Estimation after Model Selection in a Gaussian Model

Edsel A. Peña
Department of Statistics
University of South Carolina
E-Mail: pena@stat.sc.edu

Joint with Prof. Vanja Dukić of the Univ. of Chicago.

Research support from the National Science Foundation.

1. Setting and Problem

- Data Given:

$$
\boldsymbol{X} \equiv\left(X_{1}, X_{2}, \ldots, X_{n}\right) \text { IID } F
$$

where F is an unknown distribution function.

- Model \mathcal{M} :

$$
F \in \mathcal{M}=\left\{N\left(\mu, \sigma^{2}\right): \mu \in \Re, \sigma^{2}>0\right\}
$$

$N\left(\mu, \sigma^{2}\right)=$ normal distribution with mean μ and variance σ^{2}.

- Problems:

- Estimate σ^{2};
- Given $t \in \Re$, estimate

$$
\tau(t)=F(t)=\operatorname{Pr}\left\{X_{1} \leq t\right\}=\Phi\left(\frac{t-\mu}{\sigma}\right)
$$

- Well-known (e.g., proved in Stat 201 ... cheers! if I teach it!) that the uniformly minimum variance unbiased (UMVU) estimator of σ^{2} is

$$
\hat{\sigma}_{U M V U}^{2}=S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

- UMVU estimator of $\tau(t)$, derived via Basu's Theorem and the Lehmann-Scheffe Theorem, is

$$
\begin{aligned}
\hat{\tau}_{U M V U}(t)= & \mathcal{T}\left(\frac{\sqrt{n-2} z_{1}(t)}{\sqrt{1-z_{1}(t)^{2}}} ; n-2\right) I\left\{\left|z_{1}(t)\right| \leq 1\right\} \\
& +I\left\{z_{1}(t)>1\right\}
\end{aligned}
$$

with

$$
z_{1}(t)=\frac{\sqrt{n}}{n-1}\left(\frac{t-\bar{X}}{S}\right)
$$

and $\mathcal{T}(\cdot ; k)$ being the Student's t-distribution function with k degrees-of-freedom.

- Maximum likelihood (ML) estimator of $\tau(t)$ is

$$
\hat{\tau}_{M L E}(t)=\Phi\left(\frac{t-\bar{X}}{S}\right)
$$

- Decision-theoretic framework: Loss functions utilized are

$$
\begin{aligned}
L_{1}\left(\hat{\sigma}^{2},\left(\mu, \sigma^{2}\right)\right) & =\left(\frac{\hat{\sigma}^{2}-\sigma^{2}}{\sigma^{2}}\right)^{2} \\
L_{2}\left(\hat{\tau}(t),\left(\mu, \sigma^{2}\right)\right) & =(\hat{\tau}(t)-\Phi((t-\mu) / \sigma))^{2} \\
L_{3}\left(\hat{\tau},\left(\mu, \sigma^{2}\right)\right) & =\int L_{2}\left(\hat{\tau}(t),\left(\mu, \sigma^{2}\right)\right) \Phi((d t-\mu) / \sigma)
\end{aligned}
$$

- Risk functions ("loss functions averaged-out over \boldsymbol{X} ")

$$
R_{1}\left(\hat{\sigma}^{2},\left(\mu, \sigma^{2}\right)\right) ; R_{2}\left(\hat{\tau}(t),\left(\mu, \sigma^{2}\right)\right) ; R_{3}\left(\hat{\tau},\left(\mu, \sigma^{2}\right)\right)
$$

are the expected values of the respective loss functions with respect to \boldsymbol{X} and when the true parameter values are $\left(\mu, \sigma^{2}\right)$. Since loss functions are quadratic, then

$$
\text { Risk }=\text { Variance }+ \text { Bias }^{2} .
$$

- When using risk functions to evaluate estimators, and if we allow biased estimators, the sample variance S^{2} is not the best. It is dominated by the ML and the minimum risk equivariant (MRE) estimators given by:

$$
\hat{\sigma}_{M L E}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \quad \text { and } \quad \hat{\sigma}_{M R E}^{2}=\frac{n}{n+1} \hat{\sigma}_{M L E}^{2} .
$$

- Is the unbiasedness property (i.e., that the average equals the parameter) a 'sacred cow?'
- All nontrivial Bayes estimators are biased ... so you know what will happen if biased estimators are not allowed! Also, can sometimes sacrifice some accuracy to gain precision!

Model $\mathcal{M}_{0}=\mathcal{M}_{\mu_{0}}$

- Suppose it is known that $\mu=\mu_{0}$, so

$$
F \in \mathcal{M}_{0}=\left\{N\left(\mu, \sigma^{2}\right): \mu=\mu_{0}, \sigma^{2}>0\right\} .
$$

- Under model \mathcal{M}_{0}, the appropriate estimators are:

$$
\begin{gathered}
\hat{\sigma}_{U M V U}^{2}\left(\mu_{0}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2} ; \\
\hat{\sigma}_{M R E}^{2}\left(\mu_{0}\right)=\frac{1}{n+2} \sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2} ; \\
\hat{\tau}_{U M V U}\left(t ; \mu_{0}\right)=\mathcal{T}\left(\frac{\sqrt{n-1} z_{2}(t)}{\left.\sqrt{1-z_{2}(t)^{2}} ; n-1\right) I\left\{\left|z_{2}(t)\right| \leq 1\right\}}\right. \\
+I\left\{z_{2}(t)>1\right\} ; \\
z_{2}(t)=\frac{1}{\sqrt{n}}\left(\frac{t-\mu_{0}}{\hat{\sigma}_{U M V U}\left(\mu_{0}\right)}\right) .
\end{gathered}
$$

- Estimators developed under \mathcal{M} are also candidate estimators under \mathcal{M}_{0}. Less efficient however since they do not exploit the added structure of \mathcal{M}_{0}. For instance, under \mathcal{M}_{0},

$$
\operatorname{Eff}\left(\hat{\sigma}_{U M V U}^{2}\left(\mu_{0}\right): \hat{\sigma}_{U M V U}^{2}\right)=1+\frac{1}{n-1} .
$$

Model \mathcal{M}_{p} : An Intermediate Model

- Suppose instead that we do not know the exact value of μ, but just that it could take one of p possible values. This leads to model \mathcal{M}_{p} :

$$
F \in \mathcal{M}_{p}=\left\{N\left(\mu, \sigma^{2}\right): \mu \in\left\{\mu_{1}, \ldots, \mu_{p}\right\}, \sigma^{2}>0\right\}
$$

where $\mu_{1}, \mu_{2}, \ldots, \mu_{p}$ are known constants.

- Problem: Under this intermediate model, how should we estimate σ^{2} and $\tau(t)=F(t)$? What are the consequences of using the estimators developed under \mathcal{M}, which are also candidate estimators under \mathcal{M}_{p} ?
- Can we exploit the structure of \mathcal{M}_{p} to obtain better estimators of σ^{2} and $\tau(t)$? What happens when $p \rightarrow \infty$?
- Model \mathcal{M}_{p} can be viewed as having the p sub-models

$$
\mathcal{M}_{\mu_{1}}, \mathcal{M}_{\mu_{2}}, \ldots, \mathcal{M}_{\mu_{p}}
$$

with σ^{2} a common parameter among these sub-models.

2. Motivation and Importance

- Estimation of the variance, the precision parameter, and the distribution function are important from a practical point of view, as well as theoretically.
- Model \mathcal{M}_{p} corresponds to practical settings where there are a finite number of possible populations, and a sample \boldsymbol{X} is taken from one of them. Setting of the Neyman-Pearson Lemma and of multiple decision problems.
- C. Stein (1964) developed the approach of hypothesizing that model \mathcal{M}_{0} may hold, and by doing pre-test to accept or reject this hypothesis and deciding on which estimator to use based on this test, was able to show that $\hat{\sigma}_{M R E}^{2}$ is also an inadmissible estimator of σ^{2} !
- Our primary motivating situations leading to this problem are:
- Issue of 'inference after model selection:' What are the consequences of first selecting a sub-model and then performing inference such as estimation or testing hypothesis, with these two steps utilizing the same sample data (i.e., double-dipping)?
- Survival analysis and reliability settings: Only known that the family of failure times is either Weibull or gamma (also, Cox PH or accelerated failure model). How to estimate the survivor distribution?
- Multiple regression: A subset of predictors is chosen, then other inferences, such as prediction, is performed.
- Smooth goodness-of-fit tests: An embedding approach is used and it is desired to determine the size of the embedding class adaptively.
- Others: In nonparametric regression or function estimation, bandwidths in kernel smoothing are determined adaptively.

3. Intuitive Strategies

Strategy I: Simply utilize estimators developed under \mathcal{M}, or a fully nonparametric model.

Strategy II (Classical):

Step 1 (Model Selection): Choose the most plausible sub-model using the data $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Step 2 (Inference): Use the best estimators or test procedures in the chosen sub-model, but with these estimators or tests still using the same data \boldsymbol{X}. Resulting procedures become adaptive.

Strategy III (Bayesian): Determine adaptively (i.e., using \boldsymbol{X}) the plausibility of each of the sub-models, and form a weighted combination of the sub-model estimators or tests. Resulting procedures are again adaptive.

Question: Which strategy leads to better procedures, and how could we justify formally each of these intuitive strategies?

4. Classical Estimators Under \mathcal{M}_{p}

- Likelihood Function:

$$
L\left(\mu, \sigma^{2}\right)=\prod_{i=1}^{p} L_{i}\left(\mu_{i}, \sigma^{2}\right)^{I\left\{\mu=\mu_{i}\right\}}
$$

For $i=1,2, \ldots, p$,

$$
\begin{gathered}
L_{i}\left(\mu_{i}, \sigma^{2}\right)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n}\left(\frac{1}{\sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{n \hat{\sigma}_{i}^{2}}{2 \sigma^{2}}\right\} ; \\
\hat{\sigma}_{i}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-\mu_{i}\right)^{2} .
\end{gathered}
$$

- Model Selector: $\hat{M}=\hat{M}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

$$
\hat{M}=\arg \max _{1 \leq i \leq p} L_{i}\left(\mu_{i}, \hat{\sigma}_{i}^{2}\right)=\arg \min _{1 \leq i \leq p} \hat{\sigma}_{i}^{2}=\arg \min _{1 \leq i \leq p}\left|\bar{X}-\mu_{i}\right| .
$$

- \hat{M} chooses the sub-model leading to the smallest estimate of σ^{2}, or the sub-model whose mean is closest to the sample mean.
- Selector also has the interpretation of being the 'highest posterior probability (hpp)' model selector associated with a noninformative prior on $\left(\mu, \sigma^{2}\right)$.
- Other selectors could also be utilized! E.g., Akaike's AIC, Schwarz Bayesian information criterion (BIC).
- MLE of $\left(\mu, \sigma^{2}\right)$ under \mathcal{M}_{p} :

$$
\left(\hat{\mu}_{p, M L E}, \hat{\sigma}_{p, M L E}^{2}\right)=\left(\hat{\mu}_{\hat{M}}, \hat{\sigma}_{\hat{M}}^{2}\right)=\sum_{i=1}^{p} I\{\hat{M}=i\}\left(\mu_{i}, \hat{\sigma}_{i}^{2}\right)
$$

so the MLE of σ^{2} is

$$
\hat{\sigma}_{p, M L E}^{2}=\hat{\sigma}_{\hat{M}}^{2}=\sum_{i=1}^{p} I\{\hat{M}=i\} \hat{\sigma}_{i}^{2}
$$

- A two-stage adaptive estimator of the 'classical' form.
- Remark: If $\hat{M}=i$, the adaptive estimator $\hat{\sigma}_{\hat{M}}^{2}$ does not have the same properties as i th sub-model estimator $\hat{\sigma}_{i}^{2}$.
- An alternative estimator of the same flavor as above is to use the sub-model's MRE's given by

$$
\hat{\sigma}_{M R E, i}^{2}=\frac{n}{n+2} \hat{\sigma}_{i}^{2}, \quad i=1,2, \ldots, p
$$

to obtain

$$
\hat{\sigma}_{p, M R E}^{2}=\hat{\sigma}_{M R E, \hat{M}}^{2}=\sum_{i=1}^{p} I\{\hat{M}=i\} \hat{\sigma}_{M R E, i}^{2}
$$

- Remark: Label 'MRE' is a misnomer since this estimator need not be the minimum risk equivariant estimator under model \mathcal{M}_{p}.
- Adaptive estimator (of 'classical form') of $\tau(t)=F(t)$ under model \mathcal{M}_{p} is:

$$
\hat{\tau}_{p, M L E}(t)=\Phi\left(\frac{t-\mu_{\hat{M}}}{\hat{\sigma}_{\hat{M}}}\right)=\sum_{i=1}^{p} I\{\hat{M}=i\} \Phi\left(\frac{t-\mu_{i}}{\hat{\sigma}_{i}}\right)
$$

- Another adaptive estimator obtained from the UMVUs of sub-models is as follows: Let

$$
z_{3 i}(t)=\frac{1}{\sqrt{n}}\left(\frac{t-\mu_{i}}{\hat{\sigma}_{i}}\right), \quad i=1,2, \ldots, p
$$

and for $i=1,2, \ldots, p$,

$$
\begin{aligned}
\hat{\tau}_{U M V U, i}(t)= & \mathcal{T}\left(\frac{\sqrt{n-1} z_{3 i}(t)}{\sqrt{1-z_{3 i}(t)^{2}}} ; n-1\right) I\left\{\left|z_{3 i}(t)\right| \leq 1\right\} \\
& +I\left\{z_{3 i}(t)>1\right\}
\end{aligned}
$$

An estimator of $\tau(t)$ is

$$
\hat{\tau}_{p, U M V U}(t)=\hat{\tau}_{U M V U, \hat{M}}(t)=\sum_{i=1}^{p} I\{\hat{M}=i\} \hat{\tau}_{U M V U, i}(t)
$$

- Remark: Notice that the properties of these adaptive estimators are not easily obtainable because of the interplay between the model selector \hat{M} and the sub-model estimator, both of which are using the same sample data. This interplay makes these situations tough to handle.

5. Bayes Estimators Under \mathcal{M}_{p}

- Joint Prior Distribution for $\left(\mu, \sigma^{2}\right)$:

$$
\pi\left(\mu, \sigma^{2} \mid \tilde{\boldsymbol{\theta}}, \beta, \kappa\right)=\left\{\prod_{i=1}^{p} \tilde{\theta}_{i}^{I\left\{\mu=\mu_{i}\right\}}\right\} \frac{\beta^{\kappa-1}}{\Gamma(\kappa-1)}\left(\frac{1}{\sigma^{2}}\right)^{\kappa} \exp \left(-\frac{\beta}{\sigma^{2}}\right)
$$

- Independent priors between μ and σ^{2}, and for σ^{2}, an inverted gamma prior.
- Joint Posterior Distribution: By Bayes rule, with

$$
\begin{aligned}
& M_{i}=I\left\{\mu=\mu_{i}\right\}, \\
& \pi\left(\mu, \sigma^{2} \mid \boldsymbol{x}\right)=C \prod_{i=1}^{p}\left\{\tilde{\theta}_{i}\left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}+\kappa} \exp \left(-\frac{1}{\sigma^{2}}\left[\frac{n \hat{\sigma}_{i}^{2}}{2}+\beta\right]\right)\right\}^{m_{i}} ; \\
& C=\frac{1}{\Gamma(n / 2+\kappa-1)}\left\{\sum_{i=1}^{p} \frac{\tilde{\theta}_{i}}{\left(n \hat{\sigma}_{i}^{2} / 2+\beta\right)^{n / 2+\kappa-1}}\right\}^{-1} .
\end{aligned}
$$

- Posterior Probabilities of Sub-Models:

$$
\theta_{i}(\kappa, \beta, n, \boldsymbol{x})=\frac{\tilde{\theta}_{i}\left(n \hat{\sigma}_{i}^{2} / 2+\beta\right)^{-(n / 2+\kappa-1)}}{\sum_{j=1}^{p} \tilde{\theta}_{j}\left(n \hat{\sigma}_{j}^{2} / 2+\beta\right)^{-(n / 2+\kappa-1)}}
$$

- As $n \rightarrow \infty$, and when viewed as a function of \boldsymbol{X}, the posterior probability of the correct sub-model converges almost surely to 1 .
- Posterior Density of σ^{2} :

$$
\begin{aligned}
\pi\left(\sigma^{2} \mid \boldsymbol{x}\right)= & C \sum_{i=1}^{p} \tilde{\theta}_{i}\left(\frac{1}{\sigma^{2}}\right)^{-(\kappa+n / 2)} \times \\
& \exp \left[-\frac{1}{\sigma^{2}}\left(n \hat{\sigma}_{i}^{2} / 2+\beta\right)\right] .
\end{aligned}
$$

- Bayes Estimator of σ^{2} :

$$
\begin{aligned}
& \hat{\sigma}_{p, \text { Bayes }}^{2}(\kappa, \beta, \tilde{\boldsymbol{\theta}})=\sum_{i=1}^{p} \theta_{i}(\kappa, \beta, n, \boldsymbol{x}) \times \\
& \quad\left\{\left(\frac{n}{n+2(\kappa-2)}\right) \hat{\sigma}_{i}^{2}+\left(\frac{2(\kappa-2)}{n+2(\kappa-2)}\right)\left(\frac{\beta}{\kappa-2}\right)\right\} .
\end{aligned}
$$

- Estimator is a weighted combination, in contrast to the 'classical forms' of earlier estimators. Note the weights are data-dependent or adaptive!
- Non-Informative Prior:
- Uniform prior for sub-models: $\tilde{\theta}_{i}=1 / p, i=1,2, \ldots, p$.
- Jeffrey's prior on each sub-model: $\beta \rightarrow 0 ; \kappa \rightarrow 1$.
- The model selector \hat{M} can be interpreted as the highest posterior probability selector corresponding to this noninformative prior distribution.
- Sub-Models Posterior Probabilities:

$$
\theta_{i}^{*}(n, \boldsymbol{x})=\frac{\left(\hat{\sigma}_{i}^{2}\right)^{(-n / 2)}}{\sum_{j=1}^{p}\left(\hat{\sigma}_{j}^{2}\right)^{(-n / 2)}}
$$

- Limiting Bayes Estimator of σ^{2} :

$$
\hat{\sigma}_{p, L B}^{2}=\left(\frac{n}{n-2}\right) \sum_{i=1}^{p}\left\{\frac{\left(\hat{\sigma}_{i}^{2}\right)^{(-n / 2)}}{\sum_{j=1}^{p}\left(\hat{\sigma}_{j}^{2}\right)^{(-n / 2)}}\right\} \hat{\sigma}_{i}^{2}
$$

Remark: Estimator actually examined in the sequel did not have the multiplier $\left(\frac{n}{n-2}\right)$!

- Sub-Models Limiting Bayes Estimators:

$$
\tilde{\sigma}_{L B, i}^{2}=\left(\frac{n}{n-2}\right) \hat{\sigma}_{i}^{2}, \quad i=1,2, \ldots, p
$$

- Another adaptive estimator of σ^{2} can be formed from these limiting Bayes estimators via

$$
\hat{\sigma}_{p, A L B}^{2}=\tilde{\sigma}_{L B, \hat{M}}^{2}=\left(\frac{n}{n-2}\right) \sum_{i=1}^{p} I\{\hat{M}=i\} \hat{\sigma}_{i}^{2} .
$$

Referred to as the adaptive limiting Bayes estimator.

- Remark: The estimators $\hat{\sigma}_{p, M R E}^{2}, \hat{\sigma}_{p, M L E}^{2}$, and $\hat{\sigma}_{p, A L B}^{2}$ belong to the same class of estimators. Consequently, it suffices to derive results for $\hat{\sigma}_{p, M L E}^{2}$ since results for the other two estimators becomes immediately obtainable.
- Bayes Estimator of $\tau(t)$: Posterior mean of $\tau(t)$. Can be shown to be

$$
\begin{aligned}
& \hat{\tau}_{p, \text { Bayes }}(t ; \kappa, \beta, \boldsymbol{\theta})=\sum_{i=1}^{p} \theta_{i}(\kappa, \beta, n, \boldsymbol{x}) \times \\
& \quad \mathcal{T}\left(\frac{\sqrt{\kappa-1+\frac{n}{2}}\left(t-\mu_{i}\right)}{\sqrt{\frac{n}{2} \hat{\sigma}_{i}^{2}+\beta}} ; 2\left(\kappa-1+\frac{n}{2}\right)\right) .
\end{aligned}
$$

- For the non-informative prior $\left(\tilde{\theta}_{i}=1 / p, \beta \rightarrow 0, \kappa \rightarrow 1\right)$, the limiting Bayes estimator of $\tau(t)$ is

$$
\hat{\tau}_{p, L B}(t)=\sum_{i=1}^{p}\left\{\frac{\left(\hat{\sigma}_{i}^{2}\right)^{-n / 2}}{\sum_{j=1}^{p}\left(\hat{\sigma}_{j}^{2}\right)^{-n / 2}}\right\} \mathcal{T}\left(\frac{t-\mu_{i}}{\hat{\sigma}_{i}} ; n\right)
$$

- Which is an adaptively weighted combination of the limiting Bayes estimators in the sub-models.
- Bayes framework therefore leads to estimators that are adaptively weighted combinations of the sub-model estimators.
- Classical framework (MLE, for example) produces two-step estimators: Step 1 is the process of choosing the model; and Step 2 is the process of using the estimator in the chosen model.

Recap: Estimators of σ^{2} under \mathcal{M}_{p}

- Developed under \mathcal{M} :
- $\hat{\sigma}_{U M V U}^{2}=S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
- $\hat{\sigma}_{M L E}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \quad$ and $\quad \hat{\sigma}_{M R E}^{2}=\frac{n}{n+1} \hat{\sigma}_{M L E}^{2}$
- Developed under \mathcal{M}_{p} :
- $\hat{\sigma}_{i}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-\mu_{i}\right)^{2}, \quad i=1,2, \ldots, p$.
- $\hat{M}=\arg \min _{1 \leq i \leq p} \hat{\sigma}_{i}^{2}=\arg \min _{1 \leq i \leq p}\left|\bar{X}-\mu_{i}\right|$
- $\hat{\sigma}_{p, M L E}^{2}=\hat{\sigma}_{\hat{M}}^{2}=\sum_{i=1}^{p} I\{\hat{M}=i\} \hat{\sigma}_{i}^{2}$
- $\hat{\sigma}_{M R E, i}^{2}=\frac{n}{n+2} \hat{\sigma}_{i}^{2}, \quad i=1,2, \ldots, p$.
- $\hat{\sigma}_{p, M R E}^{2}=\hat{\sigma}_{M R E, \hat{M}}^{2}=\sum_{i=1}^{p} I\{\hat{M}=i\} \hat{\sigma}_{M R E, i}^{2}$
- $\hat{\sigma}_{p, A L B}^{2}=\tilde{\sigma}_{L B, \hat{M}}^{2}=\left(\frac{n}{n-2}\right) \sum_{i=1}^{p} I\{\hat{M}=i\} \hat{\sigma}_{i}^{2}$
- $\hat{\sigma}_{p, L B}^{2}=\sum_{j=1}^{p}\left\{\frac{\left(\hat{\sigma}_{i}^{2}\right)^{-(n / 2)}}{\sum_{j=1}^{p}\left(\hat{\sigma}_{j}^{2}\right)^{-(n / 2)}}\right\} \hat{\sigma}_{i}^{2}$
- Question: Which among these σ^{2} estimators is best in terms of their risk function?

6. Comparison of σ^{2} Estimators

- $R\left(\hat{\sigma}_{U M V U}^{2},\left(\mu, \sigma^{2}\right)\right)=\frac{2}{n-1}$.
- $R\left(\hat{\sigma}_{M R E}^{2},\left(\mu, \sigma^{2}\right)\right)=\frac{2}{n+1}$.
- Efficiency measure relative to $\hat{\sigma}_{U M V U}^{2}$:

$$
\operatorname{Eff}\left(\hat{\sigma}^{2}: \hat{\sigma}_{U M V U}^{2}\right)=\frac{R\left(\hat{\sigma}_{U M V U}^{2},\left(\mu, \sigma^{2}\right)\right)}{R\left(\hat{\sigma}^{2},\left(\mu, \sigma^{2}\right)\right)}
$$

- $\operatorname{Eff}\left(\hat{\sigma}_{M R E}^{2}: \hat{\sigma}_{U M V U}^{2}\right)=\frac{n+1}{n-1}=1+\frac{2}{n-1}$.

Properties of \mathcal{M}_{p}-Based Estimators

- Notation: $Z \sim N(0,1), \boldsymbol{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)^{\prime} \sim N_{n}(\mathbf{0}, \boldsymbol{I})$, and $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right)^{\prime}$. With $\mu_{i_{0}}$ the true mean with $i_{0} \in\{1,2, \ldots, p\}$, let

$$
\boldsymbol{\Delta}=\frac{\boldsymbol{\mu}-\mu_{i_{0}} \mathbf{1}}{\sigma}
$$

where $\mathbf{1}=(1,1, \ldots, 1)^{\prime}$.

- Proposition: Under \mathcal{M}_{p} with $\mu_{i_{0}}$ the true mean,

$$
\begin{gathered}
\frac{\hat{\sigma}_{i}^{2}}{\sigma^{2}} \stackrel{d}{=} \frac{1}{n}\left(W+V_{i}^{2}\right), i=1,2, \ldots, p ; \\
W \sim \chi_{n-1}^{2} ; \boldsymbol{V}=\left(V_{1}, \ldots, V_{p}\right)^{\prime} \sim N_{p}\left(-\sqrt{n} \boldsymbol{\Delta}, \boldsymbol{J} \equiv \mathbf{1 1}^{\prime}\right) ;
\end{gathered}
$$

with W and \boldsymbol{V} stochastically independent.

- Representation of \boldsymbol{V} :

$$
\boldsymbol{V}=Z \mathbf{1}-\sqrt{n} \boldsymbol{\Delta}
$$

- Implication: Distributional characteristics of $\hat{\sigma}_{i}^{2} / \sigma^{2}$ depends on $\left(\boldsymbol{\mu}, \sigma^{2}\right)$ only through $\boldsymbol{\Delta}$ (and $\left.n\right)$! This simplifies comparisons, both theoretical and simulated.
- Notation: Given $\boldsymbol{\Delta}$, let $\Delta_{(1)}<\Delta_{(2)}<\ldots<\Delta_{(p)}$ denote the associated ordered values. Note that $\boldsymbol{\Delta}$ always has a zero component.
- Theorem: Under \mathcal{M}_{p} with $\mu_{i_{0}}$ the true mean,

$$
\begin{aligned}
& \frac{\hat{\sigma}_{p, M L E}^{2}}{\sigma^{2}} \stackrel{d}{=} \frac{1}{n}\{W+ \\
& \left.\sum_{i=1}^{p} I\left\{L\left(\Delta_{(i)}, \boldsymbol{\Delta}\right)<Z<U\left(\Delta_{(i)}, \boldsymbol{\Delta}\right)\right\}\left(Z-\sqrt{n} \Delta_{(i)}\right)^{2}\right\} ;
\end{aligned}
$$

$W \sim \chi_{n-1}^{2}, Z \sim N(0,1)$, and with $W \amalg Z ;$ and

$$
\begin{aligned}
& L\left(\Delta_{(i)}, \boldsymbol{\Delta}\right)=\frac{\sqrt{n}}{2}\left[\Delta_{(i)}+\Delta_{(i-1)}\right] ; \\
& U\left(\Delta_{(i)}, \boldsymbol{\Delta}\right)=\frac{\sqrt{n}}{2}\left[\Delta_{(i)}+\Delta_{(i+1)}\right] .
\end{aligned}
$$

[Convention: $\Delta_{(0)}=-\infty$ and $\Delta_{(p+1)}=+\infty$.]

- Representation leads to exact mean and variance:
- Mean:

$$
\begin{aligned}
& \operatorname{EpMLE}(\boldsymbol{\Delta}) \equiv \mathbf{E}\left\{\frac{\hat{\sigma}_{p, M L E}^{2}}{\sigma^{2}}\right\} \\
& =1-\frac{2}{\sqrt{n}} \sum_{i=1}^{p} \Delta_{(i)}\left[\phi\left(L\left(\Delta_{(i)}, \boldsymbol{\Delta}\right)\right)-\phi\left(U\left(\Delta_{(i)}, \boldsymbol{\Delta}\right)\right)\right]+ \\
& \quad \sum_{i=1}^{p} \Delta_{(i)}^{2}\left[\Phi\left(U\left(\Delta_{(i)}, \boldsymbol{\Delta}\right)\right)-\Phi\left(L\left(\Delta_{(i)}, \boldsymbol{\Delta}\right)\right)\right] ;
\end{aligned}
$$

- Variance:

$$
\begin{aligned}
& \operatorname{VpMLE}(\boldsymbol{\Delta}) \equiv \operatorname{Var}\left\{\frac{\hat{\sigma}_{p, M L E}^{2}}{\sigma^{2}}\right\} \\
& =\frac{1}{n}\left\{2\left(1-\frac{1}{n}\right)+\frac{1}{n}\left[\sum_{i=1}^{p} \zeta_{(i)}(4)-\left(\sum_{i=1}^{p} \zeta_{(i)}(2)\right)^{2}\right]\right\}
\end{aligned}
$$

with

$$
\xi\left(k ; \Omega_{(i)}\right) \equiv \mathbf{E}\left\{Z^{k} I\left(\Omega_{(i)}\right)\right\}=\int_{L\left(\Delta_{(i)}, \boldsymbol{\Delta}\right)}^{U\left(\Delta_{(i)}, \boldsymbol{\Delta}\right)} z^{k} \phi(z) d z
$$

and, for $m \in \mathcal{Z}_{+}$,

$$
\begin{aligned}
& \zeta_{(i)}(m) \equiv \mathbf{E}\left\{I\left(\Omega_{(i)}\right)\left(Z-\sqrt{n} \Delta_{(i)}\right)^{m}\right\} \\
& \quad=\sum_{k=0}^{m}(-1)^{(m-k)}\binom{m}{k}\left(\sqrt{n} \Delta_{(i)}\right)^{(m-k)} \xi\left(k ; \Omega_{(i)}\right) .
\end{aligned}
$$

- These lead to exact expressions of the risk functions of $\hat{\sigma}_{p, M L E}^{2}$, and of $\hat{\sigma}_{p, M R E}^{2}$ and $\hat{\sigma}_{p, A L B}^{2}$.
- When $p=2$, expressions simplify. The mean becomes

$$
\begin{aligned}
\operatorname{EpMLE}(\Delta)= & 1-\left(\frac{2}{\sqrt{n}}|\Delta|\right)\left\{\phi\left(\frac{\sqrt{n}}{2}|\Delta|\right)-\right. \\
& \left.\left(\frac{\sqrt{n}}{2}|\Delta|\right)\left[1-\Phi\left(\frac{\sqrt{n}}{2}|\Delta|\right)\right]\right\}
\end{aligned}
$$

- Follows from this that $\hat{\sigma}_{p, M L E}^{2}$ is negatively biased for σ^{2}.
- Question: What happens when the number of sub-models increases indefinitely?
- Theorem: With $n>1$ fixed, if as $p \rightarrow \infty, \max _{2 \leq i \leq p} \mid \Delta_{(i)}-$ $\Delta_{(i-1)} \mid \rightarrow 0, \Delta_{(1)} \rightarrow-\infty$, and $\Delta_{(p)} \rightarrow \infty$, then
(i) $\operatorname{Eff}\left(\hat{\sigma}_{p, M L E}^{2}: \hat{\sigma}_{U M V U}^{2}\right) \rightarrow \frac{2 n^{2}}{(n-1)(2 n-1)}>1$;
(ii) Eff $\left(\hat{\sigma}_{p, M R E}^{2}: \hat{\sigma}_{U M V U}^{2}\right) \rightarrow \frac{2(n+2)^{2}}{(n-1)(2 n+7)}>1$;
(iii) Eff $\left(\hat{\sigma}_{p, M R E}^{2}: \hat{\sigma}_{p, M L E}^{2}\right) \rightarrow \frac{(2 n-1)(n+2)^{2}}{(2 n+7) n^{2}}>1$; and
(iv) $\operatorname{Eff}\left(\hat{\sigma}_{p, M R E}^{2}: \hat{\sigma}_{M R E}^{2}\right) \rightarrow \frac{2(n+2)^{2}}{(n+1)(2 n+7)}<1$.

Also, in the limit, $\hat{\sigma}_{p, A L B}^{2}$ is dominated by $\hat{\sigma}_{U M V U}^{2}$.

- From (iv), the advantage of exploiting \mathcal{M}_{p} could be lost forever when p increases!

Representation: Limiting Bayes Estimator

- Theorem: Under \mathcal{M}_{p} with $\mu_{i_{0}}$ the true mean,

$$
\frac{\hat{\sigma}_{p, L B}^{2}}{\sigma^{2}} \stackrel{d}{=} \frac{W}{n}\{1+H(\boldsymbol{T})\}
$$

where

$$
\begin{gathered}
\boldsymbol{T}=\left(T_{1}, T_{2}, \ldots, T_{p}\right)^{\prime}=\boldsymbol{V} / \sqrt{W}, \\
H(\boldsymbol{T})=\sum_{i=1}^{p} \theta_{i}(\boldsymbol{T}) T_{i}^{2} \\
\theta_{i}(\boldsymbol{T})=\frac{\left(1+T_{i}^{2}\right)^{-(n / 2)}}{\sum_{j=1}^{p}\left(1+T_{j}^{2}\right)^{-(n / 2)}}, \quad i=1,2, \ldots, p
\end{gathered}
$$

- However, even with this nice-looking representation, it is difficult to obtain exact expressions for the mean and variance.
- Developed 2nd-order approximations, but were not so satisfactory when $n \leq 15$.
- In the comparisons, we resorted to simulations to approximate the risk function of $\hat{\sigma}_{p, L B}^{2}$.

Table 1: 2nd-order approximation and simulation results for the mean and variance functions of $\hat{\sigma}_{p, L B}^{2} / \sigma^{2}$, and the risk function of $\hat{\sigma}_{p, L B}^{2}$ for different combinations of $p, \boldsymbol{\Delta}$, and n. For each combination, 10000 simulation replications were performed.

Combinations of p and $\boldsymbol{\Delta}$	n	Mean		Variance		Risk	
		Appr.	Sim.	Appr.	Sim.	Appr.	Sim.
	3	0.802	0.961	0.450	0.650	0.489	0.651
$\boldsymbol{\Delta}=(-0.25,0,0.25)$	10	0.956	0.989	0.182	0.204	0.184	0.204
$\mathrm{p}=3$	30	0.988	0.994	0.066	0.067	0.066	0.067
	3	0.844	0.937	0.401	0.652	0.425	0.656
$\boldsymbol{\Delta}=(-0.5,0,0.5)$	10	0.994	0.985	0.204	0.206	0.204	0.206
$\mathrm{p}=3$	30	1.024	1.004	0.074	0.067	0.074	0.067
	3	0.951	1.036	0.596	0.745	0.598	0.746
$\Delta=(0,0.25,0.50)$	10	1.005	1.006	0.201	0.205	0.201	0.205
$\mathrm{p}=3$	30	1.004	1.004	0.068	0.068	0.068	0.068
	3	1.071	1.106	0.726	0.886	0.731	0.898
$\boldsymbol{\Delta}=(0,0.5,1)$	10	1.025	1.021	0.220	0.220	0.220	0.221
$\mathrm{p}=3$	30	1.012	1.004	0.070	0.068	0.071	0.068
	3	0.857	0.977	0.495	0.648	0.515	0.649
$\Delta=(-0.25: 0.0625: 0.25)$	10	0.970	0.984	0.185	0.203	0.186	0.204
$\mathrm{p}=9$	30	0.986	0.993	0.065	0.066	0.065	0.066
	3	0.867	0.974	0.504	0.670	0.522	0.671
$\Delta=(-0.25: 0.03125: 0.25)$	10	0.972	0.988	0.186	0.202	0.187	0.202
$\mathrm{p}=17$	30	0.987	0.994	0.065	0.067	0.065	0.067
	3	0.992	1.031	0.642	0.742	0.642	0.743
$\boldsymbol{\Delta}=(0: 0.0625: 0.5)$	10	1.021	1.033	0.206	0.221	0.206	0.222
$\mathrm{p}=9$	30	1.013	1.013	0.069	0.071	0.069	0.071
	3	1.000	1.042	0.652	0.755	0.652	0.756
$\Delta=(0: 0.03125: 0.5)$	10	1.024	1.030	0.207	0.215	0.207	0.216
$\mathrm{p}=17$	30	1.015	1.018	0.069	0.071	0.069	0.071

Table 2: Relative efficiencies of the variance estimators for different combinations of $p, \boldsymbol{\Delta}$, and n. For the (p, LB) estimator, 95% empirical confidence intervals are shown in parenthesis.

Combinations		Efficiency \%					
of p and $\boldsymbol{\Delta}$	n	UMVU	MRE	LB	pMLE	pMRE	ALB
	3	100	200	$156(148,165)$	173	222	14
$\boldsymbol{\Delta}=(-0.25,0,0.25)$	10	100	122	$110(110,117)$	117	123	71
$\mathrm{p}=3$	30	100	106	$105(102,107)$	105	107	90
	3	100	200	$162(153,168)$	183	209	17
$\boldsymbol{\Delta}=(-0.5,0,0.5)$	10	100	122	$107(107,114)$	119	124	72
$\mathrm{p}=3$	30	100	106	$97(99,105)$	106	110	88
	3	100	200	$137(133,146)$	164	226	12
$\boldsymbol{\Delta}=(0,0.25,0.50)$	10	100	122	$103(102,109)$	114	126	65
$\mathrm{p}=3$	30	100	106	$98(99,105)$	104	108	87
	3	100	200	$109(111,125)$	165	221	13
$\boldsymbol{\Delta}=(0,0.5,1)$	10	100	122	$98(97,105)$	114	128	65
$\mathrm{p}=3$	30	100	106	$102(100,106)$	104	110	86
	3	100	200	$154(148,163)$	173	221	14
$\boldsymbol{\Delta}=\left(-0.25: 2^{-4}: 0.25\right)$	10	100	122	$109(110,118)$	117	122	71
$\mathrm{p}=9$	30	100	106	$102(102,108)$	105	105	91
	3	100	200	$150(148,161)$	173	221	14
$\boldsymbol{\Delta}=\left(-0.25: 2^{-5}: 0.25\right)$	10	100	122	$113(109,118)$	116	122	71
$\mathrm{p}=17$	30	100	106	$104(102,108)$	105	105	91
	3	100	200	$136(132,146)$	163	225	12
$\boldsymbol{\Delta}=\left(0: 2^{-4}: 0.5\right)$	10	100	122	$100(100,108)$	114	125	65
$\mathrm{p}=9$	30	100	106	$98(97,103)$	104	107	87
	3	100	200	$134(132,146)$	163	225	12
$\boldsymbol{\Delta}=\left(0: 2^{-5}: 0.5\right)$	10	100	122	$102(100,107)$	114	125	65
$\mathrm{p}=17$	30	100	106	$99(96,103)$	104	107	87

A contour plot as a function of p and deltamax, symmetric case

A contour plot as a function of p and deltamax, asymmetric case

Figure 2: Relative efficiencies of $\hat{\sigma}_{p, M R E}^{2}(\mathrm{pMRE})$ wrt $\hat{\sigma}_{M R E}^{2}$ (MRE) in a symmetric and asymmetric Δ cases, as a function of $\Delta_{\max }$ and p for sample size of $n=10$. Symmetric case of form $\boldsymbol{\Delta}=\left[-\Delta_{\text {max }}: \Delta_{\text {max }} /(p-1): \Delta_{\text {max }}\right]$; while asymmetric case of form $\boldsymbol{\Delta}=\left[0: \Delta_{\max } /(2(p-1)): \Delta_{\max }\right]$.

7. Recap: $\tau(t)=F(t)$ Estimators

- M-UMVU:

$$
\begin{gathered}
z_{1}(t)=\frac{\sqrt{n}}{n-1}\left(\frac{t-\bar{X}}{S}\right) \\
\hat{\tau}_{U M V U}(t)= \\
\mathcal{T}\left(\frac{\sqrt{n-2} z_{1}(t)}{\sqrt{1-z_{1}(t)^{2}}} ; n-2\right) I\left\{\left|z_{1}(t)\right| \leq 1\right\} \\
\\
+I\left\{z_{1}(t)>1\right\}
\end{gathered}
$$

- \mathcal{M}_{p}-UMVU:

$$
\begin{aligned}
z_{3 i}(t)= & \frac{1}{\sqrt{n}}\left(\frac{t-\mu_{i}}{\hat{\sigma}_{i}}\right), \quad i=1,2, \ldots, p \\
\hat{\tau}_{U M V U, i}(t)= & \mathcal{T}\left(\frac{\sqrt{n-1} z_{3 i}(t)}{\sqrt{1-z_{3 i}(t)^{2}}} ; n-1\right) I\left\{\left|z_{3 i}(t)\right| \leq 1\right\} \\
& +I\left\{z_{3 i}(t)>1\right\} \\
\hat{\tau}_{p, U M V U}(t)= & \hat{\tau}_{U M V U, \hat{M}}(t)=\sum_{i=1}^{p} I\{\hat{M}=i\} \hat{\tau}_{U M V U, i}(t)
\end{aligned}
$$

- \mathcal{M}_{p}-Limiting Bayes:

$$
\hat{\tau}_{p, L B}(t)=\sum_{i=1}^{p}\left\{\frac{\left(\hat{\sigma}_{i}^{2}\right)^{-n / 2}}{\sum_{j=1}^{p}\left(\hat{\sigma}_{j}^{2}\right)^{-n / 2}}\right\}
$$

- Also obtained distributional representations for these estimators which show that their distributions depend on $\left(t, \boldsymbol{\mu}, \sigma^{2}\right)$ only through $(\xi(t), \boldsymbol{\Delta})$, where

$$
\xi(t)=\frac{t-\mu_{i_{0}}}{\sigma}=\text { standardized } t \text {-value. }
$$

- But, even with the representations, no exact expressions of their risk functions were obtained.
- Comparisons for the $\tau(t)$-estimators were therefore performed through simulations.

Results of Comparisons

- For the τ-estimators, efficiencies are relative to $\hat{\tau}_{U M V U}$.
- To compare globally the τ-estimators, we approximated the risk functions arising from the global loss function

$$
L_{3}\left(\hat{\tau},\left(\mu, \sigma^{2}\right)\right)=\int\left[\hat{\tau}(t)-\Phi\left(\frac{t-\mu}{\sigma}\right)\right]^{2} \Phi\left(\frac{d t-\mu}{\sigma}\right) .
$$

Figure 3: Pointwise biases, variances, risks, and relative efficiencies of the four distribution estimators $\hat{\tau}$, for $\boldsymbol{\Delta}=(-1,0,1)$ and sample size $n=10$. For each standardized time point $\xi(t)$, 10000 simulation replications were performed.

Table 3: Relative global efficiencies (rel. to the UMVU estimator $\left.\hat{\tau}_{U M V U}^{2}\right)$ of the three distribution estimators for different combinations of $p, \boldsymbol{\Delta}$, and n. 10000 simulation replications were performed for each combination.

Combinations of p and $\boldsymbol{\Delta}$	n	pUMVU Eff \%	$\begin{gathered} \text { LB } \\ \text { Eff \% } \end{gathered}$	ALB Eff \%	Combinations of p and $\boldsymbol{\Delta}$	pUMVU Eff \%	$\begin{gathered} \text { LB } \\ \text { Eff \% } \end{gathered}$	ALB Eff \%
	3	316	704	395		105	181	117
$\Delta=(-0.25,0,0.25)$	10	190	419	197	$\boldsymbol{\Delta}=(-1,0,1)$	108	138	111
$\mathrm{p}=3$	30	107	194	107	$\mathrm{p}=3$	352	389	359
	3	169	367	194		109	199	123
$\boldsymbol{\Delta}=(-0.5,0,0.5)$	10	94	158	96	$\Delta=\left(-1: 2^{-1}: 1\right)$	87	115	89
$\mathrm{p}=3$	30	83	110	84	$\mathrm{p}=5$	82	108	82
	3	274	428	334		110	214	125
$\Delta=(0,0.25,0.50)$	10	190	220	197	$\Delta=\left(-1: 2^{-2}: 1\right)$	95	120	98
$\mathrm{p}=3$	30	158	163	159	$\mathrm{p}=9$	88	103	89
	3	180	239	209		111	227	125
$\boldsymbol{\Delta}=(0,0.5,1)$	10	152	166	157	$\Delta=\left(-1: 2^{-3}: 1\right)$	98	123	101
$\mathrm{p}=3$	30	145	181	146	$\mathrm{p}=17$	97	103	97
	3	321	779	403		110	230	124
$\boldsymbol{\Delta}=\left(-0.25: 2^{-4}: 0.25\right)$	10	205	530	213	$\boldsymbol{\Delta}=\left(-1: 2^{-4}: 1\right)$	99	125	102
$\mathrm{p}=9$	30	128	288	129	$\mathrm{p}=33$	99	103	99
	3	319	774	400		111	239	125
$\boldsymbol{\Delta}=\left(-0.25: 2^{-5}: 0.25\right)$	10	204	560	212	$\Delta=\left(-1: 2^{-5}: 1\right)$	99	126	102
$\mathrm{p}=17$	30	130	313	131	$\mathrm{p}=65$	99	103	100
	3	274	431	334		110	237	124
$\boldsymbol{\Delta}=\left(0: 2^{-4}: 0.5\right)$	10	196	204	204	$\Delta=\left(-1: 2^{-6}: 1\right)$	99	127	102
$\mathrm{p}=9$	30	174	131	175	$\mathrm{p}=129$	99	103	100
	3	276	432	336		111	238	125
$\Delta=\left(0: 2^{-5}: 0.5\right)$	10	203	209	211	$\Delta=\left(-1: 2^{-7}: 1\right)$	99	127	102
$\mathrm{p}=17$	30	176	125	178	$\mathrm{p}=257$	99	103	100
	3	176	259	204		111	239	125
$\Delta=(0,1)$	10	186	227	193	$\Delta=\left(-1: 2^{-8}: 1\right)$	99	127	102
$\mathrm{p}=2$	30	525	553	539	$\mathrm{p}=513$	99	103	100

A contour plot as a function of \mathbf{n} and deltamax for $p=3$

Figure 4: Relative global efficiencies of pLB with respect to UMVU in a asymmetric $(p=2)$ and symmetric $(p=3) \Delta$ cases, as a function of $\Delta_{\max }$ and sample size n. Scenario 1: Corresponds to an asymmetric case of form $\boldsymbol{\Delta}=\left(0, \Delta_{\max }\right)$. Scenario 2: Corresponds to a symmetric case of form $\boldsymbol{\Delta}=\left(-\Delta_{\max }, 0, \Delta_{\max }\right)$. For each combination of $(n, \boldsymbol{\Delta})$, 10000 simulation replications were performed.

8. Concluding Remarks

- In models with sub-models, and interest is to infer about a common parameter, possible approaches are:
- Approach I: Utilize procedures for a wider model subsuming the sub-models. Could lead to loss of efficiency.
- Approach II: Utilize a two-step approach: First step is to select the sub-model using the data; second step is to use a procedure (e.g., estimator) for the chosen sub-model, again using the same data.

Should recognize that properties of the two-step procedure will be different from the sub-model properties of the procedures.

- Approach III: Utilize a Bayesian framework. Assign a prior to the sub-models, and (conditional) priors on the parameters within the sub-models.

Resulting procedure is an adaptively weighted combination of the (Bayes) procedures in the sub-models.

- Approaches (II) and (III) appear preferable over approach (I), but when the number of sub-models is large, approach (I) may provide better estimators and a simpler determination of the properties.
- Hard to conclude which of approaches (II) or (III) is preferable. In the Gaussian model considered, approach (II) performed better in estimating the variance σ^{2}, but approach (III) performed better in estimating the distribution function.

This calls for further studies in more complicated settings, such as those that motivated our study.

- To conclude,

Observe Caution!

when doing inference after model selection especially when double-dipping on the data!

