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Abstract. Imperfect repair models are a class of stochastic models that deal with
recurrent phenomena. This article focuses on the Block, Borges, and Savits (1985)
age-dependent minimal repair model (the BBS model) in which a system that fails
at time t undergoes one of two types of repair: with probability p(t), a perfect
repair is performed, or with probability 1�p(t), a minimal repair is performed. The
goodness-of-�t problem of interest concerns the initial distribution of the failure
ages. In particular, interest is on testing the null hypothesis that the hazard rate
function of the time-to-�rst event occurrence, �(�), is equal to a prespeci�ed hazard
rate function �0(�). This paper extends the class of hazard-based smooth goodness-
of-�t tests introduced in Pe~na (1998a) to the case where data accrual is from a BBS
model. The goodness-of-�t tests are score tests derived by reformulating Neyman's
idea of smooth tests in terms of hazard functions. Omnibus as well as directional
tests are developed and simulation results are presented to illustrate the sensitivities
of the proposed tests for certain types of alternatives.

Keywords: Counting process; directional test; imperfect and perfect repairs; mini-
mal repair; nonhomogeneous Poisson process; omnibus test; repairable system; score
test; smooth goodness-of-�t.

1. Introduction

Stochastic models for recurrent phenomena are of interest in a variety
of �elds of study such as in biomedicine, public health, engineering,
reliability, economics, actuarial science, and sociology. For concrete
examples, see for instance Keiding, Andersen and Fledelius (1998),
Lawless (1998), Oakes (1998), and Prentice, Williams and Peterson
(1981). The development of statistical inference procedures appropriate
for analyzing such data is therefore of prime importance. In the reli-
ability and engineering settings, recurrent events translate to failures
or repairs in repairable systems. Various models have been proposed
for repairable systems, cf., Brown and Proschan (1983), Ascher and
Feingold (1984), Block, Borges and Savits (1985), Crowder, Kimber,
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2 Agustin and Pe~na

Smith and Sweeting (1991), and Dorado, Hollander and Sethuraman
(1997). This paper focuses primarily on the age-dependent minimal
repair model introduced by Block, Borges and Savits (1985), hereon
referred to as the BBS model. In the BBS model, a component or system
whose distribution function of the time-to-�rst-failure is F is put on test
at time 0. If the component fails at time t, then with probability p(t), a
perfect repair is performed; otherwise, with probability q(t) = 1� p(t),
a minimal or imperfect repair is performed. A perfect repair restores
the component to the good-as-new state, while a minimal repair returns
the component to a working state in such a way that the time until its
next failure is stochastically equivalent to that of a working component
of the same age. To formalize the BBS model, consider a sequence of
failure ages fW0 � 0;W1;W2; : : :g obtained under a model of minimal
repair with W1 having absolutely continuous distribution F with as-
sociated density function f and hazard rate function � = f= �F , where
�F is the survival function. The sequence (Wk)

1
k=1 is a Markov process

with the conditional survival function of Wk, given W0;W1; : : : ;Wk�1,
being �F (tjWk�1) = �F (t)= �F (Wk�1); t � Wk�1; k � 1: Following
Hollander, Presnell and Sethuraman (1992), to determine the mode
of repair at each failure time, independent Uniform[0; 1] random vari-
ables fU1; U2; : : :g, which are independent of (Wk)

1
k=1, are generated.

If Uk < p(Wk), then a perfect repair is performed at Wk, otherwise a
minimal repair is instituted. Letting � = inffk : Uk < p(Wk)g, where
inf ; = 1, the sequence (W1; : : : ;W�) is referred to as an epoch of
a BBS model. From Block, et al. (1985), W� is almost surely �nite
provided that

R1
0 p(t)�(t)dt = 1: Since a perfect repair restores a

component to the good-as-new state, it su�ces to observe a component
only up to the time of its �rst perfect repair. Hence, the statistical
inference procedures presented in this paper are based on epochs of
independent components.

Aside from its utility in reliability modeling, the BBS model also
subsumes other models used in biomedical, engineering, actuarial, so-
cial science, and economic settings. For instance, by setting p(t) = 0,
the nonhomogeneous Poisson process (NHPP) model is obtained, which
is a common model for non-life insurance claims, periods of recession or
stock market crashes in economics, recurrence of tumors in the medical
arena, and incidence of domestic abuse in a sociological setting. The
much-studied independent and identically distributed (i.i.d.) model on
the other hand is obtained from the BBS model by letting p(t) = 1.

The literature dealing with minimal repair models have been
mostly con�ned to examining their probabilistic properties, cf., Brown
and Proschan (1983), Block, et al. (1985), Kijima (1989), and Arjas and
Norros (1989). Only a few papers, such as Whitaker and Samaniego
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(1989), Hollander, et al. (1992), and Presnell, Hollander and Sethura-
man (1994), have explored inference procedures for the BBS model.
Whitaker and Samaniego (1989) dealt with the estimation of the reli-
ability of systems subject to imperfect repair, while Hollander, et al.
(1992) and Presnell, et al. (1994) proposed nonparametric tests for the
minimal repair assumption. Our main interest in the present paper is
not on validating the minimal repair assumption but on goodness-of-�t
tests concerning the initial distribution of the failure ages assuming that
data accrual follows the BBS model. Determination of the correct initial
distribution of the failure ages is important if one is interested in pre-
diction or development of optimal maintenance policies. Our primary
interest is testing the null hypothesis H0 : �(�) = �0(�), where �0(�)
is a completely speci�ed hazard function. A separate paper will deal
with the composite hypothesis problem of testing the null hypothesis
H0 : �(�) 2 C � f�0(�; �) : � 2 �g.

The goodness-of-�t procedures proposed in this paper extend the
class of hazard-based smooth goodness-of-�t tests in Pe~na (1998a) to
recurrent events under the no-covariate setting. The proposed smooth
goodness-of-�t tests are score tests, which were shown to be powerful
against a wide range of alternatives, cf., see Rayner and Best (1989) for
the density-based or Neyman-based formulation, and Pe~na (1998ab) for
the hazard-based formulation. These papers, however, dealt with the
case where the data involves only the time to �rst failure, that is, for
p(t) = 1. To our knowledge, the present work is the �rst one dealing
with smooth goodness-of-�t tests for recurrent data.

2. The Goodness-of-Fit Test

Let (
;F ;P) be the basic measurable space on which the random
entities are de�ned. Let T be an index set of times which may be
[0; �) or [0; � ], where � � 1 is known. Consider observing n indepen-
dent BBS processes so the observables are fWjk : 1 � j � n; 1 �
k � �jg. To facilitate the development of the theory, we adopt the
stochastic process formulation of the BBS model as set forth in Hol-
lander, et al. (1992). De�ne the multivariate counting process N� =
f(N�

1 (t); : : : ; N
�
n(t)) : t 2 T g by N�

j (t) =
P1

k=1 IfWjk � tg; j =
1; : : : ; n; and the �ltration F� = fF�

t : t 2 T g by F�
t = F0 _

Wn
j=1F�

jt,

where F�
jt = �

n
fN�

j (s) : s � tg [ fUjk : k � 1g
o
; and with F0 contain-

ing all null sets of F . The multivariate counting process of interest is
N = f(N1(t); : : : ; Nn(t)) : t 2 T g with

Nj(t) = N�
j (t ^Wj�j); j = 1; : : : ; n;
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4 Agustin and Pe~na

and the corresponding observable �ltration F = fFt : t 2 T g is
given by Ft =

Wn
j=1F�

j(t^Wj�j
): The F compensator of N is A =

f(A1(t); : : : ; An(t)) : t 2 T g with

Aj(t) =

Z t

0
Yj(s)�(s) ds; j = 1; : : : ; n;

where Yj(s) = IfWj�j � sg and �(�) is some unknown baseline hazard
function.

Recall that the main problem of interest involves testing the null
hypothesis H0 : �(�) = �0(�), where �0(�) is a completely speci�ed
hazard function. The main idea behind smooth goodness-of-�t tests is
the embedding of the hypothesized hazard rate �0(�) into a larger para-
metric family of hazard rate functions. This larger family is obtained
by smoothly transforming �0(�). To this end, let us de�ne the family of
order k smooth alternatives via

Ak = f�k(�;�) = �0(�) exp[�0	(�)] : � 2 IRkg; (2.1)

where k is some �xed positive integer, and 	(�) is a k � 1 vector of
locally bounded predictable processes. Note that by setting � = 0 in
(2.1), we recover the hypothesized hazard rate function. Hence, the null
hypothesis H0 : �(�) = �0(�) can be restated as H�

0 : � = 0. In order
to derive the score test for this hypothesis, we �rst obtain the score
process associated with �.

Under the model in (2.1), the compensator of N(�) is A(�;�) =
(A1(�;�); : : : ; An(�;�)), where Aj(�;�) =

R �
0 Yj(s)�0(s) exp[�

0	(s)] ds:
It is then straightforward to see that the score process associated with
� is

U�(t;�) =
nX

j=1

Z t

0
	(s) dMj(s;�);

where Mj(s;�) = Nj(s) � Aj(s;�); j = 1; 2; : : : ; n. In order to come
up with the appropriate test procedure, one needs to obtain the distri-
bution of U�(t;�) under the null hypothesis. The following regularity
conditions are needed.

(I)
R �
0 �0(s) ds <1:

(II) There exists a k � k matrix function D such that as n!1,

sup
t2T


1

n

nX
j=1

	(t)	(t)0Yj(t)�D(t)


pr�! 0:

(III) The matrix �(�) =
R �
0 D(t)�0(t) dt is positive de�nite.
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(IV) For each � > 0, ` = 1; : : : ; k, and for every t 2 T ,
1

n

nX
j=1

Z t

0
 `(s)

2Ifj `(s)j �
p
n�gYj(s)�0(s) ds pr�! 0:

We now present the asymptotic result which anchors the test procedure.

Theorem 2.1: Under the BBS model, if conditions (I) { (IV) hold
and H�

0 is true, then as n!1, 1p
n
U�(� ;0) converges in distribution

to a zero-mean normal variable with covariance matrix �(�).

Proof : Under H�
0 , M(�) = (M1(�;0); : : : ;Mn(�;0)) is a vector of local

square integrable martingales with quadratic variation process

1

n

nX
j=1

Z �

0
	(s)	(s)0Yj(s)�0(s) ds: (2.2)

By conditions (I) and (II), (2.2) converges in probability to �(�) as n!
1. On the other hand, the Lindeberg-type condition for 1p

n
U�(�;0) is

guaranteed by condition (IV). Hence, by invoking Rebolledo's Martin-
gale Central Limit theorem (cf., Andersen, Borgan, Gill and Keiding
(1993)), the weak convergence of the score process to a zero-mean Gaus-
sian process with covariance matrix �(�) follows. The desired result
�nally obtains by taking t = � . jj

The remainder of this paper concentrates on the case where 	(�)
is deterministic. In such a situation, by using the Glivenko-Cantelli
Theorem, we easily see that the limiting covariance matrix is given by

�(�) =

Z �

0
	(s)	(s)0 exp

�
�
Z s

0
p(u)�0(u) du

�
�0(s) ds:

We also point out that the results in Theorem 2.1 can also be obtained
from Proposition 1 in Pe~na (1998a) by taking in that paper the covari-
ate vector to be X � 0 and the at-risk process to be Yj(s) = IfWj�j �
sg.

The asymptotic �-level smooth goodness-of-�t test of H�
0 : � = 0,

or equivalently H0 : �(�) = �0(�), therefore
\Rejects H0 whenever

S(�) � 1

n
U �(� ;0)

0��(�)U �(� ;0) � �2k�;�" (2.3)

where��(�) is a generalized inverse of�(�) and �2k�;� is the (1��)100th
percentile of the chi-square distribution with degrees of freedom k� =
rank[�(�)]. Note that since we are not assuming that the probability
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6 Agustin and Pe~na

of perfect repair p(�) is known, �(�) needs to be estimated. A possible
consistent estimator is

�̂(�) =
1

n

nX
j=1

Z �

0
	(s)	(s)0Yj(s)�0(s) ds:

It is apparent in the form of the test statistic that the choice of the
process 	(�) is crucial. Indeed, the 	(�) process determines the family
of alternatives for which the test will have good power. For the case
where units are observed only up to the time of the �rst failure, Pe~na
(1998ab) examined several choices for	(�). In this paper, we focus on a
polynomial speci�cation. A polynomial speci�cation is appealing since
they form a basis for most functions, aside from being of simple form.
The use of polynomials is prevalent in the literature originating with
Neyman (1937) and subsequently considered by Thomas and Pierce
(1979) and Gray and Pierce (1985). Since these papers dealt with the
density-based formulation, powers of the distribution function were
used. In our hazard-based formulation, we consider 	(�) of form

	(t : PWk) = [1; �0(t); : : : ; �0(t)
k�1]0; (2.4)

where k 2 f1; 2; : : :g is a speci�ed order and �0(t) =
R t
0 �0(s)ds: The

label PWk is adopted to distinguish the polynomial speci�cation from
other forms of 	 explored in the literature (cf., Pe~na, 1998ab; Agustin
and Pe~na, 1999). The choice of the smoothing parameter k will be
discussed in the next section when we present the results of a simulation
study. In the traditional density-based formulation of the smooth al-
ternatives, a data-dependent choice of k has been explored by Ledwina
(1994) and Kallenberg and Ledwina (1995).

The smoothing process 	(�) as speci�ed in (2.4) yields the score
statistic vector

1p
n
U�(� ;0) � Q(� : PWk) =

1p
n

nX
j=1

2
4Nj(�)X

i=1

(Rji)
`�1 � (R�

j�j
)`

`

3
5
`=1;:::;k

;

where

Rji = �0(Wji); (i = 1; 2; : : : ; �j); and R�
j�j = �0(� ^Wj�j );

which can be viewed as the generalized residuals in this BBS model.
The limiting covariance matrix is obtained to be

�(� : PWk) =

"�Z �

0
�0(t)

`+`0�2 expf���0(t)g d�0(t)

�
`;`0=1;:::;k

#
;
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Goodness-of-Fit of Distribution of Time-to-First-Occurrence 7

where ��0(t) =
R t
0 p(u)�0(u)du. If we take the simpler case where the

probability of perfect repair is constant, the limiting covariance matrix
simpli�es to

�(� : PWk) =

"�
(`+ `0 � 2)!

p`+`
0�1 IG[p�0(�); `+ `0 � 1]

�
`;`0=1;:::;k

#
;

where IG(t;m) =
R t
0

1
�(m)u

m�1 exp(�u)du. If we let � !1, and using

the fact that
R1
0 �0(t)dt = 1, then the limiting covariance matrix

reduces to

�(PWk) =

"�
(`+ `0 � 2)!

p`+`0�1

�
`;`0=1;:::;k

#
:

For notation, from hereon, whenever we evaluate limiting quantities as
� ! 1, we shall suppress writing the argument � = 1. Of course, in
such situations, the limiting values should be viewed as approximations
to the case when � is large. A consistent estimator of the limiting
covariance matrix is given by

�̂(� : PWk) =
1

n

nX
j=1

2
64
0
@(R�

j�j
)`+`

0�1

`+ `0 � 1

1
A
`;`0=1;:::;k

3
75 :

The asymptotic �-level \polynomial" test of H0 is

\Reject H0 if S(� : PWk) � (2.5)

Q(� : PWk)
0�̂(� : PWk)

�Q(� : PWk) � �2k;�:"

To demonstrate some special cases of this test, if the smoothing
parameter is k = 1, then we obtain the score statistic Q(� : PW1) =
1p
n

Pn
j=1[Nj(�) � R�

j�j
] and the estimated variance �̂(� : PW1) =

1
n

nX
j=1

R�
j�j . Thus the resulting test statistic is

S(� : PW1) =

hPn
j=1[Nj(�)�R�

j�j
]
i2

Pn
j=1R

�
j�j

(2.6)

which can be viewed as a generalization of the Pearson-type test statis-
tic studied by Akritas (1988). Furthermore, suppose we allow for right-
censoring and set p(t) = 1. This results in the randomly right-censored
model without covariates. Denote the minimum of the failure time
and the censoring variable for the jth unit by Zj , and let �j be the
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8 Agustin and Pe~na

correponding censoring indicator. If there are no ties among the Zj 's,
then (2.6) simpli�es to

S(� : PW1) =

hPn
j=1(�j �R�

j )
i2

Pn
j=1R

�
j

; (2.7)

where R�
j = �0(Zj^�). The expression given in (2.7) is the test statistic

for right-censored data proposed by Hyde (1977).
The individual components of S(� : PWk) are asymptotically �21-

distributed and can be used as directional tests. For i = 1; : : : ; k, the

ith directional test statistic is

Si(� : PWk) =
Q2
i (� : PWk)

�̂2i (� : PWk)
;

where �̂2i (� : PWk) is the (i; i)th element of �̂(� : PWk). Note that
these directional test statistics need not be independent of each other. If
one desires asymptotically independent directional tests, an alternative
choice for the 	(�) process is obtained by replacing the polynomial-
type speci�cation by orthogonal polynomials. In the classical density-
based formulation, Neyman (1937) obtained orthogonal polynomials
by choosing the components of 	 to be orthonormal with respect to
the density speci�ed under the null hypothesis. In the hazard-based
formulation, this corresponds to choosing the vector 	 such thatZ �

0
	(w)	(w)0 exp

�
�
Z w

0
p(u)�0(u) du

�
�0(w) dw = Ik;

where Ik is the identity matrix of order k. In the case of a constant
probability of perfect repair, i.e., p(t) � p, then the vector of interest
is 	� which satis�es the conditionZ �0(�)

0
	�(w)	�(w)0 exp(�pw) dw = Ik:

The Gram-Schmidt orthogonalization procedure can be applied to ob-
tain the elements of	�. In the limiting case � !1, the Gram-Schmidt
procedure produces

 �i (w) = (�1)i�1pp
i�1X
`=0

�
i� 1
`

�
(�wp)`
`!

; i = 1; : : : ; k; (2.8)

where

�
i
`

�
is the combination of i objects taken ` at a time. The

functions in (2.8) are the scaled Laguerre polynomials. Note that  �i (�)
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depends on the unknown parameter p, which needs to be estimated.
A consistent estimator of p is p̂ = n=N�, where Nj = Nj(1) and

N� =
nX

j=1

Nj. Consequently, the score statistic is given by Q(ORk) =

(Q1(ORk); Q2(ORk); : : : ; Qk(ORk))
0 with

Qh(ORk) =
1p
n
(�1)h�1pp̂ �

h�1X
`=0

8<
:
�
h� 1
`

�
(�p̂)`
`!

nX
j=1

2
4NjX
i=1

(Rji)
` � (Rj�j )

`+1

`+ 1

3
5
9=
; :

A consistent estimator of the limiting covariance matrix is �̂(ORk) =h
(�̂h1;h2(ORk))h1;h2=1;:::;k

i
; where

�̂h1;h2(ORk) =
(�1)h1+h2�2p̂

n
�

h1�1X
m1=0

h2�1X
m2=0

8<
:
�
h1 � 1
m1

��
h2 � 1
m2

�
(�p̂)m1+m2

m1!m2!

2
4 nX
j=1

(Rj�j )
m1+m2+1

m1 +m2 + 1

3
5
9=
; :

The asymptotic �-level \orthogonal" test of H0 when � !1 becomes

\ Reject H0 if S(ORk) � Q(ORk)
0�̂(ORk)

�Q(ORk) � �2k;�:
00 (2.9)

One might wonder why the limiting covariance matrix is replaced
by an estimator when the limiting covariance matrix Ik is completely
known. Our simulation studies revealed that for �nite sample sizes, the
tests which use the estimator performed better than the ones based
on Ik. This is similar to other testing situations where the use of
the observed information matrix has advantages over those using the
expected information matrix. In the simulation results presented in Sec-
tion 3, one would also notice that for the same value of the smoothing
parameter k, the achieved powers of S(PWk) and S(ORk) are identical.
This phenomenon, also observed in Thomas and Pierce (1979) for the
composite hypothesis case when units are observed only up to the time
of the �rst failure, is due to the fact that the orthogonal polynomials
are simply linear transformations of the polynomial-type speci�cation,
rendering the S(PWk) and S(ORk) to be equivalent test statistics.

A question is whether one gains by using orthogonal polynomials.
Analogous to the case of the \polynomial" test, the components of
S(ORk) are �

2
1-distributed and can be used as directional tests. For

i = 1; : : : ; k, the ith directional test statistic is

Si(ORk) =
Q2
i (ORk)

�̂2i (ORk)
; (2.10)
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10 Agustin and Pe~na

where �̂2i (ORk) is the (i; i)
th element of �̂(ORk). Whereas the direc-

tional tests based on the polynomial speci�cation are asymptotically
dependent, the test statistics in (2.10) are asymptotically independent
under this no-covariate setting. Furthermore, the simulation results
show that the directional components of the test based on the poly-
nomial speci�cation tend to be anticonservative when the sample size
is small, a problem that is not encountered when we use the directional
components of the test based on the orthogonal speci�cation. Finally,
each component of this test based on the orthogonal speci�cation is
capable of detecting speci�c departures from the hypothesized hazard.
For example, the simulation results revealed that S1(OR4) is quite
sensitive against scale changes, while the other components are not
sensitive to these alternatives. It is not yet de�nitive to us, however,
which class of alternatives each component of the orthogonal test will
be able to detect powerfully. This issue calls for further study.

3. Monte Carlo Studies

The results in the preceding section were developed under the asymp-
totic set-up, so in this section we present results of Monte Carlo simula-
tions which provide information regarding the �nite-sample properties
of the polynomial and orthogonal tests. We consider the case where the
probability of perfect repair p(�) is constant, thereby reducing the BBS
(1985) model to the Brown and Proschan (1983) model. For the BBS
model, in general, p(�) may depend on unknown parameters which need
to be estimated. Hence, this scenario falls in the realm of composite
hypothesis testing and will be dealt with in a separate paper.

Of particular interest in these simulations are the achieved levels
and powers of the tests. The issue concerning the appropriate value of
the smoothing parameter k will also be addressed in this section. For
the simulations, we considered k = 1; 2; 3; 4. Moreover, all tests were
evaluated as � ! 1, so we omit the value of � in the notation. We
reiterate that for each value of k, S(PWk) and S(ORk) are equivalent.
It should also be noted that S1(PW4) and S1(OR4) are identical. The
simulation programs were coded in Fortran, and subroutines from the
IMSL (1987) Math/Stat Library were used to generate random num-
bers and invert matrices. The simulations were run using Microsoft
Fortran PowerStation 4.0.
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3.1. Achieved Significance Levels

For determining the achieved signi�cance levels of the tests, we tested
the null hypothesis H0 : �(t) = �0(t) = 1, i.e., the unit exponential
hazard rate function. The following experiment was replicated 2000
times. For each combination of sample size n 2 f20; 30; 50; 100; 200g
and probability of perfect repair p 2 f0:2; 0:5g, record values fWji :
j = 1; : : : ; n; i � 1g for a Brown and Proschan (1983) imperfect repair
model were generated. The initial record values fwj1 : j = 1; : : : ; ng
were generated from a unit exponential distribution. Because of the
memoryless property of the exponential distribution, succeeding record
values were generated according to wji =

Pi
`=1 ej`; i � 2, where ej`

is a unit exponential variate. To determine the type of repair to be
performed at each failure time, Uniform[0; 1] variates uji were generated
corresponding to each Wji. If uji < p, a perfect repair is performed at
Wji; otherwise, an imperfect repair is done. Since we assumed � =
1, each unit was observed up to the time of its �rst perfect repair
Wj�j . The sample realization fwji : j = 1; : : : ; n; i = 1; : : : ; �jg was
used to test H0 using the various tests. The simulations were done
at the 5% and 10% asymptotic level tests. Since the results lead to
similar conclusions for both levels, we present only the results for the
5% asymptotic level tests.

The results are summarized in Table I. An examination of this
table reveals that for a sample size of 30 and a probability of perfect
repair of 0.50, the achieved levels of the directional tests Si(PW4) and
Si(OR4), with the exception of S3(PW4) and S4(PW4), are consis-
tent with the 5% asymptotic level. It should be noted that while the
directional components of S(PW4) tend to be anticonservative when
n is small, the corresponding components of S(OR4) are consistent
with the predetermined signi�cance level. For the omnibus tests, on the
other hand, S(PW3), S(PW4), and consequently S(OR3) and S(OR4),
are anticonservative when n is small. This anticonservatism, however,
decreases as n increases and more so as p decreases. In fact, for p = 0:2
and n = 100, the achieved levels of all the tests, except for S(PW4)
and hence, S(OR4), are consistent with the 5% asymptotic level. The
decrease in anticonservatism as p decreases is due to the fact that a de-
crease in the probability of perfect repair translates to a larger number
of observations. The simulation results therefore suggest that in this no
covariate recurrent event setting, k = 2 or 3 will be appropriate.

Let us now turn to the achieved powers of the tests. The power
simulations in subsection 3.2 used n = 100 and p = 0:2 since for
this combination the achieved levels of the tests, except for S(PW4),
equivalently S(OR4), are consistent with the 5% asymptotic level.
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3.2. Achieved Powers

To examine the powers of the tests we again used the null hypothesis
H0 : �(t) = �0(t) = 1, and considered Weibull-type and gamma-type
alternatives. Record values from a distribution with hazard function
�(�) can be generated according to Wji = ��1(Xj1 +Xj2 + : : :+Xji),
where Xj`'s are unit exponential random variables. Hence, for the
Weibull-type alternatives, record values were generated according to
Wji = �(Xj1 + Xj2 + : : : + Xji)

1= , where � and  are scale and
shape parameters, respectively. To determine the type of repair to
be performed at each failure time, the same scheme described in the
previous subsection was used. For the gamma-type alternatives, on
the other hand, we utilized the relationship between the hazard func-
tion � and the distribution function F to obtain the record values
Wji = F�1(1 � exp[�(Xj1 +Xj2 + : : : +Xji)];�; ). An IMSL (1987)
subroutine was used to compute the inverse of the gamma distribu-
tion function. The values of (�; ) were chosen so that the resulting
alternatives represent scale and shape changes.

For the Weibull-type alternatives, the achieved powers of the tests
against scale changes are sumarized in Table II. All the omnibus tests
considered had very good power against these alternatives. S(PW1),
and hence S(OR1), came out to have the highest power, followed closely
by S(PW2), equivalently S(OR2). For the directional tests, S1(PW4)
and its equivalent S1(OR4) stood out from the rest in terms of power.
The other directional components of the orthogonal test had virtually
no power to detect scale changes in Weibull-type alternatives. Table
III summarizes the powers of the tests against shape changes in the
Weibull alternatives. Taking  < 1 results in decreasing failure rate
alternatives, while  > 1 leads to increasing failure rate alternatives.
All the omnibus tests had good powers against this type of alternative.
Based on the simulation results, if one suspects this type of alternative,
then a value of k equal to 1 or 2 would su�ce. Though the powers of the
tests corresponding to k = 3; 4 are comparable, these tests tend to be
anticonservative when the sample size is small. For the directional tests,
the components of the polynomial test all had fairly good powers with
S2(PW4) coming out to be the best, followed closely by S1(PW4). The
directional components of the orthogonal test behaved quite di�erently.
S1(OR4) emerged to be the best overall. The test based on S2(OR4)
seems unable to detect increasing failure rate alternatives but had good
power against decreasing failure rate alternatives. The opposite, how-
ever, is true for S3(OR4) and S4(OR4). Note that the powers of these
two tests for decreasing failure rate alternatives are signi�cantly smaller
than those for increasing failure rate alternatives.
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For the shape changes in gamma-type alternatives, the results
are summarized in Table IV. S(PW3) [equivalently, S(OR3)] had the
highest power among the omnibus tests considered, while S1(PW4)
[equivalently S1(OR4)] turned out to be the best directional test. The
other components of the polynomial test did not have any power at
all to detect these alternatives. Notice that the powers for the shape
changes in the gamma alternatives are considerably lower than the
corresponding powers for the shape changes in the Weibull alternatives
for the same value of the shape parameter . This is due to the fact
that equal values of the shape parameters for the Weibull and gamma
distributions do not mean comparable deviations from the exponen-
tial distribution. To illustrate this point, Figures 1 and 2 present the
overlaid graphs of the density, distribution, hazard rate, and cumu-
lative hazard functions of the exponential with mean unity, Weibull
with  = 0:95, and gamma with  = 0:95. The scale parameters for
the Weibull and gamma are both unity. Notice that the discrepancy
between the Weibull and gamma, relative to the exponential, is very
noticeable when viewed in terms of the hazards; while they seem in-
signi�cant in the context of the densities or distributions. The observed
high simulated powers of the tests when the alternative is the Weibull
can now be explained by the larger di�erence between the exponential
hazard and the Weibull hazard relative to the di�erence between the
exponential hazard and the gamma hazard. These �gures seem to in-
dicate also the advantage of using the hazard-based formulation over
a density-based formulation for developing testing procedures because,
when viewed through the hazards, di�erences of the distributions seem
to be magni�ed.

Based on the di�erent alternatives considered in these simula-
tions, the polynomial, and hence the orthogonal, tests with k = 1; 2; or
3 show great promise as omnibus tests. Their individual components,
on the other hand, are capable of detecting speci�c departures from
the null distribution and thus will make good directional tests.

4. An Application

In this section, we illustrate the applicability of the proposed fam-
ily of tests by analyzing the air conditioner data originally presented
as Table 1 in Proschan (1963). The data consist of the times be-
tween failures of the air conditioning system of 13 Boeing 720 jet
airplanes, with major overhauls indicated by **. Following Presnell,
et al. (1994), we considered the intervals between failures as failure
times between minimal repairs and the age at which a major over-
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14 Agustin and Pe~na

haul is undertaken as the time of the �rst perfect repair. For those
planes that were not overhauled, we treated the last observed failure
age as the time of the �rst perfect repair. We assumed that � is large
enough so that we observe all failures until the time of the �rst per-
fect repair. Under this set-up, the total number of failures observed isP13

j=1Nj = 192: In Presnell, et al. (1994), the minimal repair assump-
tion was tested and no evidence against it was found. Hence, assuming
that the Brown and Proschan (1983) imperfect repair model holds,
we tested H0 : �(t) = 1=94:34, that is, the exponential distribution
with mean 94.34 hours. The value 94.34 was computed solely from the
interfailure times, assuming that they are independent and identically
distributed exponential random variables. We computed the values of
the test statistics based on both the polynomial and orthogonal speci-
�cations for k = 1; 2; 3; 4. The resulting values and their corresponding
p-values are presented in Table V. Of the global tests, the ones based on
S(PW2=OR2) and S(PW4=OR4) rejected the exponential assumption
at the 10% level of signi�cance. Moreover, the directional tests based on
S3(PW4), S4(PW4), S3(OR4), and S4(OR4) also rejected the hypothe-
sized exponential distribution. The fact that the value of S(PW1=OR1)
(equivalently, S1(PW4), S1(OR4)) is 0 should not come as a surprise
since the value 94.34 was computed from the data. A more appropriate
test would have been to consider a composite hypothesis setting which
would warrant further adjustments to the variance function. This will
be done in another paper which focuses on the composite hypothesis
case.

5. Concluding Remarks

In this paper, we extended the family of hazard-based smooth goodness-
of-�t tests to models pertaining to recurrent events, in particular, those
arising from the BBS model. Furthermore, by virtue of the fact that
the BBS model is a general model which subsumes other models used
in biomedical, engineering, economics, and sociological settings, the
proposed goodness-of-�t tests will also have applicability in these spe-
cial cases. For example, since the NHPP is a special case of the BBS
model, then a goodness-of-�t test for the intensity function of a NHPP
is therefore immediately obtained by simply specializing the proposed
tests to the case where p(t) = 0. In addition, goodness-of-�t tests for the
failure-time distribution in right-censored models can be generated by
taking p(t) = 1 and introducing a censoring variable. In particular, we
demonstrated that generalizations of tests considered by Hyde (1977)
and Akritas (1988) can be obtained from the proposed class of tests.
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The appeal of the proposed class of tests lies in the fact that a rich
family of tests can be generated by varying the smoothing process	(�).
This paper focused on the polynomial and orthogonal choices. The
simulation studies showed that these choices lead to powerful omnibus
tests and their individual components show potential for being good
directional tests. The appropriate value of the smoothing parameter
k was partially addressed. An examination of the simulation results
revealed that k = 2 or 3 would be appropriate for the setting of interest.
The simulation results also highlighted an advantage of the hazard-
based formulation of test procedures over the traditional density-based
formulation. Di�erences between distributions tend to be magni�ed
when viewed via hazard functions. Other choices for the smoothing
process have been explored and some of these choices lead to gener-
alizations of existing tests for independent and identically distributed
observations to recurrent events. For instance, Agustin and Pe~na (1999)
dealt with the case where p(�) is completely known or constant and the
smoothing process 	(�) given by

 j(s) =
Bj(s)

Bj(�)
� 1

2
; j = 1; : : : ; n

where Bj(t) =
R t
0 Yj(u)[1�p(u)]�0(u) du: This choice of smoothing pro-

cess, which is a stochastic process, resulted in a test that can be viewed
as a generalization of the test proposed by Barlow, Bartholomew, Brem-
mer and Brunk (1972) applied to generalized residuals. Furthermore,
a data-driven version of the hazard-based smooth goodness-of-�t tests
will be the focus of future research. Choosing k based on the observed
data will make the implementation of the proposed procedures more
appealing to practitioners.
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Table I. Simulated levels of 5%-asymptotic level tests for di�erent sample sizes (n) and proba-
bility of perfect repair (p). The failure times under the null hypothesis were generated according
to the Brown and Proschan imperfect repair model with initial distribution EXP(1).

p 0.50 0.20

n 20 30 50 100 200 20 30 50 100 200

Test

S(PW/OR
1
) 4.60 4.25 5.45 4.75 4.20 5.60 5.35 4.30 4.30 5.00

S(PW/OR
2
) 6.80 4.60 5.15 5.10 4.30 6.00 5.90 4.75 4.45 4.40

S(PW/OR
3
) 9.35 7.15 7.05 6.70 4.65 6.60 7.05 5.40 5.20 5.30

S(PW/OR
4
) 12.10 10.15 10.55 8.80 7.10 9.00 7.60 6.85 6.05 6.35

S1(PW4) 4.60 4.25 5.45 4.75 4.20 5.60 5.35 4.30 4.30 5.00

S2(PW4) 6.55 4.55 5.50 4.85 4.45 5.70 5.65 4.60 4.75 4.80

S3(PW4) 7.95 6.85 5.80 5.55 4.55 6.40 6.40 4.85 5.40 6.30

S4(PW4) 10.75 8.45 7.75 6.95 5.95 8.35 7.30 5.80 5.50 6.10

S1(OR4) 4.60 4.25 5.45 4.75 4.20 5.60 5.35 4.30 4.30 5.00

S2(OR4) 4.35 3.70 4.25 4.65 4.15 4.80 5.65 4.70 4.50 4.50

S3(OR4) 6.30 5.10 5.05 4.60 4.45 5.75 5.85 4.50 5.15 4.80

S4(OR4) 5.20 4.60 4.85 4.80 4.95 5.10 5.80 4.75 5.20 4.75
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Table II. Simulated powers of the 5%-asymptotic level tests when the failure
times were generated according to the Brown and Proschan imperfect repair
model with initial distribution Weibull(�; ), probability of perfect repair
p = 0:20, and sample size n = 100.

� 0.85 0.90 0.95 1.00 1.05 1.10 1.15

Test  1 1 1 1 1 1 1

S(PW/OR
1
) 94.65 64.90 22.05 5.15 18.75 55.30 89.15

S(PW/OR
2
) 91.55 56.70 18.95 4.85 13.90 43.75 81.10

S(PW/OR
3
) 88.60 51.85 17.15 5.55 12.10 38.75 74.30

S(PW/OR
4
) 85.60 48.55 16.85 5.95 10.75 34.50 69.80

S1(PW4) 94.65 64.90 22.05 5.15 18.75 55.30 89.15

S2(PW4) 75.45 43.05 16.85 5.25 10.90 29.40 59.30

S3(PW4) 48.30 27.30 13.60 5.60 4.85 10.55 23.30

S4(PW4) 34.80 21.45 12.45 5.50 3.65 4.35 9.15

S1(OR4) 94.65 64.90 22.05 5.15 18.75 55.30 89.15

S2(OR4) 11.90 5.70 4.70 5.30 4.70 5.30 7.45

S3(OR4) 7.45 7.00 5.35 4.80 4.60 5.35 6.15

S4(OR4) 7.65 6.25 5.75 4.40 4.85 4.85 5.30
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Table III. Simulated powers of the 5%-asymptotic level tests when the fail-
ure times were generated according to the Brown and Proschan imperfect
repair model with initial distribution Weibull(�; ), probability of perfect repair
p = 0:20, and sample size n = 100.

� 1 1 1 1 1 1 1

Test  0.85 0.90 0.95 1.00 1.05 1.10 1.15

S(PW/OR
1
) 100.00 99.20 67.30 5.00 56.95 98.70 99.95

S(PW/OR
2
) 100.00 99.40 63.45 4.65 60.10 99.35 99.95

S(PW/OR
3
) 100.00 99.50 61.85 5.55 54.25 99.00 99.95

S(PW/OR
4
) 100.00 99.15 55.70 5.85 55.10 99.00 99.95

S1(PW4) 100.00 99.20 67.30 5.00 56.95 98.70 99.95

S2(PW4) 100.00 99.65 68.85 5.25 67.65 99.45 99.95

S3(PW4) 100.00 95.35 39.05 5.15 50.35 93.60 99.65

S4(PW4) 99.10 75.20 17.45 5.50 39.85 81.65 96.15

S1(OR4) 100.00 99.20 67.30 5.00 56.95 98.70 99.95

S2(OR4) 100.00 88.35 27.55 4.85 12.40 18.95 14.20

S3(OR4) 49.95 27.75 15.35 4.65 21.80 63.60 86.70

S4(OR4) 29.25 10.85 7.00 6.05 14.50 54.70 88.00
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Table IV. Simulated powers of the 5%-asymptotic level tests when the
failure times were generated according to the Brown and Proschan (1983)
imperfect repair model with initial distribution Gamma(; �), probability
of perfect repair p = 0:20, and sample size n = 100.

� 1 1 1 1 1 1 1

Test  0.85 0.90 0.95 1.00 1.05 1.10 1.15

S(PW/OR
1
) 30.50 15.65 8.50 5.55 6.20 13.85 22.25

S(PW/OR
2
) 29.80 13.90 8.30 5.85 7.05 14.45 25.70

S(PW/OR
3
) 35.65 18.10 9.85 5.40 6.10 11.95 21.80

S(PW/OR
4
) 32.70 16.65 9.30 6.65 8.75 15.25 25.50

S1(PW4) 30.50 15.65 8.50 5.55 6.20 13.85 22.25

S2(PW4) 8.25 6.40 5.55 5.10 4.55 4.65 4.40

S3(PW4) 6.35 5.80 5.65 5.35 4.85 4.75 4.70

S4(PW4) 6.60 6.70 5.75 5.75 5.90 5.40 4.95

S1(OR4) 30.50 15.65 8.50 5.55 6.20 13.85 22.25

S2(OR4) 15.05 7.10 5.05 4.85 6.30 10.40 15.45

S3(OR4) 18.20 11.55 6.55 4.75 5.70 7.80 10.20

S4(OR4) 16.85 10.65 6.50 4.65 5.75 6.95 9.25
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Table V. Computed test statistics and their
corresponding p-values for testing that the
initial failure distribution of the Proschan
(1963) air conditioner data set is exponential
with mean 94.34 hours.

Test Test Statistic p-value

S(PW1=OR1) 0.00 1.0000

S(PW2=OR2) 5.84 0.0539a

S(PW3=OR3) 5.89 0:1171

S(PW4=OR4) 8.30 0:0812a

S1(PW4) 0.00 1.0000

S2(PW4) 1.72 0.1897

S3(PW4) 2.98 0:0843a

S4(PW4) 3.77 0:0522a

S1(OR4) 0.00 1.0000

S2(OR4) 2.40 0:1213

S3(OR4) 5.40 0.0201b

S4(OR4) 5.02 0:0251b

a Signi�cant at the 10% level.
b Signi�cant at the 5% level.
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Figure 1. Overlaid plots of the density and distributionfunctions associated with the
unit exponential, Weibull with  = 0:95; � = 1, and gamma with  = 0:95; � = 1.
Legend: Solid = Exponential; Dash-Dot = Weibull; and Dashes = Gamma.
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Figure 2. Overlaid plots of the hazard rate and cumulative hazard functions asso-
ciated with the unit exponential, Weibull with  = 0:95; � = 1, and gamma with
 = 0:95; � = 1. Legend: Solid = Exponential; Dash-Dot = Weibull; and Dashes =
Gamma.
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