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A Real Recurrent Event Data
(Source: Aalen and Husebye (‘91), Statistics

in Medicine)

Unit #
i

#Complete
(Ki=K(i))

Complete Observed Successive
Periods (Tij)

Censored
(ττττi - SiK(i))

1 8 112  145  39  52  21  34  33  51 54
2 2 206  147 30
3 3 284  59  186 4
4 3 94  98  84 87
5 1 67 131
6 9 124  34  87  75  43  38  58  142  75 23
7 5 116  71  83  68  125 111
8 4 111  59  47  95 110
9 4 98  161  154  55 44
10 2 166  56 122
11 5 63  90  63  103  51 85
12 4 47  86  68  144 72
13 3 120  106  176 6
14 4 112  25  57  166 85
15 3 132  267  89 86
16 5 120  47  165  64  113 12
17 4 162  141  107  69 39
18 6 106  56  158  41  41  168 13
19 5 147  134  78  66  100 4

Variable: Migrating motor complex (MMC) periods, in
minutes, for 19 individuals in a study concerning small
bowel motility during fasting state.
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Pictorial Representation of
Data for a Unit or Subject

• Consider unit/subject #3.
• K = 3
• Gap Times, Tj:    284, 343, 529
• Censored Time, τ-SK:   4
• Calendar Times, Sj:      284, 343, 529
• Limit of Obs. Period:   τ = 533

τ=533S1=284 S2=343 S3=5290

T1 T2 T3

T4

Calendar Scale
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Features of Data Set

• Random observation period per
subject (administrative constraints).

• Length of period: τ
• Event of interest is recurrent. A

subject may have more than one
event during observation period.

• # of events (K) informative about
MMC period distribution (F).

• Last MMC period right-censored by
a variable informative about F.

• Calendar times: S1, S2, …, SK.
• Right-censoring variable: τ-SK.
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Assumptions and Problem

• Aalen and Husebye: “Consecutive
MMC periods for each individual
appear (to be) approximate renewal
processes.”

• Translation: The inter-event times
Tij’s are assumed stochastically
independent.

• Problem: Under this IID assumption,
and taking into account the
informativeness of K and the right-
censoring mechanism, to estimate
the inter-event distribution, F.
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General Form of Data Accrual
Unit

#
Successive Inter-Event

Times or Gaptimes
Length of

Study Period
1 T11, T12, …, T1j, … IID F τ1
2 T21, T22, …, T2j, … IID F τ2

… … …
n Tn1, Tn2, …, Tnj, … IID F τn

Calendar Times of Event Occurrences

Si0=0  and Sij = Ti1 + Ti2 + … + Tij

Number of Events in Observation Period

Ki = max{j:  Sij < τi}

Upper limit of observation periods, τ’s,
could be fixed, or assumed to be IID
with unknown distribution G.
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Observables
Unit

#
Vector of Observables

1 D1 = (K1, T11, T12,…,T1K(1), τ1-S1K(1))
2 D2 = (K2, T21, T22,…,T2K(2), τ2-S2K(2))

… …
n Dn = (Kn, Tn1, Tn2,…,TnK(n), τn-SnK(n))

Main Theoretical Problem

Based on this data, to obtain an
estimator of the unknown gaptime or
inter-event time distribution, F; and
determine its properties.
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Relevance and Applicability
• Recurrent phenomena occur in a

variety of settings.
– Nuclear power plant stoppages.
– Outbreak of a disease.
– Terrorist attacks.
– Labor strikes.
– Hospitalization of a patient.
– Tumor occurrence.
– Epileptic seizures.
– Non-life insurance claims.
– When stock index (e.g., Dow

Jones) decreases by at least 6% in
one day.
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Limitations of Existing
Estimation Methods

• Consider only the first, possibly
right-censored, observation per
unit and use the product-limit
estimator (PLE).
– Loss of information
– Inefficient

• Ignore the right-censored last
observation, and use empirical
distribution function (EDF).
– Leads to bias.
– Estimator actually inconsistent.
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Review: Prior Results

• T1, T2, …, Tn IID F(t) = P(T < t)
• Empirical Survivor Function (EDF)
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• Asymptotics of EDF
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where W1 is a zero-mean Gaussian
process with covariance function
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11

In Hazards View

• Hazard rate function
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Right-Censored Data
• Failure times:       T1, T2, …, Tn IID F
• Censoring times: C1, C2, …, Cn IID G

• Right-censored data

(Z1, δ1), (Z2, δ2), …, (Zn, δn)

Zi = min(Ti, Ci)
δi = I{Ti < Ci}

with

• Product-limit or Kaplan-Meier Estimator
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PLE Properties

• Asymptotics of PLE

( ) 2
ˆ WFFn ⇒−

where W2 is a zero-mean Gaussian
process with covariance function
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• If G(w) = 0 for all w, so no censoring, 

)()( 21 tt υυ =



14

Relevant Stochastic Processes
for Recurrent Event Setting

• Calendar-Time Processes for ith unit

is a vector of square-integrable zero-mean
martingales.

Then,
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is the length since last
event at calendar time v

• Needed:  Calendar-Gaptime Space

0

• Difficulty: arises because interest is
on λ(.) or Λ(.), but these appear in the
compensator process in form

G
ap

Ti
m

e

Calendar Time

533284 343 529
s

t For Unit 3 in MMC Data



16

• Processes in Calendar-Gaptime Space

• Ni(s,t) = # of events in calendar time [0,s]
for ith unit whose gaptimes are at most t

• Yi(s,t) = number of events in [0,s] for ith
unit whose gaptimes are at least t: “at-risk”
process
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 “Change-of-Variable” Formulas
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Estimators of Λ and F for the
Recurrent Event Setting

By “change-of-variable” formula,

RHS is a sq-int. zero-mean martingale, so

Estimator of Λ(t)
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Estimator of F

• Since

by substitution principle,

a generalized product-limit estimator
(GPLE).

• GPLE extends the EDF for complete
data, and the PLE or KME for single-
event right-censored data.
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Computational Forms

• If Tij’s are distinct,

• If s is large, combine data for all n units
taking into account right-censoring of
each unit’s last observation. GPLE could
be computed like the product-limit
estimator. Statistical packages such as
SAS, Splus, etc., could be utilized.
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GPLE Finite-Sample Properties
• GPLE is positively biased, but with bias
disappearing at an exponential rate as sample
size increases.

• Finite-sample variance function estimate:

Special Case

R(t) = renewal function of F
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Asymptotic Properties of GPLE

Special Case: If F = EXP(θ) and G = EXP(η)
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Weak Convergence

Theorem:

;

The proof of this result relied on a weak
convergence theorem for recurrent and
renewal settings developed in Pena,
Strawderman and Hollander (2000), which
utilized some ideas in Sellke (1988) and Gill
(1980).
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Comparison of Limiting Variance
Functions

• PLE: ∫
Λ=
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• GPLE (recurrent event): For large s,

• For large t or if in stationary state,
R(t) = t/µF, so approximately,

with µG(w) being the mean residual
life of τ given τ > w.
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Wang-Chang Estimator
(JASA, ‘99)

• Beware! Wang and Chang developed this
estimator to be able to handle correlated inter-
event times, so comparison with GPLE is not
completely fair to their estimator!
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Frailty-Induced Correlated
Model

• Correlation induced according to a
frailty model:
• U1, U2, …, Un are IID unobserved
Gamma(α, α) random variables,
called frailties.
• Given Ui = u, (Ti1, Ti2, Ti3, …) are
independent inter-event times with
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Frailty-Model Estimator

• Frailty parameter, α, determines
dependence among inter-event
times.

• Small (Large) α: Strong (Weak)
dependence.

• EM algorithm is needed to obtain the
estimator, where the unobserved
frailties are viewed as missing
values.

• EM implementation parallels that of
Nielsen, Gill, Andersen, and
Sorensen (1992).
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• Resulting Estimator: FRMLE
• Able to prove that the GPLE is
inconsistent in the presence of
dependence: that is, when the
frailty parameter α is finite.

• E-STEP: Given  α̂(.),ˆ
0Λ , estimate Z’s via

, 
• M-STEP: Given  sZ i 'ˆ

α is estimated from profile likelihood.

EM Algorithm
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Monte Carlo Studies

• Under gamma frailty model.
• F = EXP(θ): θ = 6
• G = EXP(η): η = 1
• n = 50
• # of Replications = 1000
• Frailty parameter α took values

in {Infty (IID), 6, 2}
• Computer programs:

combinations of S-Plus and
Fortran routines.

• Black = GPLE; Blue = WCPLE;
Red = FRMLE
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IID

Simulated Comparison of the Three
Estimators for Varying Frailty Parameter
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Effect of the Frailty Parameter for Each
of the Three Estimators
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The Three Estimates of Inter-
Event Survivor Function for the

MMC Data Set

IID assumption seems acceptable.
Estimate of α is 10.2.


