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Motivation

Regression analysis

Yi = β0 + β1X1i + . . .+ βpXpi + εi

Analysis of Variance Models

Yij = µ+ αi + βj + (αβ)ij + εi

Impetus from teaching Stat 700-701: Experience
with giving a final examination using a real data set
from TIAA-CREF.
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Two Motivating Data Sets
(i) Forbes BP Data (ii) Car Efficiency
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Linear Model and Assumptions

Linear Model (LM):

Y = Xβ + σε

Y = observable n× 1
response vector;

X = observable n× p
design matrix;

ε = unobservable
error vector;

β and σ are the param-
eters.

(A1) Linearity:

E{Yi|X} = xiβ

(A2) Homoscedasticity:

Var{Yi|X} = σ2

(A3) Uncorrelatedness:

Cov{Yi, Yj |X} = 0

(A4) Normality:

Yi|X ∼ Normal.
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Estimators

ML Estimator of β:

b = β̂ = (XtX)−1XtY;

ML Estimator of σ2:

s2 = σ̂2 =
1

n
Yt(I−PX)Y,

Projection operator on the linear subspace generated
by the columns of X, also denoted by H:

PX = X(XtX)−1Xt
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Example: Water Salinity (Carroll & Ruppert; Atkinson)

Predictor = LagSalinity Predictor = Waterflow
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Example: Fitting the LM
Response: Y = Water Salinity.

Predictors: X1 = LagSalinity; X2 = Trend; X3 =
WaterFlow.

Model: Yi = β0 + β1X1i + β2X2i + β3X3i + σεi

Results of Fitting Model (Using lm in R):

Coefficients: b0 = 9.59, b1 = .78, b2 = −.02, b3 = −.29.

If all assumptions are satisfied, tests of significance
show that all coefficients (βis) are significantly
different from zero.

Multiple Coefficient of Determination = R2 = 83%.
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Validating LM Assumptions

Standardized Residuals:

R =
Y −Xb

s
=

(I−PX)Y

s

or, in long form,

Ri =
Yi − Ŷi

s
, i = 1, 2, . . . , n

Graphical or Diagnostic plots based on R. Discussed
in many (elementary) textbooks!

Formal significance tests.

Such formal hypothesis tests are based on R.
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Example: Salinity Data
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Question: Are the assumptions OK?
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Issues to Consider

Varied plots to detect varied assumptions. Made truly
easy by packages: Minitab, SAS, SPSS, Excel,
S-Plus, R, etc.

“A picture is worth a thousand words, but beauty is
in the eye of the beholder!”

Re-use of data. Parameter estimates are substituted
for unknown parameters to obtain R.

Formal tests are usually specific to type of departure
from assumptions.

Need to be aware of possible synergy among
different violations.
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Problem and Goals

Based on (Y,X), to test formally and globally the
hypotheses

H0 : Assumptions (A1)-(A4) all hold;
H1 : At least one of (A1)-(A4) does not hold.

To detect formally the type of departure from the
assumptions if the global test decides that a violation
has occurred.

Objectivity of conclusions and control of probability of
error desired.
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1st and 2nd Component Statistics

Recalling the standardized residuals

Ri =
Yi − Ŷi

s
, i = 1, 2, . . . , n,

where Ŷi = xib is the ith fitted or predicted value.

Ŝ2
1 =

{

1√
6n

n
∑

i=1

R3
i

}2

; Ŝ2
2 =

{

1√
24n

n
∑

i=1

[R4
i − 3]

}2

;
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3rd Component Statistic

Ŝ2
3 =

{

1√
n

∑n
i=1(Ŷi − Ȳ )2Ri

}2

(Ω̂− btΣ̂Xb− Γ̂Σ̂−1
X Γ̂t)

,

Ω̂ =
1

n

n
∑

i=1

(Ŷi − Ȳ )4; Σ̂X =
1

n

n
∑

i=1

(xi − x̄)t(xi − x̄)

Γ̂ =
1

n

n
∑

i=1

(Ŷi − Ȳ )2(xi − x̄).
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4th Component Statistic

The fourth component statistic requires a user-supplied
n× 1 vector V, which by default is set to be the time
sequence V = (1, 2, . . . , n)t/n. It is defined via

Ŝ2
4 =







1
√

2σ̂2
V n

n
∑

i=1

(Vi − V̄ )(R2
i − 1)







2

,

with

σ̂2
V =

1

n

n
∑

i=1

(Vi − V̄ )2.

USC-Stat, 9/9/2004 – p.15



Global Statistic and Test

The global test statistic is

Ĝ2
4 = Ŝ2

1 + Ŝ2
2 + Ŝ2

3 + Ŝ2
4 .

For large n, a global test of H0 versus H1 at
asymptotic level α is:

Reject H0 if Ĝ2
4 > χ2

4;α,

where χ2
k;α is the 100(1− α)th percentile of a central

chi-squared distribution with degrees-of-freedom k.
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Directional Tests
If the global test rejects H0, type of violation could usually
be detected via:

Skewed error distributions indicated by Ŝ2
1 ;

Deviations from the normal distribution kurtosis of the
true error distribution generally revealed by Ŝ2

2 ;

Misspecified link function or the absence of other
predictor variables in the model detected by Ŝ2

3 ;

Presence of heteroscedastic errors and/or
dependent errors manifested by Ŝ2

4 ; and

Simultaneous violations revealed by large values of
several component statistics.
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Deletion Statistics

∆Ĝ2
4[i] =

[

Ĝ2
4[i]− Ĝ2

4

Ĝ2
4

]

× 100; p[i] = P
{

χ2
4 > ĝ2

4[i]
}

.

∆Ĝ2
4[i] = Percent relative change in value of global

statistic Ĝ2
4 after deletion of ith observation.

p[i] = p-value after deletion of ith observation.

Idea: observation with a large absolute value of
∆Ĝ2

4[i] or a big change in p[i] is either an outlier or
has large influence.

Values of (∆Ĝ2
4[i], p[i]), i = 1, 2, . . . , n, could be plotted

to see outlying or influential observations.

USC-Stat, 9/9/2004 – p.18



Example: Forbes Data
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Example: Model Validation
Global Test: Ĝ2

4 = 98.4 (p = 0).

Decision: Assumptions NOT satisfied!

Component Statistics (with p-Value and Decision)
Ŝ1 = 28.7 (p = 0); Decision: Violation!

Ŝ2 = 65.1 (p = 0); Decision: Violation!

Ŝ3 = 1.9 (p = 0.17); Decision: OK.

Ŝ4 = 2.8 (p = 0.10); Decision: OK.

Based on the directional tests, there seems to be
violations in the normality assumption, or there could
be outliers or influential observations.
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Ŝ4 = 2.8 (p = 0.10); Decision: OK.

Based on the directional tests, there seems to be
violations in the normality assumption, or there could
be outliers or influential observations.

USC-Stat, 9/9/2004 – p.20



Example: Deletion Statistics
All Observations After 12th is Deleted
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Result: The 12th obs. is quite different: outlier or too
influential. Upon its deletion, Ĝ2

4[12] = 2.54(P = 0.64).
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Theoretical Interludes: Why it Works!

True Residuals:

R0 ≡ R0(σ2, β) =
Y −Xβ

σ

R0 are iid std normals.

Density under H0 of
R0:

fR0(r0) =
n
∏

i=1

φ(r0i )

φ(·) = std normal pdf.

Embedding Class:

fR0(r0|θ) =
C(θ)fR0(r0) exp{θtQ(r0)}

Q(r0) =
n
∑

i=1



























r0

i

(r0

i
)2 − 1

(r0

i
)3

(r0

i
)4 − 3

{(xi − x̄)β}2r0

i

(Vi − V̄ )[(r0

i
)2 − 1]
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Score Test Statistic
The score test statistic within this embedding class
for H0 : θ = 0 versus H1 : θ 6= 0 when β and σ are
known is:

U(θ = 0, σ2, β) ≡ ∂

∂θ
log fR0(r0|θ, β, σ2) |θ=0

= Q(r0;σ2, β).

When the parameters are not known, then the score
statistic is:

U(θ = 0, s2,b) = Q(R; s2,b).

Needed: Null asymptotic distribution of Q(R; s2,b).

OUSC-Stat, 9/9/2004 – p.23



Score Test Statistic
The score test statistic within this embedding class
for H0 : θ = 0 versus H1 : θ 6= 0 when β and σ are
known is:

U(θ = 0, σ2, β) ≡ ∂

∂θ
log fR0(r0|θ, β, σ2) |θ=0

= Q(r0;σ2, β).

When the parameters are not known, then the score
statistic is:

U(θ = 0, s2,b) = Q(R; s2,b).

Needed: Null asymptotic distribution of Q(R; s2,b).

OUSC-Stat, 9/9/2004 – p.23



Score Test Statistic
The score test statistic within this embedding class
for H0 : θ = 0 versus H1 : θ 6= 0 when β and σ are
known is:

U(θ = 0, σ2, β) ≡ ∂

∂θ
log fR0(r0|θ, β, σ2) |θ=0

= Q(r0;σ2, β).

When the parameters are not known, then the score
statistic is:

U(θ = 0, s2,b) = Q(R; s2,b).

Needed: Null asymptotic distribution of Q(R; s2,b).
USC-Stat, 9/9/2004 – p.23



Asymptotics: Parameters Known
An application of the multivariate CLT yields:

Under H0 :
1√
n
Q(R0;σ2, β)

d−→ N
(

0,Σ11(σ
2, β)

)

Σ11(σ
2, β) =





















1 0 3 0 βtΣXβ 0

0 2 0 12 0 0

3 0 15 0 3βtΣXβ 0

0 12 0 96 0 0

βtΣXβ 0 3βtΣXβ 0 Ω(β) 0

0 0 0 0 0 2σ2
V
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Asymptotics: Parameters Estimated

Under H0:
1√
n
Q(R; s2,b)

d−→ N
(

0,Ξ11.2(σ
2, β)

)

Ξ11.2(σ
2, β) =





















0 0 0 0 0 0

0 0 0 0 0 0

0 0 6 0 0 0

0 0 0 24 0 0

0 0 0 0 ξ(σ2, β) 0

0 0 0 0 0 2σ2
V





















ξ(σ2, β) = Ω(β)− (βtΣXβ)
2 − Γ(β)Σ−1

X Γ(β)
t
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Global Test Statistic

The test statistic

1

n
Q(R; s2,b)tΞ̂−

11.2
Q(R; s2,b) = Ŝ2

1
+ Ŝ2

2
+ Ŝ2

3
+ Ŝ2

4

= Ĝ2

4

converges in distribution, under H0, to a four
degrees-of-freedom chi-squared random variable.

This is the justification for the global test procedure,
and this test is a score test within the embedding
class!

The estimators of the variances are their natural
consistent estimators.
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Monte Carlo Adventures

Goals: to ascertain level and powers of the test
procedure for testing the four LM assumptions.

Sample Size: n ∈ {30, 100, 200}
Replications: 20,000 for levels; 5,000 for powers.

Covariate: x1, x2, . . . , xn standard uniform

Fitted Model: Yi = β0 + β1xi + σεi

User-supplied V: V = (1, 2, . . . , n)/n

Level of significance: 5%

Programs implementing the procedure were coded in
the R language.
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Plots of Achieved Levels
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Table of Achieved Levels

Model n Component Statistics Global
Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 3.66 2.00 5.62 3.91 4.15
True 100 4.68 3.14 4.94 4.76 5.10

200 4.80 3.64 5.18 5.10 5.08

Conclusion: The global and directional tests achieve the

desired level for the sample size examined in the simula-

tion.
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Power Studies

Generic Data Generation Model for Alternatives.

Yi = xi + β2x
γ
i + σ∗i x

α
i εi, i = 1, . . . , n

β2 and γ = misspecified link function parameters.

α = heteroscedastic parameter.

σ∗i = 1 if i ≤ n/2; σ∗i = σ2 if i > n/2.

With ε∗i , i = 1, . . . , n IID N(0, 1):

Martingale Errors: εi = 1√
i

∑i
j=1 ε

∗
j

Markov Errors: εi = (ρεi−1 + ε∗i )/(
√

1 + ρ2)
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Some Simulated Powers
Model: Errors (εi’s) are Non-Normal

Error n Component Statistics Global
Dist Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 21.6 21.1 6.0 10.6 23.9
t5 100 38.9 61.9 5.1 17.0 59.8

30 11.80 12.60 5.90 7.20 15.05
LG 100 17.45 30.30 5.50 8.20 29.35

30 19.50 24.75 5.60 10.35 27.20
DE 100 35.05 73.55 5.60 14.60 70.65

30 48.7 19.7 6.0 10.3 34.2
χ2

5 − 5 100 98.7 57.8 5.8 14.5 92.5
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Model: Heteroscedastic Variances

Yi = xi + xαi σ
∗
i εi

Value of Sample Component Statistics Global
(α, σ2) Size (n) Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 40 85 29 30 86
(2, 1) 100 49 100 15 28 99

30 13 12 5 40 27
(1, 2) 100 19 38 7 97 90
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Model: Misspecified Link Function

Yi = xi + β2x
γ
i + ε∗i

Value of Sample Component Statistics Global
(β2, γ) Size (n) Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 3 1.7 19 4 8
(3, 2) 100 5 2.7 55 5 31

30 4 2 41 3 17
(5, 2) 100 4 3 94 4 79
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Model: Dependent Errors

Error Sample Component Statistics Global
Type Size (n) Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 23 10 3 42 32
Mart. 100 55 38 4 72 75

30 8 .7 1.2 22 13
Markov 100 26 24 .7 48 48

Martingale Type: εi = 1√
i

∑i
j=1 ε

∗
j

Markov Type: εi = 1√
6
(5εi−1 + ε∗i )
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Model: Multiple Violations

Violated Sample Component Statistics Global
Assumptions Size (n) Ŝ2

1 Ŝ2
2 Ŝ2

3 Ŝ2
4 Ĝ2

4

30 27 47 17 53 63
(All) 100 47 96 51 56 96

30 42 69 12 10 67
(All) 100 77 99 12 75 99.8

30 46 72 5.2 41 72
(All) 100 62 99.9 11 93 99.9

30 42 62 10 73 77
(All) 100 66 98.9 20 71 99.4
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Example: Car Efficiency
Data gathered for 3 years. Mileage recorded every
gas fill-up. There were n = 205 observations.

To create regression model with NumGallons as
response and MilesLastFill as predictor.
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Fitted Model
Ŷ = 6.808 + 0.016X

σ̂ = .691

F -value = 151 (p = 0)

Coefficient of Determination = 42.6%

Question: Are the model assumptions valid??

Ĝ2
4 = 27.5(p = 0).

Some assumptions violated!

Ŝ2
1 = .23(p = .63); Ŝ2

2 = 25.1(p = 0); Ŝ2
3 = 1.6(p = .20);

Ŝ2
4 = .48(p = .48).
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Plot of Deletion Statistics
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Question: Why are the 19th, 146th, and 200th observa-

tions outliers?
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After Exclusion of 19th, 146th, 200th Obs

Global: Ĝ2
4 = .96(p = .92)

Components: Ŝ2
1 = .04(p = .84); Ŝ2

2 = .002(p = .96);
Ŝ2

3 = .71(p = .40); and Ŝ2
4 = .21(p = .65).
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Back to Salinity Data
Variables: Y = Salinity; X1 = LagSalinity; X2 =
Trend; X3 = WaterFlow.

Model: Y = β0 + β1X1 + β2X2 + β3X3 + σε

Estimates: b0 = 9.6, b1 = .78, b2 = −.03, b3 = −.30. All
significant!

Coefficient of Determination: 83%.

Global: Ĝ2
4 = .16(p = .99).

Components: Ŝ2
1 = .02(p = .87); Ŝ2

2 = .01(p = .95);
Ŝ2

3 = 0(p = 1.0); Ŝ2
4 = .13(p = .72).

Question: Does this mean that model assumptions
are satisfied?
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Deletion Statistics and Outlier
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Plot 1: 16th observation unusual.

Waterflow16 = 33.443 supposed to be 23.443 (Atkinson).

Re-analysis: Ĝ2
4 = 6.7(p = .15); Ŝ2

3 = 4.2(p = .04).
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Concluding Remarks

Presented a simple, but formal, method of validating
LM assumptions.

Lessen subjectivity in model validation.

Comparisons: Bonferroni-type, Sidak-type, and
Box-Cox transformations.

Adaptive procedure: choose components based on
data. Effect of data double-dipping.

Variety: Use different basis functions: Wavelets?

What should be done if model assumptions are not
satisfied? Issue of two-step process.

R package, or in DoStat?!
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