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1. Practical Problem

e Right-censored survival data for lung cancer patients from Gatsonis,
Hsieh and Korwar (1985) with 86 observations (63 complete and 23

right-censored).

e Probability histograms of the Complete and Censored Values

Probability Histogram of Complete Values ProbabilitHistogram of Censored Values
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e Product-limit estimator and best-fitting exponential.
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e Question: Did the survival data come from the family of exponential

distributions? Or was it from the family of Weibull distributions?



2. On Densities and Hazards

e T' = a positive-valued continuous failure-time variable, e.g.,

— time-to-failure of a mechanical or electronic system
— time-to-occurrence of an event

— survival time of a patient in a clinical trial

e f(t) = density function of T'. Practical interpretation:
F(t)At~ PAT € [t,t + AD)}.

o F(t) =P{T <t} = distribution function
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— F(t) = survivor function

e \(t) = 7y — hazard rate function. Practical interpretation:

At)At =~ P{T € [t,t + At)|T > t}.

e A(t) = JiA(w)dw = —log[F(t)] = (cumulative) hazard function

e Equivalences:



e T'wo Simple Examples:

¢ Exponential:
f(t;n) =ne™™
F(t;n)=e™
Atim) =mn
At;n) =nt
¢ Two-Parameter Weibull:
£t c,m) = (cm) (mt)* e "
F(t;a,m) = ™"
A(t; o, m) = (am) ()"~
At a,m) = (nt)
¢ Qualitative Aspects from Plots of Hazards

Figure 1: Weibull Hazard Plots
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3. On Hazard-Based Modeling

e Advantages of specifying models via hazards:

¢ Vantage point in density modeling: Time origin. [“What propor-
tion are going to fail in [t,t + At)7?].

¢ Vantage point in hazard modeling: ‘Present, together with infor-
mation that accumulated in the past.” [‘Given history until time ¢,

what proportion are going to fail among those at risk in [¢, t+At)7].
o Qualitative aspects (e.g., IFR, or bath-tub) can be incorporated.

¢ Incorporates dynamic evolution. Relevant in reliability systems
modeling where failure rates of components of a system may dras-
tically change due to the failure of other components (Arjas and

Norros; Lawless; Hollander and Pefia, Lynch and Padgett, etc.).
¢ Likelihood construction natural via product integrals.
¢ Adapts well in the presence of right-censored or truncated data.

¢ Conducive to modeling with point processes (popularized by Aalen;

Andersen and Gill; etc.).



e Theory to be presented applicable to more general models, but will

only consider the following models.

o IID Model: Ti,75,...,T, IID with common unknown hazard

rate function A(t). Observable vectors are
(Zla 51)7 (Z27 52)7 ey (Zn7 571)

with

(SZ’:1:>TZ':ZZ'

0, =0="1T;, > Z,.

¢ Cox PH Model (also Andersen and Gill Model): Let
(11, X1), (T2, X2), ..., (Th, X)

such that
Arix (¢1X) = A(t) exp{ 8" X}
A(+) an unknown hazard rate function, and 3 a regression coeffi-

cient vector. The observable vectors are
(71,61, X1), (Z2, 02, X2),y - o s (Z, Oy X))

with

0=1=1T,= 7

0, =0=1T; > Z,.



4. Problems, Issues, and Prior Works
e Problem (Goodness-of-Fit): Given
{(Ziy0:),i=1,2,...,n}

in the IID model, or
{(Z;,6:,X;),i=1,2,...,n}

in the Cox model, decide whether
A() €C={Xo(m) :neT}

where 7 is a nuisance parameter vector.

¢ C could be: Exponential, Weibull, Pareto; or IFRA class.
o Importance: knowing A(-) € C may improve inference procedures.

o Previous works on GOF problem: Akritas (88, JASA), Hjort (90,
AS), Hollander and Pena (92, JASA), Li and Doss (93, AS), and

others.

¢ How to generalize the Pearson-type statistic

(0; — Ej)Q?

2 _
XP Z Ej

¢ Difficulty in extending Pearson statistic: O;’s not computable.

¢ Optimality properties?



e Problem (Model Validation): Given {(Z;,6;),7 = 1,2,...,n} or
{(Zi, i, X;),a = 1,2,...,n}, how to assess the viability of model as-

sumptions?
o Unit Exponentiality Property (UEP)
T ~A(-) = AT) ~ EXP(1)

o IID model: If Ag(-) is the true hazard function, then with R) =
Ao(Zi),
(RY,01), (R, 83), .- -, (Ry, b,)
is a right-censored sample from EXP(1).

o Since Ag(+) is not known, the R)’s are estimated by R;’s with

R =AZ), i=1,2,...,n,

~

A(+) is an estimator of Ay(-) based on the (Z;, d;)’s.

o Idea: (R;,d;)’s assumed to form an approximate right-censored
sample from EXP(1), so to validate model, test whether (R;, d;)’s

is a right-censored sample from EXP(1).

¢ Question: How good is the approrimation, even in the limit??7



o For Cox PH model, the analogous expressions for RY and R; are:

RO = AO(ZZ) eXp{ﬂXi}? 1=1,2,...,m;

R, = N Z)exp{8X:}, i=1,2,...,n,

A(-) is an estimator of Ag(+) [e.g., Aalen-Breslow estimator], while

~

B is an estimator of § [partial likelihood MLE].

o RY’s are true generalized residuals (Cox and Snell (68, JRSS));

while R;’s are estimated generalized residuals.

¢ Generalized residuals are analogs of the linear model residuals:

“(Observed Value) minus (Fitted Value).”

¢ Question: What are the effects of substituting estimators for the

unknown parameters??



5. Class of GOF Tests
e Convert observed data
(71,61, X1), (Z2, 02, X2),y - oy (Z, Oy X))
into stochastic processes.
e For:=1,2,...,n,and t > 0, let
N;i(t) = I{Z; < t,0; = 1} = No. of uncensored failures;

Yi(t) = I[{Z; > t} = No. at risk.

At NC), B) = /Oty,-(w)A(w) exp{8'X; dw:
Mi(t; /\()7 ﬁ) — Nz(t) - Az(ta )‘()7 ﬂ)
e If \o(-) and [y are the true parameters,

MO(t) = (Mi(t; Xo(-), Bo)s - - -, Mo (t; M0(+), Bo))

are orthogonal sg-int zero-mean martingales with predictable quadratic

variation processes
<Mi07 M10>(t) = Al(t7 )‘0(')) 50)
e Problem: Test

Hy: X)) eC={X(sm):ne X} versus Hy: A(-) ¢C.

10



e Idea: If \y(+) is the true hazard rate function, then under Hy there is

some 19 € T such that

e Define

) = g |60

Denote by K the collection of such {k(:;n) :n € T}.

e Consider a basis set (e.g., trigonometric, polynomial, wavelet, etc.) for
IC given by
{t1(5m),¥2(5m), ..}
SO

k(t;n) = Zﬁﬂﬁ(t; n)-
J:
e For an appropriate order K (smoothing order), approximate x(-;n) by
K
k(t;n) = Zﬁﬂﬁ(t; n)-
J:
e Equivalently,
K
() % Mt exp { - 6006
J:
e Define the class
s K
Cx = {AK(-; 0,1) = Ao(;m) eXp{Z Qj%(-;n)} p Ok eRVne T} :
j=1

o Hy CCg.

11



o Goodness-of-Fit Tests: Score tests for

Hy:0x=0,6€B versus H;:0 #0,0€b.

e Tests introduced in Pefia (1998, JASA; 1998, AS).
e Since score tests, they possess some optimality properties.

e Score function for i at 0 = 0:
Qn, B) = X2 [} Wae(n) {dN: = Yido(n) exp{8"X;}dt}
e Not a statistic since n and 8 are unknown.

e Need to plug-in estimators for n and 3 under the restriction 05 = 0.

e Estimate 3 by B which solves the estimating equation

S(8)= 3 [ 1X: = E(@))aN, = o

_ S, B).
E(t,B) = W’
St B) = 3° XY exp{BX;}, m=0,1,2.
=1

e Estimate n by 9 which solves the profile estimating equation
R(n, ) = 2 [ p(n) {AN: = Yido(n) exp{ 3" X}t | = 0;

0
p(t,n) = an log Ao (t, 7).

12



e Test statistic:

with

Q=Q(0.8) = & [ wx(i) {aV: - Yido(a) exp{F Xt}
e = is an estimator of the limiting covariance matrix of %Q

e Sk ia a function of the generalized residuals (R;,8;), ..., (Ry, dy).

6. Asymptotics

e Proposition: If the parameters are known,

1 Q (10, Bo) ; 0 Y11 Y12 0
7n R(no,Bo) | — N || 0 [, X=] X ¥ 0 :
S(6o) 0 0 0 i
SO
1

ﬁQmo,ﬂo) 45 N(0,31y).

e Theorem: With estimated parameters,

1
NG

1

%Q(ﬁ,ﬁ) 4 Ng(0, B)

Q

where
E =1 Y1080 Yo 4 (A — T19X50 Ag) X5 (A — 215555 Ay)'.

e Proofs rely on the martingale central limits theorem of Rebolledo.

13



7. Effects of the Plug-In Procedure
¢ From the covariance matrix =
E =1 — 210 Yo + (A1 — D195 A0) S5 (A1 — 19855 Ag)Y,

plugging-in (7, B) for (n, 5) to obtain the statistic Q has no asymp-
totic effect if

212 =0 and Al = 0,
since Y11 is the limiting covariance for ﬁQ(an Bo)-

o Essence of “adaptiveness” [notion in semiparametrics; BKRW (793);
Cox and Reid (’87)]: it does not matter that the nuisance parameters
(n, B) are unknown in Q(n, ) since replacing them by their estimators

does not make the asymptotic distribution of Q(#, §) different from
Q(UO: ﬁO) .

o Y12 = 0 is an orthogonality condition between W (1) and p(np).
o Ay = 0 is an orthogonality condition between p(ny) and e(no, 5y).

¢ Orthogonality defined in an appropriate Hilbert space with inner prod-

uct
(f,9)= | fawo(ds),

on the class of square-integrable functions L?{[0, 7], v}, with

vo(A) = /A s (10, Bo) Ao (o) dt.

14



¢ Can we always choose the U to satisfy orthogonality conditions? Yes,

via a Gram-Schmidt process but hard to implement!

A

o If orthogonality conditions are not satisfied, substituting (7, 3) for
(mo, Bo) in Q(no, Bo) impacts on the asymptotic distribution of Q. even

though these estimators are consistent.
¢ Effect contained in the last two terms in the expression for =.

¢ Second term is the result of estimating n by 7; while the third term,
which is an increase in the variance, is the effect of estimating § by

the partial MLE B

¢ Estimating 8 by [ leads to an increase in variance is because this

estimator is less efficient than the full MLE of B :

¢ Ignoring effect on variance could have dire consequences in the test-
ing. If overall effect is a variance reduction, ignoring it may result in
a highly conservative test and may lead into concluding model appro-

priateness when in fact model is inappropriate.
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8. Form of the Test Procedure

e Recall:
= Q. B) = X [} i) {aN; — Yido(i) exp X, )t}

A

Q

e Estimating Limiting Covariance Matrix, =: With

®2
{dN; + Vido(n) exp{ B X }dt | ;

and
VE(B) {dN; + Yido(0) exp{ B X;}dt}

ii/;p(ﬁ

A, =
2 2n i=1

an estimator of = is
= =311 — S1X5 S + (A1 — Sy Ag) S5 (A — BB Ay)f

e Form of Asymptotic a-Level Test:

Reject Hy : A(+) € C; B € B whenever
s = {QHEHE) 2 xhew

rank(Z).

=~ = Moore-Penrose generalized inverse of =Z and K*

16



9. Choices for Vg

e Partition [0,7]: 0 =ay < a1 < ... <ag1<ag =T

o Let
Vic() = [Tio.) (): Tawan (8)s ooy T 111(8)]
e Then
Q=[01—E;,0y— E,, ..., O — Ex]’
where

O—Z L dANi(t)

E; = z/ (£) exp{ 8" X; Y Ao(t; ) dt.
e O;’s are observed frequencies.

o [;’s are estimated dynamic expected frequencies.

e Extends Pearson’s statistic, but ‘counts are in a dynamic fashion.’

e Resulting test statistic not of form

£ (0~ B)’
& E

because correction terms in variance destroys diagonal nature of co-

variance matrix.

e If adjustments are ignored, distribution is not chi-squared.

e Procedure extends Akritas (1988) and Hjort (1990).

17



e Example: Consider the no-covariate (so X; = 0), and with C =

{Ao(t;n) = n} (Exponential distribution).

e Fory=12,... K,

= Y g Yi(t)de ~ ‘total exposure

where
K
FE, = ZEJ,
j=1
L (01,04, Op)
p_E. 1,V2,. y VK )
. 1 ¢
T = —(El, EZ: 7EK)
o K, #n.

e Appropriate df for statistic is K — 1 since 1%7 = 1.

18



e Polynomial-type of basis:

t

U (t) = [1, Ao(t;m), Ao(t;m)%, .. Aot )71
e Resulting Q vector has components

Q=X exp{~(j ~ VAN [ '™ {aN (w) ¥ (w)dw)
where

NE(w) = I{R; < w; 6 = 1};

7

Y (w) = {R; > w};
R; = No(Zi; 1) exp{BX;}.

e Nfs and Y/®’s are generalized residual processes.

o Generalizes Hyde’s (mid '70’s).

e Total-Time-On-Test Specification: For K = 1, define

o Let

19



e Resulting Test: Reject Hy whenever

[Q(7°)]?
[1— 12A(79)]

N (7)

S, —
P RR(79)

2
Z Xl;aa

where

A 1 #* RE(t) 1
= \/12N{ (70 O dNE () - = 8
R 2 \i,—l,.s/t
A ~0 — 71 1 -
7 = R @)

e In notation usable for “teaching purposes,”

2

. 1o We 1
= V120 | — 3 65—k — =
Q n n*izzl()W(n) 5|

where

n* = Y §; = number of observed failures;
i=1

)

Z(n—.7+ (R — B(j-1);

J:

R(jy = jth smallest generalized residual.

e Qf(7%) : generalizes the normalized spacings test applied to the

generalized residual processes (NI, Y{).

20



e Good for detecting IFR alternatives.

e Bonus: Able to show that this normalized spacings test is a score

test!

o [1 — 12A(79)]7! represents variance adjustment due to the estimation

of nuisance parameter n by 7.

o If C is the constant hazard class, no correction is needed even with

censored data. Adaptiveness rules!

o If C is the two-parameter Weibull, correction term is not ignorable.

For complete data,

18(log 2)?

[1—12A(c0)] ! = [1 — :

-1
] = 8.0802....

™

21



10. Levels of Tests for Different Smoothing Order, K

e Polynomial: Vg (t;n) = (1,Ao(t;77), - -aAO(tW)K—l)t

e K € {1,2,3,4}; censoring proportion € {25%,50%} and true failure

time model were exponential and 2-Weibull. # of Reps = 2000

Null Dist. Exponential(n)

Parameters n=2 n=2>
% Uncensored | 75% | 50% || 75% | 50%
Level 5% 5% 5% 5%

n K

2 4.65| 6.65 5.00 | 5.60
50 3 5.45 | 5.50 4.35| 4.95
4 6.55 | 5.50 5.10| 5.85
5 6.40 | 5.00 5.20 | 4.20
2 490 | 4.75 4.45| 4.35
100 3 4.55| 4.35 4.65 | 4.25
4 5.70 | 5.30 5.10 | 4.80
5) 5.75 | 4.90 5.30 | 4.75

Null Dist. Weibull(«, n)
Parameters | (o,n) = (2,1) | (o, n) = (3,2)
% Uncensored | 75% | 50% || 75% | 50%

Level 5% 5% 5% 5%

n K
2 4.30 | 4.80 4.60 | 6.20
50 3 5.40 | 5.15 6.30 | 5.70
4 4.80 | 4.80 6.10 | 5.30
5 5.25 | 3.45 6.70 | 4.60
2 3.90 | 4.95 4.20| 4.80
100 3 5.75 | 4.65 5.15| 5.25
4 5.55 | 4.15 5.00 | 4.30
5 6.00 | 4.65 5.80 | 5.30

22



11. Power Function of Tests

Legend: Solid line (K = 2); Dots (K = 3); Short dashes (K = 4); Long
dashes (K =5)

Figure 2: Simulated Powers for Null: Exponential vs. Alt: 2-Weibull

Power
40 80 100
L L 1

20
1

Alpha (Weibull Shape Parameter)

Figure 3: Simulated Powers for Null: Exponential vs. Alt: 2-Gamma
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Figure 4: Simulated Powers for Null: 2-Weibull vs. Alt: 2-Gamma

Power

T T T T T T
o 5 a0 15 20 25

Alpha (Gamma Shape Parameter)

Some Observations:

Appropriate smoothing order K depends on alternative considered.

Not always necessary to have large K'!

Tests based on S3 and Sy could serve as omnibus tests, at least for the

models in these simulations.

Calls for a formal method to dynamically determine K.
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12. Back to the Lung Cancer Data

e Product-Limit Estimator (PLE) of survival curve together with confi-

dence band, and the best fitting exponential survival curve.

al Probability

Surviv

15 20

e Testing Exponentiality: Values of test statistics using the polynomial-

type specification, together with their p-values are:
Sy =1.92(p=.1661); S3=1.94(p = .3788);
Sy =T7.56(p=.0561); S;=12.85(p=.0121).
e Close to a constant function, but with high frequency terms.

e Testing Two-Parameter Weibull: Value of S3, together with its

p-value, is

S3=8.35 (p=.0153)
Values of Sy and S5 both indicate rejection of two-parameter Weibull

model.
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13. Concluding Remarks

e Presented a formal approach to develop GOF tests with censored data.

e Able to see effects of estimating nuisance parameters: (Don’t Ig-

nore!)

e Potential problems when using generalized residuals in model valida-

tion: (Intuitive considerations may Fail!)
e Promising possibility: Wavelets as Basis??!
e Discrete hazard modeling. Almost finished with this.
e Open problems:
e How about a detailed comparison with existing tests: KS, CVM, etc.
e How to determine smoothing order K adaptively?

e What if C is a nonparametric life distribution class such as the IFRA?
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