ]

p+ 2
;

Σ12(ξ0, 0) =
1− exp[−(p+ 1)ξ0τ ]

ξ0(p+ 1)
;

Σ22(ξ0, 0) =
1− exp[−pξ0τ ]

pξ20
;

∆1(ξ0, 0) =
p∗

1 + p
[1− exp{−(p+ 1)ξ0τ}];

∆2(ξ0, 0) =
p∗

pξ0
[1− exp{−pξ0τ}] ;

Σ33(ξ0, 0) =
p∗(1− p∗)

p
[1− exp{−pξ0τ}].

If we let τ →∞, which translates to letting our observation period cover a complete epoch

for each component, then

Γ(ξ0, 0) =
1

p+ 2
− p

(p+ 1)2
.

Taking p = 1
2 yields Σ11(ξ0, 0) =

2
5 and Γ(ξ0, 0) =

8
45 . Hence, the adjustment resulted in a 56%

decrease in the variance! Lest the reader get the impression that the applicability of our results
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is limited to the simple scenario considered in the preceding example, we emphasize that the

use of the simple covariate structure was for the purpose of obtaining closed form expressions

in order to vividly illustrate the effects of the plug-in procedure.

The discussion that now follows applies to the CPHM involving a BBS model with a

general covariate structure. A key element of the proposed class of tests is the process ψ(·)

since it characterizes the family of alternatives that a particular test will detect powerfully.

As previously mentioned, ψ(·) could be a trigonometric, polynomial, or wavelet basis set, and

furthermore, our formulation allows the possibility that the basis set is random. In keeping

with the spirit of Neyman’s (1937) smooth goodness-of-fit tests, we focus on a polynomial

specification for ψ(·). Aside from the fact that polynomials form a basis for most functions, the

tests resulting from a polynomial specification assume fairly simple forms which makes them

appealing to use in practice, and furthermore, the resulting test statistics are simply functions

of the model’s generalized residuals. This polynomial specification also generates omnibus and

directional tests with reasonable powers to detect a wide range of alternatives even relative to

other choices. This aspect will be discussed in the next section when we present the simulation

results.

Let us consider the “polynomial” specification

ψ(t : PWk) = [Λ0(t; ξ),Λ
2
0(t : ξ), . . . ,Λ

k
0(t : ξ)]

′,

where k ∈ {1, 2, . . .} is some fixed smoothing order. Note that this polynomial form is slightly

different from the one in Peña (1998a) and Agustin and Peña (2000). To obtain closed-form

expressions, we assume time-independent covariates. In the event that one or more of the

covariates vary with time, the corresponding expressions can be derived directly from (2.3)

and (2.4). In the case of time-independent covariates, the score statistic resulting from this
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specification is

Q(PWk) =
1√
n

n
∑

j=1





Nj(τ)
∑

i=1

R`
ji − exp{β̂′Xj}

(Rτ
jνj
)`+1

`+ 1





`=1,...,k

,

where

Rji = Λ0(Wji; ξ̂), (i = 1, . . . , νj , j = 1, . . . , n) and Rτ
jνj
= Λ0(τ ∧Wjνj

; ξ̂)

are the model’s generalized residuals. Moreover, the components of the estimated covariance

matrix are found to be

Σ̂11(PWk) =
1

2n

n
∑

j=1











Nj(τ)
∑

i=1

[

R`+`′

ji

]

`,`′=1,...,k
+ exp{β̂′Xj}











(Rτ
jνj
)`+`′+1

`+ `′ + 1





`,`′=1,...,k

















;

Σ̂12(PWk) =
1

2n

n
∑

j=1







Nj(τ)
∑

i=1

[R`
ji]`=1,...,kρ(Wji; ξ̂)

′ + exp{β̂′Xj}×
∫ τ

0

[

Λ`
0(s; ξ̂)

]

`=1,...,k
ρ(s; ξ̂)′Yj(s)λ0(s; ξ̂) ds

}

;

∆̂1(PWk) =
1

n

n
∑

j=1

exp{β̂′Xj}




(

(Rτ
jνj
)`+1

`+ 1

)

`=1,...,k



 X ′
j ;

Σ̂22 =
1

2n

n
∑

j=1







Nj(τ)
∑

i=1

ρ(Wji; ξ̂)
⊗2 + exp{β̂′Xj}

∫ τ

0
ρ(s; ξ̂)⊗2Yj(s)λ0(s; ξ̂) ds







;

Σ̂33 =
1

2n

n
∑

j=1







Nj(τ)
∑

i=1

[

Xj −
∑n

m=1XmYm(Wji) exp{β̂′Xm}
∑n

m=1 Ym(Wji) exp{β̂′Xm}

]⊗2

+

exp{β̂′Xj}
∫ τ

0

[

Xj −
∑n

m=1XmYm(s) exp{β̂′Xm}
∑n

m=1 Ym(s) exp{β̂′Xm}

]⊗2

Yj(s)λ0(s; ξ̂) ds







;

∆̂2 =
1

n

n
∑

j=1

X ′
j exp{β̂′Xj}

∫ τ

0
ρ(s; ξ̂)Yj(s)λ0(s; ξ̂) ds.

Recall in the above expressions that ρ(s; ξ) = ∇ξ log λ0(s; ξ). Note also that Σ̂22, Σ̂33, and ∆̂2

are unaffected or are invariant with respect to ψ. Thus, an asymptotic α-level “polynomial” test

for H0 for this generalized BBS model rejects H0 whenever

S(PWk) ≡ Q′(PWk) Γ̂
−(PWk) Q(PWk) ≥ χ2

k̂∗;α
,
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where k̂∗ is the rank of

Γ̂(PWk) = Σ̂11.2(PWk) + Υ̂(PWk)Σ̂
−1
33 Υ̂(PWk)

′.

The Monte Carlo simulation results presented in Section 4 show that tests based on this

polynomial specification are powerful omnibus tests. Another appealing property of polynomial

based tests is the ease in which directional tests are obtained from the components of S(PWk).

For instance, consider the ith component of S(PWk) given by

Si(PWk) =
Q2

i (PWk)

Γ̂ii(PWk)
(3.2)

where Γ̂ii(PWk) is the (i, i)
th element of Γ̂(PWk). Note that for i = 1, . . . , k, (3.2) is asymptot-

ically χ2
1-distributed under H0. The statistic in (3.2) could be viewed as the i

th directional test

statistic. The simulation results in Section 4 reveal that these directional tests are powerful for

detecting specific departures from the null distribution.

It is also possible to obtain the expressions for the limiting variance Γ(PWk). As illustrated

in Example 1, the limiting variance is a function of the probability of perfect repair p(·). However,

since the probability of perfect repair is unknown, we used the estimated covariance matrix

Γ̂(PWk) in forming the test statistics for our simulation study.

4. Finite-Sample Properties

Whereas in the previous sections, we investigated the asymptotic properties of the proposed

class of tests, in this section we examine its properties for small to moderate sample sizes. In

order to investigate the achieved levels and powers of the tests, we performed a simulation study

using the CPHM involving a BBS model with Bernoulli-distributed covariates. For the time-

dependent probability of perfect repair, we used the function p(t) = 1− exp(−ηt), η > 0. Note

that this choice implies that the probability of perfect repair increases over time, an intuitive

and feasible assumption. In addition, we assumed τ to be large enough so each component was
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observed until the time of its first perfect repair. Thus, the discussion of the simulation results

that follow does not involve censoring. The issue of using the proposed tests in the presence of

censored data will be dealt with in the next section. We point out, however, that the average

number of failures per component was kept fairly constant across increasing and decreasing

failure rate alternatives. The simulation programs were coded in FORTRAN and subroutines

from the IMSL (1987) Math/Stat Library were used for random number generation and matrix

inversion. The simulations were ran using DIGITAL Visual Fortran 6.0.

We present results for the omnibus tests based on a polynomial specification for ψ with

k = 1, 2, 3, 4, and the directional tests Si(PW4) for i = 1, 2, 3, 4.

4.1 Achieved Significance Levels

In examining the achieved levels of the tests, we tested the null hypothesis that the initial

distribution comes from an exponential distribution, i.e., H0 : λ(·) ∈ C ≡ {λ0(·; ξ) = ξ : ξ ∈

(0,∞)}. The simulation study involved 5000 replications of the following experiment. For each

combination of sample size n ∈ {50, 100, 200} and η ∈ {0.05, 0.10, 0.30}, we generated record

values {Wji : j = 1, . . . , n; i ≥ 1} for a BBS model. The initial record values were generated

from a unit exponential distribution. Subsequent record values were generated by utilizing the

memoryless property of the exponential distribution. The covariates were generated from a

Bernoulli distribution with success probability p∗ = 0.5. The mode of repair to be performed at

each failure time,Wji, was determined by generating Uniform[0,1] variates uji. If uji < p(Wji), a

perfect repair is assumed to have been performed atWji; otherwise, a minimal repair is assumed.

Furthermore, we assumed τ to be large enough so each unit was observed until the time of its

first perfect repair which we denoted by Wjνj
. The sample realization {wji : j = 1, . . . , n; i =

1, . . . , νj} was then utilized to test H0 using the proposed tests. Simulations were performed at

the 5% and 10% asymptotic levels, but since the results led to similar conclusions we discuss

only results for the 5% asymptotic level tests.
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Examining Table 1 for the various combinations of sample size and probability of perfect

repair, the achieved levels of all the tests are consistent with the 5% level. We also performed sim-

ulations using the uniformity-based test and the spacings-based test introduced in Peña (1998a)

which resulted in generalizations of the Horowitz-Neumann (1992) statistic and the Barlow, et

al. (1972) statistic, respectively. To facilitate comparison, we adopt the same notation as in

Peña (1998a). Thus, we use S(GHN2) and S(GB4) for the uniformity-based and spacings-based

test statistics, respectively. The achieved levels of the uniformity-based test were comparable

to those based on the polynomial choice. The spacings-based test, however, turned out to be

anticonservative for small sample sizes. The anticonservatism decreased as sample size increased

and as the parameter η in the probability of perfect repair, p(t) = 1− exp(−ηt), decreased. The

latter result should be expected since a smaller η translated to more observations. For instance,

for η = 0.30, the mean number of repairs per component is roughly 3, while for η = 0.05, the

corresponding mean turned out to be approximately 6.

We point out that using the expression given by (2.4) as the estimator of Σ̂ significantly

improved the results. Previous simulations where the covariance matrix was estimated using

only the predictable covariation process (Peña, 1998a; Agustin and Peña, 2000) resulted in

anticonservative tests. The use of the estimator based on a combination of the optional and

predictable covariation processes shows promise and calls for further investigation.

We turn our attention to the achieved powers of the proposed tests. For the power simula-

tions in the next section, we used n = 200 and η = 0.10 since for this combination the achieved

levels of all the tests are consistent with the nominal asymptotic level of 5%.

4.2 Achieved Powers

To investigate the powers of the different tests, we retained the exponential null hypoth-

esis and considered Weibull and gamma alternatives for the initial distribution of failure ages.

Hence, given values of the shape parameter γ and the scale parameter β, record values for each
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alternative were generated via Wji = Λ
−1(Xj1 + Xj2 + . . . + Xji), where Xj`’s are unit expo-

nential random variables and Λ is the hazard function corresponding to the alternative. The

simulations were done for both the 5% and 10% asymptotic level tests. As in the discussion for

the achieved significance levels we simply focus on the 5% level tests.

For the Weibull-type alternatives, the simulated powers as the shape parameter varies are

plotted in Figure 1. Recall that γ < 1 yields increasing failure rate alternatives, while γ > 1

results in decreasing failure rate alternatives. Notice that for these alternatives, all the omnibus

tests performed remarkably well. A closer examination of Figure 1 reveals that the test based

on S(PW1) had the highest power for increasing failure rate alternatives, while the test based

on S(PW2) came out as the best for decreasing failure rate alternatives. The directional tests

based on Si(PW4), i = 1, 2, 3, 4, behave differently. Note that the achieved powers are decreasing

as i increases from 1 to 4. Moreover, the achieved powers are higher for increasing failure rate

alternatives indicating that these directional tests are more sensitive to increasing failure rate

Weibull alternatives. We also performed simulations for values of β 6= 1 and found the results to

be consistent with those presented in Figure 1. This result should not come as a surprise since

our composite null hypothesis does not postulate any value for β.

For the gamma-type alternatives, the simulated power results are plotted in Figure 2. The

omnibus test based on S(PW4) emerged as the best for the increasing failure rate alternatives

while the test based on S(PW3) came out to be the most powerful for decreasing failure rate

alternatives. Examining the performance of the directional tests, we again notice that the

achieved powers are decreasing as i increases from 1 to 4, with the achieved power of the test

based on S1(PW4) substantially higher than the others. In addition, the achieved powers are

higher for the decreasing failure rate alternatives.

For both types of alternatives, we also performed power simulations for the uniformity-

based and spacings-based tests statistics. The achieved powers of these two tests are slightly

higher than those of the tests based on the polynomial specification. The main advantage of the
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polynomial-based tests, however, is their simplicity in terms of implementation.

The results of the simulation study suggest that the choice of the smoothing order k

is critical and depends on the alternative that one wishes to detect. In the event that one

does not have an idea on the type of alternative that might arise when H0 does not hold,

then for the generalized recurrent event setting with covariates, tests based on the polynomial

specification with k ∈ {3, 4} are the recommended omnibus tests. An important and natural

direction for future work is the development of a methodology for choosing adaptively or in a

data-dependent manner the smoothing order k. Research on this aspect for this hazard-based

formulation is currently on-going; while for the classical density-based formulation, papers of

Ledwina (1994) and Kallenberg and Ledwina (1995) have addressed this issue using Schwarz

information criterion.

5. Illustrative Applications to Real Data

In medical studies, censored single spell data are widely encountered. Single spell data

can be modeled using a special case of the BBS model by taking the probability of perfect

repair to be identically one. In this section, we illustrate the applicability of our proposed tests

to right-censored single spell data. To this end, the processes that are of interest to us are

{(Nj(·), Yj(·)) : j = 1, . . . , n} where

Nj(t) = I{Zj ≤ t, δj = 1} and Yj(t) = I{Zj ≥ t},

with Zj being the minimum of the failure time and the censoring variable for the j
th unit, and

δj is the censoring indicator. Keeping in mind the definition of these processes, it is a straight-

forward exercise to obtain the score statistic and estimated covariance matrix corresponding to

the polynomial specification. In fact, the expressions are analogous to the ones presented in

Section 3.

For a concrete example, consider the Stanford Heart Transplant data set given in Table 7.1
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of Andrews and Herzberg (1985). This data set consists of 184 cases which represent those pa-

tients who received a transplant. Of the 184 cases, 71 are right-censored. The variable of interest

is the survival time, in days, after transplant, while the covariate is the age, in years, at trans-

plant. Assuming the CPHM, we utilized the partial likelihood to obtain β̂ = 0.029 which turned

out to be significant at the 0.01 level. Note that our main interest in this paper is goodness-of-fit

testing for the baseline hazard rate function. Thus, we proceeded to test the hypothesis that

the baseline hazard rate function is constant, that is, H0 : λ(·) ∈ C ≡ {λ0(·; ξ) = ξ : ξ ∈ (0,∞)}.

Using β̂ in the profile likelihood yielded ξ̂ = 0.000263. Plugging-in these estimates in place of the

unknown parameters and taking into account the necessary adjustments, the resulting test statis-

tics and their corresponding p-values are as follows: S(PW1) = S1(PW4) = 13.52(p = .0002),

S(PW2) = 16.12(p = .0003), S(PW3) = 17.17(p = .0007), S(PW4) = 17.33(p = .0017),

S2(PW4) = 8.31(p = .0039), S3(PW4) = 5.12(p = .0237), and S4(PW4) = 3.50(p = .0614).

Examining these values, notice that all the omnibus tests rejected the null hypothesis of con-

stant baseline hazard rate function at the 1% level. Of the directional tests, the tests based on

S1(PW4) (equivalent to S(PW1)) and S2(PW4) rejected H0 at the 1% level, while the one based

on S3(PW4) rejected H0 at the 5% level.

To illustrate the applicability of the proposed procedures to recurrent event models, we

analyzed the data set presented as Table 2.7 in Blischke and Prabhakar Murthy (2000). The data

set consists of time between successive failures over a two-year period for the hydraulic systems

of six large load-haul-dump (LHD) machines. LHD machines are used for moving ore and rock.

In terms of equipment reliability, the hydraulic system is a vital subsystem of LHD machines.

For the analysis, we used the BBS model for the successive failure times. We treated all the

intermediate repairs as minimal repairs and the final repair as a perfect repair. In addition to

the failure times, information regarding the age of the machines are also available. However, in

contrast to the Stanford Heart Transplant data set where the actual ages are known, this data

set only classifies the machines as old, medium age, and relatively new. For our analysis, we
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treated age as a covariate. Due to the nature of the classification, we used two binary covariates,

X1 and X2. Thus the old machines are associated with X1 = 1 and X2 = 0; the medium age

ones with X1 = 0 and X2 = 1; and the relatively new ones with X1 = 0 and X2 = 0. Assuming

the CPHM and using only the partial likelihood, we obtained the estimates β̂1 = 0.0541 and

β̂2 = −0.1028. The hypotheses of interest are H0 : λ(·) ∈ C ≡ {λ0(·; ξ) = ξ : ξ ∈ (0,∞)} versus

H0 : λ(·) 6∈ C. To estimate ξ, we used the estimates β̂1 and β̂2 in the profile likelihood and

obtained ξ̂ = 0.0077. The observed values of the test statistics and their associated p-values are:

S(PW1) = S1(PW4) = 7.4503(p = .0063), S(PW2) = 9.9551(p = .0069), S(PW3) = 9.8112(p =

.0202), S(PW4) = 9.9291(p = .0416), S2(PW4) = 3.8127(p = .0509), S3(PW4) = 2.4164(p =

.1201), and S4(PW4) = 1.8909(p = .1691). All the omnibus tests rejected the null hypothesis

of a constant baseline hazard rate function, with S(PW1) and S(PW2) rejecting H0 at the 1%

level, and the latter two rejecting H0 at the 5% level. For the directional tests, however, only

S1(PW4) and S2(PW4) rejected H0 at the 5% level.

These illustrative examples demonstrate the wide applicability of the proposed tests. In

particular, we were able to show that our family of tests are applicable to both single spell and

recurrent event data as well as to different covariate structures. The hazard-based formulation in

conjunction with the counting process and martingale framework adopted in this paper enabled

us to develop goodness-of-fit procedures that are adaptable to various situations including, and

more importantly, recurrent event models.

6. Appendix: Regularity Conditions

We enumerate here the regularity conditions which are needed for the asymptotic proper-

ties of the estimated score function to hold. These conditions are:

(I) There exists a neighborhood C0 of ξ0 such that on T × C0, λ0(t; ξ) > 0, and the partial

derivatives ∂
∂ξk

λ0(s; ξ),
∂2

∂ξk∂ξ`
λ0(s; ξ), and

∂3

∂ξk∂ξ`dξm
λ0(s; ξ), k, `,m = 1, . . . , p, exist and

are continuous at ξ = ξ0.
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(II)
∫ τ
0 λ0(s; ξ) ds <∞ for ξ ∈ C0.

(III) There exists a neighborhood B of β0 such that on T × C0 × B, the log-likelihood process

`F (t;θ, ξ, β) =
n
∑

j=1

∫ t

0
log[Yj(s)λ0(s; ξ) exp{β′Xj(s)} exp{θ′ψ(s; ξ)}] dNj(s)−

n
∑

j=1

∫ t

0
Yj(s)λ0(s; ξ) exp{β′Xj(s)} exp{θ′ψ(s; ξ)} ds

may be differentiated three times with respect to ξ and twice with respect to β, and the

order of integration and differentiation can be interchanged.

(IV) There exist functions s(m), (m = 0, 1, 2), and p(m), (m = 1, 2) with domain T × C0 × B

such that, as n→∞,

sup
t∈T ;β∈B

‖S(m)(t;β)− s(m)(t;β)‖
pr−→ 0, (m = 0, 1, 2);

sup
t∈T ;ξ∈C0;β∈B

‖P (m)(t; ξ, β)− p(m)(t; ξ, β)‖
pr−→ 0, (m = 1, 2).

(V) The functions s(m), (m = 0, 1, 2), are bounded on T × B; the family {s(m)(t; ·) : t ∈ T }

is equicontinuous at β0; and s(0) is bounded away from zero on T × B. Moreover, the

functions p(m), (m = 1, 2) are bounded on T ×C0×B; and the family {p(m)(t; ·, ·) : t ∈ T }

is equicontinuous at (ξ0, β0).

(VI) For all t ∈ T and β ∈ B, ∂
∂β
s(0)(t;β) = s(1)(t;β) and ∂2

∂β∂β
′ s(0)(t;β) = s(2)(t;β).

(VII) The matrix

Σ(ξ0, β0) =







Σ11(ξ0, β0) Σ12(ξ0, β0) 0

Σ21(ξ0, β0) Σ22(ξ0, β0) 0

0 0 Σ33(ξ0, β0)






(6.1)

is positive definite, where the component matrices are defined in subsection 2.2.

(VIII) There exists a δ > 0 such that

1√
n

sup
t∈T ; j=1,...,n

|Xj(t)|Yj(t)I{β0
′Xj(t) > −δ|Xj(t)|}

pr−→ 0,
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and for each ε > 0 and t ∈ T ,

1

n

n
∑

j=1

∫ t

0
|ψ(s; ξ0)|2I{|ψ(s; ξ0)| ≥

√
nε}Yj(s) exp{β0

′Xj(s)}λ0(s; ξ0)ds
pr−→ 0;

1

n

n
∑

j=1

∫ t

0
|ρ(s; ξ0)|2 I

{

|ρ(s; ξ0)| >
√
nε
}

Yj(s) exp{β0
′Xj(s)}λ0(s; ξ0)ds

pr−→ 0.

(IX) There exist functions Ji, (i = 1, 2, 3), and K defined on T such that for k, `,m = 1, . . . , p,

and t ∈ T ,

sup
ξ∈C0

∣

∣

∣

∣

∂

∂ξk
λ0(t; ξ)

∣

∣

∣

∣

≤ J1(t); sup
ξ∈C0

∣

∣

∣

∣

∣

∂2

∂ξk∂ξ`
λ0(t; ξ)

∣

∣

∣

∣

∣

≤ J2(t);

sup
ξ∈C0

∣

∣

∣

∣

∣

∂3

∂ξk∂ξ`∂ξm
λ0(t; ξ)

∣

∣

∣

∣

∣

≤ J3(t); sup
ξ∈C0

∣

∣

∣

∣

∣

∂3

∂ξk∂ξ`∂ξm
log λ0(t; ξ)

∣

∣

∣

∣

∣

≤ K(t).

Moreover,
∫ τ

0
Ji(s)S(3−i)(s;β0) ds, i = 1, 2, 3,

1

n

n
∑

j=1

∫ τ

0
K(s)Yj(s) exp{β0

′Xj(s)}λ0(s; ξ0) ds, and

1

n

n
∑

j=1

∫ τ

0

∣

∣

∣

∣

∣

∂2

∂ξk∂ξ`
log λ0(s; ξ0)

∣

∣

∣

∣

∣

2

Yj(s) exp{β0
′Xj(s)}λ0(s; ξ0) ds

all converge in probability to finite quantities.

(X) On T × C0 ×B, the partial derivatives ∂
∂ξ
ψ(t; ξ) and ∂2

∂ξ∂ξ
′ψ(t; ξ) exist and are continuous

at (ξ0, β0). Furthermore, the processes {ψ(t; ξ0) : t ∈ T } and { ∂
∂ξ
ψ(t; ξ) : t ∈ T } are

locally bounded and predictable.

(XI) Let Rξ(t; ξ, β) = 1
n

n
∑

j=1

∫ t

0

∂

∂ξ
ψ(s; ξ, β)Yj(s) exp{β′Xj(s)} ds. There exists a function rξ

defined on T × C0 × B such that

sup
t∈T ;ξ∈C0; β∈B

‖Rξ(t; ξ, β)− rξ(t; ξ, β)‖ pr−→ 0.

Furthermore, for i = 1, . . . , p, and ` = 1, . . . , k,

1

n

n
∑

j=1

∫ τ

0

∣

∣

∣

∣

∂

∂ξi
ψ`(s; ξ0)

∣

∣

∣

∣

2

Yj(s) exp{β0
′Xj(s)}λ0(s; ξ0) ds = Op(1).

(XII) The family {rξ(t; ·, ·) : t ∈ T } is equicontinuous at (ξ0, β0).
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Table 1: Simulated levels of 5%-asymptotic level tests for different sample sizes, n, and probabil-
ity of perfect repair, p(t) = 1− e−ηt. The failure times under the null hypothesis were generated
according to a BBS(1985) model with initial distribution EXP(1). The covariate was assumed
to be Bernoulli-distributed with success probability p∗ = 0.50.

η 0.30 0.10 0.05

n 50 100 200 50 100 200 50 100 200

Test

S(PW1) 4.64 5.00 4.30 4.56 5.22 4.86 4.72 4.74 5.02
S(PW2) 3.96 3.70 3.70 4.38 4.30 4.30 4.62 4.28 4.88
S(PW3) 4.82 4.38 4.28 4.26 4.26 4.36 4.32 4.36 4.86
S(PW4) 5.06 5.48 5.08 5.04 5.16 4.50 5.22 4.78 4.78

S1(PW4) 4.64 5.00 4.30 4.56 5.22 4.86 4.72 4.74 5.02
S2(PW4) 4.24 4.26 4.14 4.08 4.74 4.50 4.28 4.52 4.56
S3(PW4) 4.04 3.64 3.34 3.52 4.10 4.04 3.82 4.08 4.10
S4(PW4) 4.00 3.42 3.30 3.36 3.54 3.56 3.62 3.66 3.42

S(GHN2) 4.60 4.70 5.10 4.82 5.10 4.74 5.20 4.66 4.94
S(GB4) 6.36 5.34 4.88 5.76 5.92 4.88 5.50 4.90 4.90
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Table 2: Simulated powers of the 5%-asymptotic level tests when the failure times were generated
according to a BBS (1985) model with initial distribution Weibull(γ, β), probability of perfect
repair p(t) = 1− e−0.10t, and number of components n = 200. The covariate was assumed to be
Bernoulli-distributed with success probability p∗ = 0.50.

Test β 1 1 1 1 1 1 1
γ 0.85 0.90 0.95 1.00 1.05 1.10 1.15

S(PW1) 99.74 87.32 30.62 5.32 23.22 65.86 93.04
S(PW2) 99.76 85.58 24.88 4.90 24.54 68.92 94.60
S(PW3) 99.82 84.38 24.72 4.80 18.38 62.60 92.78
S(PW4) 99.66 79.64 20.28 5.50 21.08 66.04 93.68

S1(PW4) 99.74 87.32 30.62 5.32 23.22 65.86 93.04
S2(PW4) 96.32 67.78 21.26 5.36 13.40 39.78 71.12
S3(PW4) 85.42 49.50 15.80 4.66 6.70 18.30 38.14
S4(PW4) 68.26 37.08 12.38 4.14 2.68 6.40 13.46

S(GHN2) 99.94 92.58 37.50 5.48 34.50 82.74 98.50
S(GB4) 99.94 92.64 38.26 5.56 28.72 76.02 97.10

Table 3: Simulated powers of the 5%-asymptotic level tests when the failure times were generated
according to a BBS model with initial distribution Gamma(γ, β), probability of perfect repair
p(t) = 1 − e−0.10t and number of components n = 200. The covariate was assumed to be
Bernoulli-distributed with success probability p∗ = 0.50.

Test β 1 1 1 1 1 1 1 1 1 1 1
γ 0.70 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30 1.50

S(PW1) 86.26 28.24 14.20 6.72 4.92 7.42 16.04 28.44 43.22 71.80 97.60
S(PW2) 94.96 36.10 18.84 7.78 4.32 6.14 13.98 27.20 43.78 77.48 99.38
S(PW3) 95.12 31.64 14.48 6.28 4.42 7.22 16.26 31.38 50.18 84.20 99.84
S(PW4) 97.58 38.46 18.26 7.60 4.66 5.98 13.08 26.34 44.76 80.72 99.76

S1(PW4) 86.26 28.24 14.20 6.72 4.92 7.42 16.04 28.44 43.22 71.80 97.60
S2(PW4) 48.32 12.34 7.28 4.62 5.04 6.38 10.66 17.46 24.88 44.42 77.30
S3(PW4) 20.16 5.64 3.72 3.60 4.78 5.68 8.24 12.38 16.16 28.06 53.82
S4(PW4) 7.52 2.36 2.28 2.60 4.16 4.98 6.82 9.98 12.16 19.80 37.00

S(GHN2) 99.64 60.04 32.58 11.10 5.00 9.12 25.58 48.08 69.28 94.68 99.98
S(GB4) 96.12 39.40 19.46 7.86 5.66 8.92 21.66 39.12 57.30 86.46 99.74
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Figure 1: Plots of the simulated powers as the shape parameter of the alternative Weibull
distribution varies. Legend: Solid = SPW1 and S1PW; Dots = SPW2; DotDash = SPW3;
ShortDash = SPW4; DotDotDash = S2PW; AltDash = S3PW; MedDash = S4PW. The hori-
zontal solid line represents the value of 5%, the desired level.
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Figure 2: Plots of the simulated powers as the shape parameter of the alternative gamma distri-
bution varies. Legend: Solid = SPW1 and S1PW; Dots = SPW2; DotDash = SPW3; ShortDash
= SPW4; DotDotDash = S2PW; AltDash = S3PW; MedDash = S4PW. The horizontal solid
line represents the value of 5%, the desired level.
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