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Linear Model and Assumptions

Linear Model (LM):

Y = Xβ + σε

Y = observable n × 1
response vector;

X = observable n × p

design matrix;

ε = unobservable
error vector;

β and σ are the param-
eters.
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Linear Model and Assumptions

Linear Model (LM):

Y = Xβ + σε

Y = observable n × 1
response vector;

X = observable n × p

design matrix;

ε = unobservable
error vector;

β and σ are the param-
eters.

(A1) Linearity:

E{Yi|X} = xiβ

(A2) Homoscedasticity:

Var{Yi|X} = σ2

(A3) Uncorrelatedness:

Cov{Yi, Yj |X} = 0

(A4) Normality:

Yi|X ∼ Normal.
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Estimators

Estimator of β:

b = β̂ = (XtX)−1XtY;

Estimator of σ2:

s2 = σ̂2 =
1

n
Yt(I − PX)Y,

Projection operator on the linear subspace generated
by the columns of X, also denoted by H:

PX = X(XtX)−1Xt
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Example: Body Fat Data Set

Plot of Response Variable versus Predictor Variable
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Example: Fitting LM

Response: Y = Body fat content.

Predictors: X1 = Age; X2 = Weight.

Model: Yi = β0 + β1X1i + β2X2i + σεi

Results of Fitting Model (Using lm in S-Plus):

Coefficients: b0 = −21.16(se = 2.77, p = 0),
b1 = .20(se = .03, p = 0), b2 = .18(se = .01, p = .01).

Residual SE: 6.148 on 249 DF. Multiple R2: 0.4646.
F-statistic: 108 on (2, 249) DF. p-value = 0.
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Validating LM Assumptions

Standardized Residuals:

R =
Y − Xb

s
=

(I − PX)Y

s

Graphical Methods.

Diagnostic plots based on R. Discussed in many
(elementary) textbooks!

Formal tests.

Such formal hypothesis tests are based on R.
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Example: Body Fat Diagnostics
Plot of the Fitted Values versus the Standardized Residuals
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Plot of the Standardized Residuals versus Time Sequence
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Issues to Consider
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Issues to Consider

Varied plots to detect varied assumptions. Made
easy by statistical packages.
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Issues to Consider

Varied plots to detect varied assumptions. Made
easy by statistical packages.

“A picture is worth a thousand words, but beauty is
always in the eye of the beholder!”
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OJSM 2003, SF, CA – p.7



Issues to Consider

Varied plots to detect varied assumptions. Made
easy by statistical packages.

“A picture is worth a thousand words, but beauty is
always in the eye of the beholder!”

Re-use of data. Parameter estimates are substituted
for unknown parameters to obtain R.

Formal tests are usually specific to type of departure
from assumptions (e.g., Tukey’s test for additivity;
Durbin and Watson’s test for serial correlation; test
for normality; tests for heterogeneity of variances).

JSM 2003, SF, CA – p.7



Problem and Goals

Based on (Y,X), to test formally and globally the
hypotheses

H0 : Assumptions (A1)-(A4) all hold;
H1 : At least one of (A1)-(A4) does not hold.
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Problem and Goals

Based on (Y,X), to test formally and globally the
hypotheses

H0 : Assumptions (A1)-(A4) all hold;
H1 : At least one of (A1)-(A4) does not hold.

To detect formally the type of departure from the
assumptions if the global test decides that a violation
has occurred.
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Problem and Goals

Based on (Y,X), to test formally and globally the
hypotheses

H0 : Assumptions (A1)-(A4) all hold;
H1 : At least one of (A1)-(A4) does not hold.

To detect formally the type of departure from the
assumptions if the global test decides that a violation
has occurred.

Objectivity of conclusions and control of probability of
error desired.
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1st and 2nd Component Statistics

Recalling the standardized residuals

Ri =
Yi − Ŷi

s
, i = 1, 2, . . . , n,

where Ŷi = xib is the ith fitted or predicted value.

Ŝ2
1 =

{
1√
6n

n∑

i=1

R3
i

}2

; Ŝ2
2 =

{
1√
24n

n∑

i=1

[R4
i − 3]

}2

;
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3rd Component Statistic

Ŝ2
3 =

{
1
√

n

∑n
i=1(Ŷi − Ȳ )2Ri

}2

(Ω̂ − btΣ̂Xb − Γ̂Σ̂−1
X Γ̂t)

,

Ω̂ =
1

n

n∑

i=1

(Ŷi − Ȳ )4; Σ̂X =
1

n

n∑

i=1

(xi − x̄)t(xi − x̄)

Γ̂ =
1

n

n∑

i=1

(Ŷi − Ȳ )2(xi − x̄).
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4th Component Statistic

The fourth component statistic requires a user-supplied
n × 1 vector V, which by default is set to be the time
sequence V = (1, 2, . . . , n)t. It is defined via

Ŝ2
4 =





1√
2σ̂2

V n

n∑

i=1

(Vi − V̄ )(R2
i − 1)





2

,

with

σ̂2
V =

1

n

n∑

i=1

(Vi − V̄ )2.
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Global Statistic and Test

The global test statistic is

Ĝ2
4 = Ŝ2

1 + Ŝ2
2 + Ŝ2

3 + Ŝ2
4 .

For large n, a global test of H0 versus H1 at
asymptotic level α is:

Reject H0 if Ĝ2
4 > χ2

4;α,

where χ2
k;α is the 100(1 − α)th percentile of a central

chi-squared distribution with degrees-of-freedom k.
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Directional Tests
If the global test rejects H0, type of violation could be
detected via:
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Directional Tests
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Skewed error distributions indicated by Ŝ2
1 ;

Deviations from the normal distribution kurtosis of the
true error distribution generally revealed by Ŝ2

2 ;

Misspecified link function or the absence of other
predictor variables in the model detected by Ŝ2

3 ;

Presence of heteroscedastic errors and/or
dependent errors manifested by Ŝ2
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Directional Tests
If the global test rejects H0, type of violation could be
detected via:

Skewed error distributions indicated by Ŝ2
1 ;

Deviations from the normal distribution kurtosis of the
true error distribution generally revealed by Ŝ2

2 ;

Misspecified link function or the absence of other
predictor variables in the model detected by Ŝ2

3 ;

Presence of heteroscedastic errors and/or
dependent errors manifested by Ŝ2

4 ; and

Simultaneous violations revealed by large values of
several component statistics.
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Global Deletion Statistic

∆Ĝ2
4[i] =

[
Ĝ2

4[i] − Ĝ2
4

Ĝ2
4

]
× 100, i = 1, 2, . . . , n.

Percent relative change in value of global statistic Ĝ2
4

after deletion of ith observation.

Idea: observation with a large absolute value of
∆Ĝ2

4[i] is either an outlier or has large influence.

Values of ∆Ĝ2
4[i] can be plotted with respect to time

sequence to assess their relative values.
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Example: For the Body Fat Data

Global Test: Ĝ2
4 = 10.15 (p = 0.037); Decision:

Assumptions NOT satisfied!
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Example: For the Body Fat Data

Global Test: Ĝ2
4 = 10.15 (p = 0.037); Decision:

Assumptions NOT satisfied!

Component Statistics (with p-Value and Decision)

Ŝ1 = 0.91 (p = 0.33); Decision: OK.

Ŝ2 = 0.00 (p = 0.98); Decision: OK.

Ŝ3 = 6.89 (p = 0.01); Decision: Violation!

Ŝ4 = 2.33 (p = 0.12); Decision: OK.
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Example: For the Body Fat Data

Global Test: Ĝ2
4 = 10.15 (p = 0.037); Decision:

Assumptions NOT satisfied!

Component Statistics (with p-Value and Decision)

Ŝ1 = 0.91 (p = 0.33); Decision: OK.

Ŝ2 = 0.00 (p = 0.98); Decision: OK.

Ŝ3 = 6.89 (p = 0.01); Decision: Violation!

Ŝ4 = 2.33 (p = 0.12); Decision: OK.

Based on the directional tests, the violation appears
to be in the link function.
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Example: Deletion Statistics
Plot of Delta(Global Statistic) versus Deleted Observation Number

Deleted Observation Number
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Plot of Global P-Value versus Deleted Observation Number
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Result: The 39th obs. suspect. Has ∆Ĝ2
4[39] = −66.73.
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Plot of Delta(Global Statistic) versus Deleted Observation Number
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Plot of Global P-Value versus Deleted Observation Number
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Result: The 39th obs. suspect. Has ∆Ĝ2
4[39] = −66.73.

Remark: After deleting the 39th obs: Ĝ2
4 = 3.37(P = 0.49).

LM assumptions now acceptable.
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Theoretical Interludes

True Residuals:

R0 ≡ R0(σ2, β) =
Y − Xβ

σ

R0 are iid std normals.

Density under H0 of
R0:

fR0(r0) =
n∏

i=1

φ(r0
i )

φ(·) = std normal pdf.
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Theoretical Interludes

True Residuals:

R0 ≡ R0(σ2, β) =
Y − Xβ

σ

R0 are iid std normals.

Density under H0 of
R0:

fR0(r0) =
n∏

i=1

φ(r0
i )

φ(·) = std normal pdf.

Embedding Class:

fR0(r0|θ) =

C(θ)fR0(r0) exp{θtQ(r0)}

Q(r0) =
n∑

i=1




r0
i

(r0
i
)2 − 1

(r0
i
)3

(r0
i
)4 − 3

{(xi − x̄)β}2r0
i

(vi − v̄)[(r0
i
)2 − 1]



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Score Test Statistic
The score test statistic within this embedding class
for H0 : θ = 0 versus H1 : θ 6= 0 when β and σ are
known is:

U(θ = 0, σ2, β) = Q(R0; σ2, β).
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Score Test Statistic
The score test statistic within this embedding class
for H0 : θ = 0 versus H1 : θ 6= 0 when β and σ are
known is:

U(θ = 0, σ2, β) = Q(R0; σ2, β).

When the parameters are not known, then the score
statistic is:

U(θ = 0, s2,b) = Q(R; s2,b).
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Score Test Statistic
The score test statistic within this embedding class
for H0 : θ = 0 versus H1 : θ 6= 0 when β and σ are
known is:

U(θ = 0, σ2, β) = Q(R0; σ2, β).

When the parameters are not known, then the score
statistic is:

U(θ = 0, s2,b) = Q(R; s2,b).

Needed: null asymptotic distribution of

Q(R; s2,b).
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Asymptotics: Parameters Known

Under H0 :
1√
n
Q(R0; σ2, β)

d−→ N
(
0,Σ11(σ

2, β)
)

Σ11(σ
2, β) =




1 0 3 0 βtΣXβ 0

0 2 0 12 0 0

3 0 15 0 3βtΣXβ 0

0 12 0 96 0 0

βtΣXβ 0 3βtΣXβ 0 Ω(β) 0

0 0 0 0 0 2σ2
V




JSM 2003, SF, CA – p.19



Asymptotics: Parameters Estimated

Under H0:
1√
n
Q(R; s2,b)

d−→ N
(
0,Ξ11.2(σ

2, β)
)

Ξ11.2(σ
2, β) =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 6 0 0 0

0 0 0 24 0 0

0 0 0 0 ξ(σ2, β) 0

0 0 0 0 0 2σ2
V




ξ(σ2, β) = Ω(β) − (βtΣXβ)2 − Γ(β)Σ−1
X Γ(β)t
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Global Test Statistic

The test statistic

1

n
Q(R; s2,b)tΞ̂−

11.2Q(R; s2,b) = Ŝ2
1 + Ŝ2

2 + Ŝ2
3 + Ŝ2

4 = Ĝ2
4

converges in distribution, under H0, to a four
degrees-of-freedom chi-squared random variable.

This is the justification for the global test procedure,
and this test is a score test within the embedding
class!

The estimators of the variances are their natural
consistent estimators.
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Monte Carlo Adventures

Goals: to ascertain level and powers of the test
procedure for testing the four LM assumptions.

n ∈ {30, 100, 200}
2000 replications

x1, x2, . . . , xn standard uniform

Fitted Model: Yi = β0 + β1xi + σεi

User-supplied V = (1, 2, . . . , n)

Level of significance: 5%

Program implementing the procedure were in
S-Plus code
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Achieved Levels

Model n Component Statistics Global
Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 4.00 4.00 5.05 5.75 5.10
True 100 5.50 4.20 4.35 4.70 5.95

200 5.70 4.60 4.40 4.05 5.75

Conclusion: The global and directional tests achieve the
desired level for the sample size examined in the
simulation.
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Errors (εi’s): Non-Normal but Symmetric

Error n Component Statistics Global
Dist. Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 18.45 20.35 4.70 9.60 22.40
t5 100 34.30 57.00 4.40 13.80 54.55

200 42.25 83.10 4.55 15.15 80.50

30 11.80 12.60 5.90 7.20 15.05
Logistic 100 17.45 30.30 5.50 8.20 29.35

200 20.10 52.35 4.25 9.00 47.10

30 19.50 24.75 5.60 10.35 27.20
Double Exp. 100 35.05 73.55 5.60 14.60 70.65

200 39.45 95.95 6.35 14.05 92.90
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Errors (εi’s): Non-Normal and Skewed

Error n Component Statistics Global
Dist Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 91.30 59.70 5.25 21.30 80.20
χ2

1 − 1 100 100 98.35 5.05 31.35 100
200 100 99.95 4.85 33.60 100

30 37.15 18.05 4.45 8.65 29.15
χ2

5 − 5 100 96.90 54.25 4.60 11.80 87.70
200 100 79.40 4.40 13.15 99.90

30 22.40 12.90 4.75 6.90 18.75
χ2

10 − 10 100 79.70 31.50 4.95 8.60 61.00
200 98.90 50.00 4.60 8.80 94.70
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Model: Yi = xi + x
γ
i εi (Heteroscedastic)

Value of Sample Component Statistics Global
γ Size (n) Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 8.50 10.85 5.65 6.10 14.15
.5 100 12.00 37.40 4.70 5.55 31.55

200 10.65 48.85 4.80 8.35 39.50

30 11.10 16.65 3.40 6.20 16.15
1 100 21.35 78.15 5.15 21.05 72.30

200 24.10 96.95 5.40 13.35 93.30

30 21.40 52.35 6.15 12.60 46.75
2 100 34.10 98.95 7.00 10.05 96.45

200 47.50 100 7.55 31.60 100
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Model: Yi = xi + β2x
γ
i + εi

Value of Sample Component Statistics Global
(β2, γ) Size (n) Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 5.45 4.15 8.25 4.85 5.45
(3, .5) 100 5.90 4.00 17.45 4.90 8.70

200 4.00 4.60 32.95 5.00 16.55

30 4.95 3.55 12.70 5.05 5.55
(3, 2) 100 4.95 4.95 43.65 4.55 22.80

200 4.25 5.50 83.35 5.45 59.90

30 3.70 3.70 14.45 4.20 5.70
(5, .5) 100 5.10 4.25 51.60 4.65 27.05

200 5.20 5.00 84.25 5.40 62.00
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Dependent Errors
Error Sample Component Statistics Global
Type Size (n) Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 20.85 10.25 3.80 35.45 27.85
Mart. 100 50.70 33.50 3.50 70.25 72.20

200 63.90 50.35 5.00 79.40 87.25

30 5.20 3.05 3.50 8.20 5.30
Markov 100 8.90 4.70 6.25 15.55 12.15

200 11.40 5.85 5.15 18.35 15.70

30 5.45 2.90 1.85 13.30 6.85
Markov 100 19.60 10.60 5.45 36.45 34.85

200 29.50 21.40 3.60 47.45 54.45

(Martingale): εi = 1√
i

∑i
j=1

ε
∗
j ; (Markov type): εi = 1√

2
(εi−1 + ε

∗
i ).
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Application: CREF Data Set

Source: Data downloaded from TIAA-CREF website.

Variables: Stock (X) and Growth (Y ) Accounts
end-of-trading day (EOTD) values

Period: January 2, 1996 to May 31, 1996

Size of Data Set: n = 106

Goal: To relate the two accounts EOTD values.

Question: Is it better to create a model based on the
first-order differences: ∆Yi = Yi − Yi−1 and
∆Xi = Xi − Xi−1?
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First Model: Y vs X

Plot of Response Variable versus Predictor Variable
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Ĝ2
4 = 7.87 (p = .0965)

Ŝ2
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Ŝ2
2 = .55 (p = .46)

Ŝ2
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Second Model: ∆Y vs ∆X

Plot of Response Variable versus Predictor Variable
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∆̂Y = .0057 + .4760(∆X)
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Ĝ2
4 = 2.81 (p = .59)

Ŝ2
1 = .11 (p = .73)

Ŝ2
2 = .0041 (p = .95)
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3 = .17 (p = .68)

Ŝ2
4 = 2.51 (p = .11)
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Plots: Residuals vs Time

First Model Second Model
Plot of the Standardized Residuals versus Time Sequence
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Plots: Residuals vs Time

First Model Second Model
Plot of the Standardized Residuals versus Time Sequence
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Concluding Remarks

Considered the problem of validating LM
assumptions simultaneously.

A global procedure making diagnostics formal and
objective.

Easy-to-implement and simple, even doable by
undergraduate students!

Appears to achieve what it purports to do as
demonstrated by simulations.

Will make the procedure ‘adaptive,’ that is, will
choose the component statistics for the global
statistics on the basis of the data!
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