Goodness-of-Fit Tests With Right-Censored Data

by

Edsel A. Peña

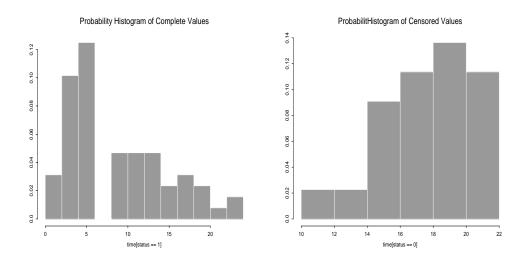
Department of Statistics University of South Carolina

> Colloquium Talk August 31, 2000

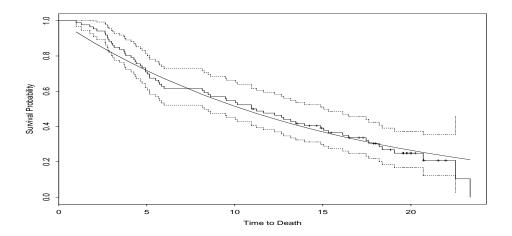
Research supported by an NIH Grant

1. Practical Problem

- Right-censored survival data for lung cancer patients from Gatsonis,
 Hsieh and Korwar (1985) with 86 observations (63 complete and 23 right-censored).
- Probability histograms of the Complete and Censored Values



• Product-limit estimator and best-fitting exponential.



• Question: Did the survival data come from the family of exponential distributions? Or was it from the family of Weibull distributions?

2. On Densities and Hazards

- \bullet T = a positive-valued continuous failure-time variable, e.g.,
 - time-to-failure of a mechanical or electronic system
 - time-to-occurrence of an event
 - survival time of a patient in a clinical trial
- f(t) = density function of T. Practical interpretation:

$$f(t)\Delta t \approx \mathbf{P}\left\{T \in [t, t + \Delta t)\right\}.$$

- $F(t) = \mathbf{P}\{T \le t\} = \text{distribution function}$
- $\bar{F}(t) = 1 F(t) = \text{survivor function}$
- $\lambda(t) = \frac{f(t)}{F(t)} = \text{hazard rate function}$. Practical interpretation:

$$\lambda(t)\Delta t \approx \mathbf{P}\left\{T \in [t, t + \Delta t) | T > t\right\}.$$

- $\Lambda(t) = \int_0^t \lambda(w) dw = -\log[\bar{F}(t)] = \text{(cumulative) hazard function}$
- Equivalences:

$$\bar{F}(t) = e^{-\Lambda(t)}$$

$$f(t) = \lambda(t)e^{-\Lambda(t)}$$

- Two Simple Examples:
 - ♦ Exponential:

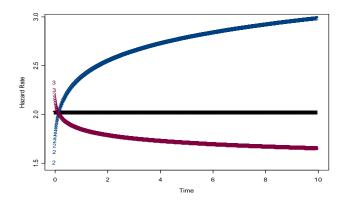
$$f(t; \eta) = \eta e^{-\eta t}$$
$$\bar{F}(t; \eta) = e^{-\eta t}$$
$$\lambda(t; \eta) = \eta$$
$$\Lambda(t; \eta) = \eta t$$

 \diamond Two-Parameter Weibull:

$$f(t; \alpha, \eta) = (\alpha \eta)(\eta t)^{\alpha - 1} e^{-(\eta t)^{\alpha}}$$
$$\bar{F}(t; \alpha, \eta) = e^{-(\eta t)^{\alpha}}$$
$$\lambda(t; \alpha, \eta) = (\alpha \eta)(\eta t)^{\alpha - 1}$$
$$\Lambda(t; \alpha, \eta) = (\eta t)^{\alpha}$$

 \diamond Qualitative Aspects from Plots of Hazards

Figure 1: Weibull Hazard Plots



3. On Hazard-Based Modeling

- Advantages of specifying models via hazards:
 - \diamond Vantage point in density modeling: Time origin. ['What proportion are going to fail in $[t, t + \Delta t)$?].
 - \diamond Vantage point in hazard modeling: 'Present, together with information that accumulated in the past.' ['Given history until time t, what proportion are going to fail among those at risk in $[t, t+\Delta t)$?].
 - ♦ Qualitative aspects (e.g., IFR, or bath-tub) can be incorporated.
 - ⋄ Incorporates dynamic evolution. Relevant in reliability systems modeling where failure rates of components of a system may drastically change due to the failure of other components (Arjas and Norros; Lawless; Hollander and Peña, Lynch and Padgett, etc.).
 - ♦ Likelihood construction natural via product integrals.
 - ♦ Adapts well in the presence of right-censored or truncated data.
 - ♦ Conducive to modeling with point processes (popularized by Aalen;
 Andersen and Gill; etc.).

- Theory to be presented applicable to more general models, but will only consider the following models.
 - \diamond IID Model: T_1, T_2, \ldots, T_n IID with common unknown hazard rate function $\lambda(t)$. Observable vectors are

$$(Z_1,\delta_1),(Z_2,\delta_2),\ldots,(Z_n,\delta_n)$$

with

$$\delta_i = 1 \Rightarrow T_i = Z_i$$

$$\delta_i = 0 \Rightarrow T_i > Z_i.$$

♦ Cox PH Model (also Andersen and Gill Model): Let

$$(T_1, X_1), (T_2, X_2), \ldots, (T_n, X_n)$$

such that

$$\lambda_{T|X}(t|X) = \lambda(t) \exp{\{\beta^{t}X\}}$$

 $\lambda(\cdot)$ an unknown hazard rate function, and β a regression coefficient vector. The observable vectors are

$$(Z_1, \delta_1, X_1), (Z_2, \delta_2, X_2), \ldots, (Z_n, \delta_n, X_n)$$

with

$$\delta_i = 1 \Rightarrow T_i = Z_i$$

$$\delta_i = 0 \Rightarrow T_i > Z_i.$$

4. Problems, Issues, and Prior Works

• Problem (Goodness-of-Fit): Given

$$\{(Z_i, \delta_i), i = 1, 2, \dots, n\}$$

in the IID model, or

$$\{(Z_i, \delta_i, X_i), i = 1, 2, \dots, n\}$$

in the Cox model, decide whether

$$\lambda(\cdot) \in \mathcal{C} = \{\lambda_0(\cdot; \eta) : \eta \in \Upsilon\}$$

where η is a nuisance parameter vector.

- \diamond \mathcal{C} could be: Exponential, Weibull, Pareto; or IFRA class.
- \diamond Importance: knowing $\lambda(\cdot) \in \mathcal{C}$ may improve inference procedures.
- Previous works on GOF problem: Akritas (88, JASA), Hjort (90, AS), Hollander and Peña (92, JASA), Li and Doss (93, AS), and others.
- ♦ How to generalize the Pearson-type statistic

$$\chi_P^2 = \sum \frac{(O_j - \hat{E}_j)^2}{\hat{E}_j}$$
?

- \diamond Difficulty in extending Pearson statistic: O_j 's not computable.
- ♦ Optimality properties?

- Problem (Model Validation): Given $\{(Z_i, \delta_i), i = 1, 2, ..., n\}$ or $\{(Z_i, \delta_i, X_i), i = 1, 2, ..., n\}$, how to assess the viability of model assumptions?
 - ♦ Unit Exponentiality Property (UEP)

$$T \sim \Lambda(\cdot) \Rightarrow \Lambda(T) \sim \text{EXP}(1)$$

 \diamond IID model: If $\Lambda_0(\cdot)$ is the true hazard function, then with $R_i^0 = \Lambda_0(Z_i)$,

$$(R_1^0, \delta_1), (R_2^0, \delta_2), \dots, (R_n^0, \delta_n)$$

is a right-censored sample from EXP(1).

 \diamond Since $\Lambda_0(\cdot)$ is not known, the R_i^0 's are estimated by R_i 's with

$$R_i = \hat{\Lambda}(Z_i), \quad i = 1, 2, \dots, n,$$

- $\hat{\Lambda}(\cdot)$ is an estimator of $\Lambda_0(\cdot)$ based on the (Z_i, δ_i) 's.
- \diamond Idea: (R_i, δ_i) 's assumed to form an approximate right-censored sample from EXP(1), so to validate model, test whether (R_i, δ_i) 's is a right-censored sample from EXP(1).
- ♦ **Question:** How good is the *approximation*, even in the limit???

 \diamond For Cox PH model, the analogous expressions for R_i^0 and R_i are:

$$R_i^0 = \Lambda_0(Z_i) \exp{\{\beta X_i\}}, \quad i = 1, 2, \dots, n;$$

$$R_i = \hat{\Lambda}(Z_i) \exp{\{\hat{\beta}X_i\}}, \quad i = 1, 2, \dots, n,$$

- $\hat{\Lambda}(\cdot)$ is an estimator of $\Lambda_0(\cdot)$ [e.g., Aalen-Breslow estimator], while $\hat{\beta}$ is an estimator of β [partial likelihood MLE].
- \diamond R_i^0 's are true generalized residuals (Cox and Snell (68, JRSS)); while R_i 's are estimated generalized residuals.
- ♦ Generalized residuals are analogs of the linear model residuals:

♦ **Question:** What are the effects of substituting estimators for the unknown parameters??

5. Class of GOF Tests

• Convert observed data

$$(Z_1, \delta_1, X_1), (Z_2, \delta_2, X_2), \ldots, (Z_n, \delta_n, X_n)$$

into stochastic processes.

• For $i = 1, 2, \ldots, n$, and $t \ge 0$, let

$$N_i(t) = I\{Z_i \leq t, \delta_i = 1\} = \text{No. of uncensored failures};$$

$$Y_i(t) = I\{Z_i \ge t\} = \text{No. at risk.}$$

•

$$A_i(t; \lambda(\cdot), \beta) = \int_0^t Y_i(w)\lambda(w) \exp\{\beta^t X_i\} dw;$$
$$M_i(t; \lambda(\cdot), \beta) = N_i(t) - A_i(t; \lambda(\cdot), \beta).$$

• If $\lambda_0(\cdot)$ and β_0 are the *true* parameters,

$$M^{0}(t) = (M_{1}(t; \lambda_{0}(\cdot), \beta_{0}), \dots, M_{n}(t; \lambda_{0}(\cdot), \beta_{0}))$$

are orthogonal sq-int zero-mean martingales with predictable quadratic variation processes

$$\langle M_i^0, M_i^0 \rangle(t) = A_i(t; \lambda_0(\cdot), \beta_0).$$

• Problem: Test

$$H_0: \lambda(\cdot) \in \mathcal{C} = \{\lambda_0(\cdot; \eta) : \eta \in \Upsilon\} \quad \text{versus} \quad H_1: \lambda(\cdot) \notin \mathcal{C}.$$

• Idea: If $\lambda_0(\cdot)$ is the true hazard rate function, then under H_0 there is some $\eta_0 \in \Upsilon$ such that

$$\lambda_0(\cdot) = \lambda_0(\cdot; \eta_0).$$

• Define

$$\kappa(t;\eta) = \log \left[\frac{\lambda_0(t)}{\lambda_0(t;\eta)} \right].$$

Denote by K the collection of such $\{\kappa(\cdot;\eta):\eta\in\Upsilon\}$.

• Consider a basis set (e.g., trigonometric, polynomial, wavelet, etc.) for \mathcal{K} given by

$$\{\psi_1(\cdot;\eta),\psi_2(\cdot;\eta),\ldots\}$$

SO

$$\kappa(t;\eta) = \sum_{j=1}^{\infty} \theta_j \psi(t;\eta).$$

• For an appropriate order K (smoothing order), approximate $\kappa(\cdot;\eta)$ by

$$\kappa(t;\eta) = \sum_{j=1}^{K} \theta_j \psi(t;\eta).$$

• Equivalently,

$$\lambda_0(t) pprox \lambda_0(t;\eta) \exp\left\{\sum_{j=1}^K \theta_j \psi(t;\eta)\right\}.$$

• Define the class

$$\mathcal{C}_K = \left\{ \lambda_K(\cdot; \theta, \eta) = \lambda_0(\cdot; \eta) \exp \left\{ \sum_{j=1}^K \theta_j \psi_j(\cdot; \eta) \right\} : \quad \theta_K \in \Re^K; \eta \in \Upsilon \right\}.$$

• $H_0 \subset \mathcal{C}_K$.

• Goodness-of-Fit Tests: Score tests for

$$H_0: \theta_K = 0, \beta \in \mathcal{B}$$
 versus $H_1: \theta_K \neq 0, \beta \in \mathcal{B}$.

- Tests introduced in Peña (1998, JASA; 1998, AS).
- Since score tests, they possess some optimality properties.
- Score function for θ_K at $\theta_K = 0$:

$$Q(\eta, \beta) = \sum_{i=1}^{n} \int_{0}^{\tau} \Psi_{K}(\eta) \left\{ dN_{i} - Y_{i} \lambda_{0}(\eta) \exp\{\beta^{t} X_{i}\} dt \right\}.$$

- Not a statistic since η and β are unknown.
- Need to plug-in estimators for η and β under the restriction $\theta_K = 0$.
- Estimate β by $\hat{\beta}$ which solves the estimating equation

$$\begin{split} S(\beta) &\equiv \sum_{i=1}^{n} \int_{0}^{\tau} [X_{i} - E(\beta)] \mathrm{d}N_{i} = 0; \\ E(t,\beta) &= \frac{S^{(1)}(t,\beta)}{S^{(0)}(t,\beta)}; \\ S^{(m)}(t,\beta) &= \sum_{i=1}^{n} X_{i}^{\otimes m} Y_{i} \exp\{\beta^{t} X_{i}\}, \quad m = 0, 1, 2. \end{split}$$

• Estimate η by $\hat{\eta}$ which solves the profile estimating equation

$$R(\eta, \hat{\beta}) \equiv \sum_{i=1}^{n} \int_{0}^{\tau} \rho(\eta) \left\{ dN_{i} - Y_{i} \lambda_{0}(\eta) \exp\{\hat{\beta}^{t} X_{i}\} dt \right\} = 0;$$
$$\rho(t, \eta) = \frac{\partial}{\partial \eta} \log \lambda_{0}(t, \eta).$$

• Test statistic:

$$S_K = rac{1}{n} \left\{ \hat{Q}^{\mathrm{t}} \right\} \left\{ \hat{\Xi}^{-1} \right\} \left\{ \hat{Q} \right\},$$

with

$$\hat{Q} = Q(\hat{\eta}, \hat{\beta}) = \sum_{i=1}^{n} \int_{0}^{\tau} \Psi_{K}(\hat{\eta}) \left\{ dN_{i} - Y_{i}\lambda_{0}(\hat{\eta}) \exp{\{\hat{\beta}^{t}X_{i}\}} dt \right\}$$

- $\hat{\Xi}$ is an estimator of the limiting covariance matrix of $\frac{1}{\sqrt{n}}\hat{Q}$.
- S_K ia a function of the generalized residuals $(R_i, \delta_i), \ldots, (R_n, \delta_n)$.

6. Asymptotics

• Proposition: If the parameters are known,

$$\frac{1}{\sqrt{n}} \begin{bmatrix} Q(\eta_0, \beta_0) \\ R(\eta_0, \beta_0) \\ S(\beta_0) \end{bmatrix} \xrightarrow{\mathbf{d}} N \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} & 0 \\ \Sigma_{21} & \Sigma_{22} & 0 \\ 0 & 0 & \Sigma_{33} \end{pmatrix} \end{bmatrix},$$

SO

$$\frac{1}{\sqrt{n}}Q(\eta_0,\beta_0) \stackrel{\mathrm{d}}{\longrightarrow} N(0,\Sigma_{11}).$$

• Theorem: With estimated parameters,

$$\frac{1}{\sqrt{n}}\hat{Q} \equiv \frac{1}{\sqrt{n}}Q(\hat{\eta},\hat{\beta}) \stackrel{\mathrm{d}}{\longrightarrow} N_K(0, \Xi)$$

where

$$\Xi = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} + (\Delta_1 - \Sigma_{12}\Sigma_{22}^{-1}\Delta_2)\Sigma_{33}^{-1}(\Delta_1 - \Sigma_{12}\Sigma_{22}^{-1}\Delta_2)^{t}.$$

• Proofs rely on the martingale central limits theorem of Rebolledo.

7. Effects of the Plug-In Procedure

 \diamond From the covariance matrix Ξ

$$\Xi = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} + (\Delta_1 - \Sigma_{12} \Sigma_{22}^{-1} \Delta_2) \Sigma_{33}^{-1} (\Delta_1 - \Sigma_{12} \Sigma_{22}^{-1} \Delta_2)^t,$$

plugging-in $(\hat{\eta}, \hat{\beta})$ for (η, β) to obtain the statistic \hat{Q} has **no asymptotic effect** if

$$\Sigma_{12} = 0$$
 and $\Delta_1 = 0$,

since Σ_{11} is the limiting covariance for $\frac{1}{\sqrt{n}}Q(\eta_0,\beta_0)$.

- \diamond Essence of "adaptiveness" [notion in semiparametrics; BKRW ('93); Cox and Reid ('87)]: it does not matter that the nuisance parameters (η, β) are unknown in $Q(\eta, \beta)$ since replacing them by their estimators does **not** make the asymptotic distribution of $Q(\hat{\eta}, \hat{\beta})$ different from $Q(\eta_0, \beta_0)$.
- $\diamond \Sigma_{12} = 0$ is an orthogonality condition between $\Psi_K(\eta_0)$ and $\rho(\eta_0)$.
- $\diamond \Delta_1 = 0$ is an orthogonality condition between $\rho(\eta_0)$ and $e(\eta_0, \beta_0)$.
- ♦ Orthogonality defined in an appropriate Hilbert space with inner product

$$\langle f, g \rangle = \int_0^\tau f g \nu_0(\mathrm{d}t),$$

on the class of square-integrable functions $L^2\{[0,\tau],\nu_0\}$, with

$$\nu_0(A) = \int_A s^{(0)}(\eta_0, \beta_0) \lambda_0(\eta_0) dt.$$

- \diamond Can we always choose the Ψ_K to satisfy orthogonality conditions? Yes, via a Gram-Schmidt process but hard to implement!
- \diamond If orthogonality conditions are not satisfied, substituting $(\hat{\eta}, \hat{\beta})$ for (η_0, β_0) in $Q(\eta_0, \beta_0)$ impacts on the asymptotic distribution of \hat{Q} . even though these estimators are consistent.
- \diamond Effect contained in the last two terms in the expression for Ξ .
- \diamond Second term is the result of estimating η by $\hat{\eta}$; while the third term, which is an increase in the variance, is the effect of estimating β by the partial MLE $\hat{\beta}$.
- \diamond Estimating β by $\hat{\beta}$ leads to an increase in variance is because this estimator is less efficient than the full MLE of $\hat{\beta}$.
- ♦ Ignoring effect on variance could have dire consequences in the testing. If overall effect is a variance reduction, ignoring it may result in a highly conservative test and may lead into concluding model appropriateness when in fact model is inappropriate.

8. Form of the Test Procedure

• Recall:

$$\hat{Q} = Q(\hat{\eta}, \hat{\beta}) = \sum_{i=1}^{n} \int_{0}^{\tau} \Psi_{K}(\hat{\eta}) \left\{ dN_{i} - Y_{i}\lambda_{0}(\hat{\eta}) \exp\{\hat{\beta}^{t}X_{i}\} dt \right\}.$$

• Estimating Limiting Covariance Matrix, Ξ : With

$$\hat{\Sigma} = \frac{1}{2n} \sum_{i=1}^{n} \int_{0}^{\tau} \begin{bmatrix} \Psi_{K}(\hat{\eta}) \\ \rho(\hat{\eta}) \\ X_{i} - E(\hat{\beta}) \end{bmatrix}^{\otimes 2} \left\{ dN_{i} + Y_{i}\lambda_{0}(\hat{\eta}) \exp\{\hat{\beta}^{t}X_{i}\} dt \right\};$$

$$\hat{\Delta}_{1} = \frac{1}{2n} \sum_{i=1}^{n} \int_{0}^{\tau} \Psi_{K}(\hat{\eta}) E(\hat{\beta})^{t} \left\{ dN_{i} + Y_{i}\lambda_{0}(\hat{\eta}) \exp\{\hat{\beta}^{t}X_{i}\} dt \right\};$$

and

$$\hat{\Delta}_2 = \frac{1}{2n} \sum_{i=1}^n \int_0^\tau \rho(\hat{\eta}) E(\hat{\beta})^{\mathrm{t}} \left\{ \mathrm{d}N_i + Y_i \lambda_0(\hat{\eta}) \exp\{\hat{\beta}^{\mathrm{t}} X_i\} \mathrm{d}t \right\};$$

an estimator of Ξ is

$$\hat{\Xi} = \hat{\Sigma}_{11} - \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} \hat{\Sigma}_{21} + (\hat{\Delta}_1 - \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} \hat{\Delta}_2) \hat{\Sigma}_{33}^{-1} (\hat{\Delta}_1 - \hat{\Sigma}_{12} \hat{\Sigma}_{22}^{-1} \hat{\Delta}_2)^t.$$

• Form of Asymptotic α -Level Test:

Reject $H_0: \lambda(\cdot) \in \mathcal{C}; \beta \in \mathcal{B}$ whenever

$$S_K = \frac{1}{n} \left\{ \hat{Q}^{\mathrm{t}} \right\} \left\{ \hat{\Xi}^- \right\} \left\{ \hat{Q} \right\} \ge \chi^2_{K^*;\alpha},$$

 $\hat{\Xi}^- = \text{Moore-Penrose generalized inverse of } \hat{\Xi} \text{ and } K^* = \text{rank}(\hat{\Xi}).$

9. Choices for Ψ_K

- Partition [0, τ]: $0 = a_0 < a_1 < \dots < a_{K-1} < a_K = \tau$
- Let

$$\Psi_K(t) = \left[I_{[0,a_1]}(t), I_{(a_1,a_2]}(t), ..., I_{(a_{K-1},\tau]}(t) \right]^{t}.$$

• Then

$$\hat{Q} = [O_1 - E_1, O_2 - E_2, \dots, O_K - E_K]^{t}$$

where

$$O_{j} = \sum_{i=1}^{n} \int_{a_{j-1}}^{a_{j}} dN_{i}(t)$$

$$E_{j} = \sum_{i=1}^{n} \int_{a_{j-1}}^{a_{j}} Y_{i}(t) \exp{\{\hat{\beta}^{t} X_{i}\}} \lambda_{0}(t; \hat{\eta}) dt.$$

- O_j 's are observed frequencies.
- \bullet E_j 's are estimated dynamic expected frequencies.
- Extends Pearson's statistic, but 'counts are in a dynamic fashion.'
- Resulting test statistic **not** of form

$$\sum_{j=1}^{K} \frac{(O_j - E_j)^2}{E_j}$$

because correction terms in variance destroys diagonal nature of covariance matrix.

- If adjustments are ignored, distribution is **not** chi-squared.
- Procedure extends Akritas (1988) and Hjort (1990).

- Example: Consider the no-covariate (so $X_i = 0$), and with $\mathcal{C} = \{\lambda_0(t; \eta) = \eta\}$ (Exponential distribution).
- For j = 1, 2, ..., K,

$$O_{j} = \sum_{i=1}^{n} \int_{a_{j-1}}^{a_{j}} dN_{i}(t);$$

$$E_{j} = \hat{\eta} \sum_{i=1}^{n} \int_{a_{j-1}}^{a_{j}} Y_{i}(t) dt;$$

$$\hat{\eta} = \frac{\sum_{i=1}^{n} \int_{0}^{\tau} dN_{i}(t)}{\sum_{i=1}^{n} \int_{0}^{\tau} Y_{i}(t) dt} = \frac{\text{\# of events}}{\text{total exposure}}.$$

• Resulting test statistic becomes

$$S_K = E_{\bullet} \left[\mathbf{p} - \hat{\pi} \right]^{\mathrm{t}} \left[\mathrm{Dg}(\hat{\pi}) - \hat{\pi} \hat{\pi}^{\mathrm{t}} \right]^{-} \left[\mathbf{p} - \hat{\pi} \right],$$

where

$$E_{\bullet} = \sum_{j=1}^{K} E_{j};$$

$$\mathbf{p} = \frac{1}{E_{\bullet}} (O_{1}, O_{2}, \dots, O_{K})^{t};$$

$$\hat{\pi} = \frac{1}{E_{\bullet}} (E_{1}, E_{2}, \dots, E_{K})^{t}.$$

- $E_{\bullet} \neq n$.
- Appropriate df for statistic is K-1 since $\mathbf{1}^{t}\hat{\pi}=1$.

• Polynomial-type of basis:

$$\Psi_K(t) = \left[1, \Lambda_0(t; \eta), \Lambda_0(t; \eta)^2, \dots, \Lambda_0(t; \eta)^{K-1}\right]^{\mathrm{t}}.$$

• Resulting \hat{Q} vector has components

$$\hat{Q}_{j} = \sum_{i=1}^{n} \exp\{-(j-1)\hat{\beta}X_{i}\} \int_{0}^{\tau} w^{j-1} \left\{ dN_{i}^{R}(w) - Y_{i}^{R}(w)dw \right\},\,$$

where

$$N_i^R(w) = I\{R_i \le w; \delta_i = 1\};$$
$$Y_i^R(w) = I\{R_i \ge w\};$$
$$R_i = \Lambda_0(Z_i; \hat{\eta}) \exp{\{\hat{\beta}X_i\}}.$$

- \bullet N_i^R 's and Y_i^R 's are generalized residual processes.
- Generalizes Hyde's (mid '70's).
- Total-Time-On-Test Specification: For K = 1, define

$$\hat{\tau}^{0} = \Lambda_{0}(\tau; \hat{\eta});$$

$$N_{0}^{R}(t) = N[\Lambda_{0}^{-1}(t; \hat{\eta})];$$

$$Y_{0}^{R}(t) = Y[\Lambda_{0}^{-1}(t; \hat{\eta})];$$

$$R_{0}^{R}(t) = \int_{0}^{t} Y_{0}^{R}(s) ds.$$

• Let

$$\psi_1^0(t) = \frac{R_0^R(t)}{R_0^R(\tau^0)} - \frac{1}{2}.$$

• Resulting Test: Reject H_0 whenever

$$S_1 = \left[\frac{N_0^R(\hat{\tau}^0)}{R_0^R(\hat{\tau}^0)}\right] \frac{[Q^R(\hat{\tau}^0)]^2}{[1 - 12\hat{\Delta}(\hat{\tau}^0)]} \ge \chi_{1;\alpha}^2,$$

where

$$\hat{Q} = \sqrt{12N_0^R(\hat{\tau}^0)} \left\{ \frac{1}{N_0^R(\hat{\tau}^0)} \int_0^{\hat{\tau}^0} \frac{R_0^R(t)}{R_0^R(\hat{\tau}^0)} dN_0^R(t) - \frac{1}{2} \right\};$$

$$\hat{\Delta}(\hat{\tau}^0) = \frac{\hat{\gamma}_1 \hat{\Psi}^{-1} \hat{\gamma}_1^t}{n^{-1} R_0^R(\hat{\tau}^0)}.$$

• In notation usable for "teaching purposes,"

$$\hat{Q} = \sqrt{12n^*} \left[\frac{1}{n^*} \sum_{i=1}^n \delta_{(i)} \frac{W_{(i)}}{W_{(n)}} - \frac{1}{2} \right]^2,$$

where

$$n^* = \sum_{i=1}^n \delta_i$$
 = number of observed failures;

$$W_{(i)} = \sum_{j=1}^{i} (n-j+1)(R_{(j)} - R_{(j-1)});$$

 $R_{(j)} = j$ th smallest generalized residual.

• $Q^R(\hat{\tau}^0)$: generalizes the **normalized spacings test** applied to the generalized residual processes (N_0^R, Y_0^R) .

- Good for detecting IFR alternatives.
- **Bonus:** Able to show that this normalized spacings test is a score test!
- $[1 12\hat{\Delta}(\hat{\tau}^0)]^{-1}$ represents variance adjustment due to the estimation of nuisance parameter η by $\hat{\eta}$.
- If C is the constant hazard class, **no** correction is needed *even* with censored data. Adaptiveness rules!
- ullet If ${\mathcal C}$ is the two-parameter Weibull, correction term is not ignorable. For **complete data**,

$$[1 - 12\Delta(\infty)]^{-1} = \left[1 - \frac{18(\log 2)^2}{\pi^2}\right]^{-1} = 8.0802....$$

10. Levels of Tests for Different Smoothing Order, K

• Polynomial: $\Psi_K(t;\eta) = \left(1, \Lambda_0(t;\eta), \dots, \Lambda_0(t;\eta)^{K-1}\right)^t$

• $K \in \{1, 2, 3, 4\}$; censoring proportion $\in \{25\%, 50\%\}$ and true failure time model were exponential and 2-Weibull. # of Reps = 2000

Null Dist.		Exponential (η)			
Parameters		$\eta = 2$		$\eta = 5$	
% Uncensored		75%	50%	75%	50%
Level		5%	5%	5%	5%
n	K				
	2	4.65	6.65	5.00	5.60
50	3	5.45	5.50	4.35	4.95
	4	6.55	5.50	5.10	5.85
	5	6.40	5.00	5.20	4.20
	2	4.90	4.75	4.45	4.35
100	3	4.55	4.35	4.65	4.25
	4	5.70	5.30	5.10	4.80
	5	5.75	4.90	5.30	4.75
Null Dist.		Weibull (α, η)			
Parameters		$(\alpha, \eta) = (2, 1)$		$(\alpha, \eta) = (3, 2)$	
% Uncensored		75%	50%	75%	50%
Level		5%	5%	5%	5%
n	K				
	2	4.30	4.80	4.60	6.20
50	3	5.40	5.15	6.30	5.70
	4	4.80	4.80	6.10	5.30
	5	5.25	3.45	6.70	4.60
	2	3.90	4.95	4.20	4.80
100	3	5.75	4.65	5.15	5.25
	4	5.55	4.15	5.00	4.30
	5	6.00	4.65	5.80	5.30

11. Power Function of Tests

Legend: Solid line (K = 2); Dots (K = 3); Short dashes (K = 4); Long dashes (K = 5)

Figure 2: Simulated Powers for Null: Exponential vs. Alt: 2-Weibull

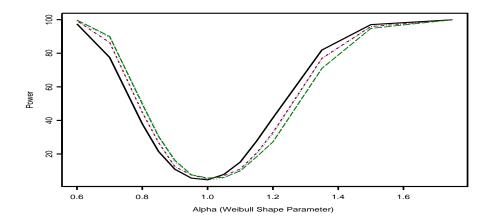


Figure 3: Simulated Powers for Null: Exponential vs. Alt: 2-Gamma

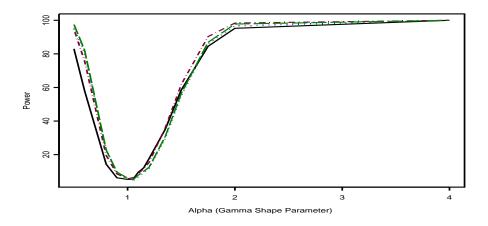
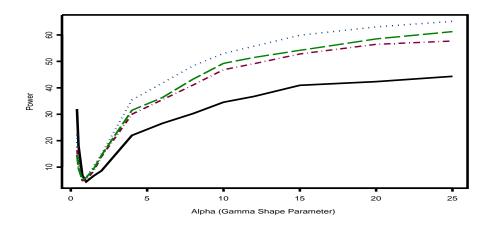


Figure 4: Simulated Powers for Null: 2-Weibull vs. Alt: 2-Gamma

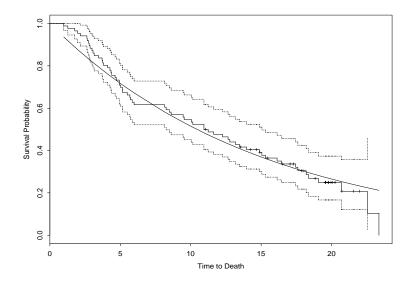


Some Observations:

- \bullet Appropriate smoothing order K depends on alternative considered.
- Not always necessary to have large K!
- Tests based on S_3 and S_4 could serve as omnibus tests, at least for the models in these simulations.
- ullet Calls for a formal method to dynamically determine K.

12. Back to the Lung Cancer Data

• Product-Limit Estimator (PLE) of survival curve together with confidence band, and the best fitting exponential survival curve.



• **Testing Exponentiality:** Values of test statistics using the polynomial-type specification, together with their *p*-values are:

$$S_2 = 1.92(p = .1661);$$
 $S_3 = 1.94(p = .3788);$ $S_4 = 7.56(p = .0561);$ $S_5 = 12.85(p = .0121).$

- Close to a constant function, but with high frequency terms.
- Testing Two-Parameter Weibull: Value of S_3 , together with its p-value, is

$$S_3 = 8.35 \quad (p = .0153)$$

Values of S_4 and S_5 both indicate rejection of two-parameter Weibull model.

13. Concluding Remarks

- Presented a formal approach to develop GOF tests with censored data.
- Able to see effects of estimating nuisance parameters: (Don't Ignore!)
- Potential problems when using generalized residuals in model validation: (Intuitive considerations may Fail!)
- Promising possibility: Wavelets as Basis??!
- Discrete hazard modeling. Almost finished with this.
- Open problems:
- How about a detailed comparison with existing tests: KS, CVM, etc.
- \bullet How to determine smoothing order K adaptively?
- What if \mathcal{C} is a nonparametric life distribution class such as the IFRA?