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1. Setting and Problem

� Data Given:

X � (X1; X2; : : : ; Xn) IID F

where F is an unknown distribution function.

� Model M:

F 2M =
�
N(�; �2) : � 2 <; �2 > 0

�

N(�; �2) = normal distribution with mean � and variance

�2.

� Problems:

� Estimate �2;

� Given t 2 <, estimate

� (t) = F (t) = PrfX1 � tg = �

0
@t� �

�

1
A :

� Well-known (e.g., proved in Stat 201 ... cheers! if I teach it!)

that the uniformly minimum variance unbiased (UMVU)

estimator of �2 is

�̂2UMV U = S2 =
1

n� 1

nX
i=1

(Xi � �X)2:
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� UMVU estimator of � (t), derived via Basu's Theorem and

the Lehmann-Sche�e Theorem, is

�̂UMV U(t) = T
0
BB@
p
n� 2z1(t)r
1� z1(t)2

;n� 2

1
CCA Ifjz1(t)j � 1g

+Ifz1(t) > 1g

with

z1(t) =

p
n

n� 1

0
B@t�

�X

S

1
CA ;

and T (�; k) being the Student's t-distribution function with
k degrees-of-freedom.

� Maximum likelihood (ML) estimator of � (t) is

�̂MLE(t) = �

0
B@t�

�X

S

1
CA :

� Decision-theoretic framework: Loss functions utilized are

L1(�̂
2; (�; �2)) =

0
B@�̂

2 � �2

�2

1
CA
2

;

L2(�̂(t); (�; �
2)) = (�̂ (t)� �((t� �)=�))2 ;

L3(�̂ ; (�; �
2)) =

Z
L2(�̂ (t); (�; �

2))�((dt� �)=�):
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� Risk functions (\loss functions averaged-out over X")

R1(�̂
2; (�; �2)); R2(�̂ (t); (�; �

2)); R3(�̂ ; (�; �
2))

are the expected values of the respective loss functions

with respect to X and when the true parameter values

are (�; �2). Since loss functions are quadratic, then

Risk = Variance + Bias2.

� When using risk functions to evaluate estimators, and if we

allow biased estimators, the sample variance S2 is not the

best. It is dominated by the ML and the minimum risk

equivariant (MRE) estimators given by:

�̂2MLE =
1

n

nX
i=1

(Xi � �X)2 and �̂2MRE =
n

n + 1
�̂2MLE:

� Is the unbiasedness property (i.e., that the average equals

the parameter) a `sacred cow?'

� All nontrivial Bayes estimators are biased ... so you know

what will happen if biased estimators are not allowed! Also,

can sometimes sacri�ce some accuracy to gain precision!
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Model M0 =M�0

� Suppose it is known that � = �0, so

F 2M0 =
�
N(�; �2) : � = �0; �

2 > 0
�
:

� Under model M0, the appropriate estimators are:

�̂2UMV U(�0) =
1

n

nX
i=1

(Xi � �0)
2;

�̂2MRE(�0) =
1

n + 2

nX
i=1

(Xi � �0)
2;

�̂UMV U(t;�0) = T
0
BB@
p
n� 1z2(t)r
1� z2(t)2

;n� 1

1
CCA Ifjz2(t)j � 1g

+Ifz2(t) > 1g;

z2(t) =
1p
n

0
B@ t� �0
�̂UMV U(�0)

1
CA :

� Estimators developed under M are also candidate estima-

tors under M0. Less eÆcient however since they do not

exploit the added structure of M0. For instance, under

M0,

E�
�
�̂2UMV U(�0) : �̂

2
UMV U

�
= 1 +

1

n� 1
:
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Model Mp: An Intermediate Model

� Suppose instead that we do not know the exact value of �,

but just that it could take one of p possible values. This

leads to model Mp:

F 2Mp =
�
N(�; �2) : � 2 f�1; : : : ; �pg; �2 > 0

�

where �1; �2; : : : ; �p are known constants.

� Problem: Under this intermediate model, how should we

estimate �2 and � (t) = F (t)? What are the consequences

of using the estimators developed underM, which are also

candidate estimators under Mp?

� Can we exploit the structure of Mp to obtain better esti-

mators of �2 and � (t)? What happens when p!1?

� Model Mp can be viewed as having the p sub-models

M�1;M�2; : : : ;M�p;

with �2 a common parameter among these sub-models.
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2. Motivation and Importance

� Estimation of the variance, the precision parameter, and

the distribution function are important from a practical

point of view, as well as theoretically.

� ModelMp corresponds to practical settings where there are

a �nite number of possible populations, and a sample X

is taken from one of them. Setting of the Neyman-Pearson

Lemma and of multiple decision problems.

� C. Stein (1964) developed the approach of hypothesizing

that modelM0 may hold, and by doing pre-test to accept

or reject this hypothesis and deciding on which estimator

to use based on this test, was able to show that �̂2MRE is

also an inadmissible estimator of �2!

� Our primary motivating situations leading to this problem

are:
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� Issue of `inference after model selection:' What

are the consequences of �rst selecting a sub-model and

then performing inference such as estimation or test-

ing hypothesis, with these two steps utilizing the same

sample data (i.e., double-dipping)?

� Survival analysis and reliability settings: Only
known that the family of failure times is either Weibull

or gamma (also, Cox PH or accelerated failure model).

How to estimate the survivor distribution?

� Multiple regression: A subset of predictors is cho-

sen, then other inferences, such as prediction, is per-

formed.

� Smooth goodness-of-�t tests: An embedding ap-

proach is used and it is desired to determine the size of

the embedding class adaptively.

� Others: In nonparametric regression or function es-

timation, bandwidths in kernel smoothing are deter-

mined adaptively.
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3. Intuitive Strategies

Strategy I: Simply utilize estimators developed underM, or

a fully nonparametric model.

Strategy II (Classical):

Step 1 (Model Selection): Choose the most plausible

sub-model using the data X = (X1; X2; : : : ; Xn).

Step 2 (Inference): Use the best estimators or test pro-

cedures in the chosen sub-model, but with these estimators

or tests still using the same data X . Resulting procedures

become adaptive.

Strategy III (Bayesian): Determine adaptively (i.e., us-

ing X) the plausibility of each of the sub-models, and form

a weighted combination of the sub-model estimators or tests.

Resulting procedures are again adaptive.

Question: Which strategy leads to better procedures, and

how could we justify formally each of these intuitive strategies?
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4. Classical Estimators Under Mp

� Likelihood Function:

L(�; �2) =
pY
i=1

Li(�i; �
2)If�=�ig;

For i = 1; 2; : : : ; p,

Li(�i; �
2) =

0
@ 1p

2�

1
An

0
@ 1

�2

1
An=2 exp

8><
>:�

n�̂2i
2�2

9>=
>; ;

�̂2i =
1

n

nX
j=1

(Xj � �i)
2:

� Model Selector: M̂ = M̂(X1; X2; : : : ; Xn)

M̂ = arg max
1�i�p

Li(�i; �̂
2
i ) = arg min

1�i�p
�̂2i = arg min

1�i�p
j �X��ij:

� M̂ chooses the sub-model leading to the smallest esti-

mate of �2, or the sub-model whose mean is closest to

the sample mean.

� Selector also has the interpretation of being the `highest

posterior probability (hpp)' model selector associated

with a noninformative prior on (�; �2).

� Other selectors could also be utilized! E.g., Akaike's

AIC, Schwarz Bayesian information criterion (BIC).
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� MLE of (�; �2) under Mp:

(�̂p;MLE; �̂
2
p;MLE) = (�̂M̂ ; �̂

2
M̂) =

pX
i=1

IfM̂ = ig(�i; �̂2i );

so the MLE of �2 is

�̂2p;MLE = �̂2M̂ =
pX
i=1

IfM̂ = ig�̂2i :

� A two-stage adaptive estimator of the `classical' form.

� Remark: If M̂ = i, the adaptive estimator �̂2
M̂

does not

have the same properties as ith sub-model estimator �̂2i .

� An alternative estimator of the same avor as above is to

use the sub-model's MRE's given by

�̂2MRE;i =
n

n + 2
�̂2i ; i = 1; 2; : : : ; p;

to obtain

�̂2p;MRE = �̂2MRE;M̂ =
pX
i=1

IfM̂ = ig�̂2MRE;i:

� Remark: Label `MRE' is a misnomer since this estimator

need not be the minimum risk equivariant estimator under

model Mp.
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� Adaptive estimator (of `classical form') of � (t) = F (t) un-

der model Mp is:

�̂p;MLE(t) = �

0
B@t� �M̂

�̂M̂

1
CA =

pX
i=1

IfM̂ = ig�
0
@t� �i

�̂i

1
A

� Another adaptive estimator obtained from the UMVUs of

sub-models is as follows: Let

z3i(t) =
1p
n

0
@t� �i

�̂i

1
A ; i = 1; 2; : : : ; p;

and for i = 1; 2; : : : ; p,

�̂UMV U;i(t) = T
0
BB@
p
n� 1z3i(t)r
1� z3i(t)2

;n� 1

1
CCA Ifjz3i(t)j � 1g

+Ifz3i(t) > 1g:

An estimator of � (t) is

�̂p;UMV U(t) = �̂UMV U;M̂(t) =
pX
i=1

IfM̂ = ig�̂UMV U;i(t):

� Remark: Notice that the properties of these adaptive es-

timators are not easily obtainable because of the interplay

between the model selector M̂ and the sub-model estima-

tor, both of which are using the same sample data. This

interplay makes these situations tough to handle.
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5. Bayes Estimators Under Mp

� Joint Prior Distribution for (�; �2):

�(�; �2j~�; �; �) =
8<
:

pY
i=1

~�
If�=�ig
i

9=
;

���1

�(�� 1)

0
@ 1

�2

1
A� exp

0
@� �

�2

1
A

� Independent priors between � and �2, and for �2, an in-

verted gamma prior.

� Joint Posterior Distribution: By Bayes rule, with

Mi = If� = �ig,

�(�; �2 j x) = C
pY
i=1

8><
>:~�i

0
@ 1

�2

1
A
n
2+�

exp

0
B@� 1

�2

2
64n�̂

2
i

2
+ �

3
75
1
CA
9>=
>;
mi

;

C =
1

�(n=2 + �� 1)

8>><
>>:

pX
i=1

~�i

(n�̂2i =2 + �)
n=2+��1

9>>=
>>;
�1

:

� Posterior Probabilities of Sub-Models:

�i(�; �; n;x) =
~�i
�
n�̂2i =2 + �

��(n=2+��1)
Pp
j=1

~�j
�
n�̂2j=2 + �

��(n=2+��1)

� As n!1, and when viewed as a function of X , the pos-

terior probability of the correct sub-model converges almost

surely to 1.
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� Posterior Density of �2:

�(�2 j x) = C
pX
i=1

~�i

0
@ 1

�2

1
A�(�+n=2) �

exp

2
4� 1

�2

�
n�̂2i =2 + �

�35:

� Bayes Estimator of �2:

�̂2p;Bayes(�; �;
~�) =

pX
i=1

�i(�; �; n;x)�
8><
>:
0
B@ n

n + 2(�� 2)

1
CA �̂2i +

0
B@ 2(�� 2)

n + 2(�� 2)

1
CA
0
@ �

�� 2

1
A
9>=
>; :

� Estimator is a weighted combination, in contrast to the

`classical forms' of earlier estimators. Note the weights are

data-dependent or adaptive!

� Non-Informative Prior:

� Uniform prior for sub-models: ~�i = 1=p; i = 1; 2; : : : ; p:

� Je�rey's prior on each sub-model: � ! 0;�! 1:

� The model selector M̂ can be interpreted as the highest

posterior probability selector corresponding to this non-

informative prior distribution.
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� Sub-Models Posterior Probabilities:

��i (n;x) =
(�̂2i )

(�n=2)

Pp
j=1(�̂

2
j )(�n=2)

� Limiting Bayes Estimator of �2:

�̂2p;LB =

0
@ n

n� 2

1
A pX
i=1

8><
>:

(�̂2i )
(�n=2)

Pp
j=1(�̂

2
j )(�n=2)

9>=
>; �̂2i

Remark: Estimator actually examined in the sequel did

not have the multiplier
�

n
n�2

�
!

� Sub-Models Limiting Bayes Estimators:

~�2LB;i =

0
@ n

n� 2

1
A �̂2i ; i = 1; 2; : : : ; p;

� Another adaptive estimator of �2 can be formed from these

limiting Bayes estimators via

�̂2p;ALB = ~�2LB;M̂ =

0
@ n

n� 2

1
A pX
i=1

IfM̂ = ig�̂2i :

Referred to as the adaptive limiting Bayes estimator.

� Remark: The estimators �̂2p;MRE , �̂
2
p;MLE , and �̂2p;ALB

belong to the same class of estimators. Consequently, it

suÆces to derive results for �̂2p;MLE since results for the

other two estimators becomes immediately obtainable.
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� Bayes Estimator of � (t): Posterior mean of � (t). Can

be shown to be

�̂p;Bayes(t;�; �;�) =
pX
i=1

�i(�; �; n;x)�

T
0
BB@
r
�� 1 + n

2(t� �i)r
n
2 �̂

2
i + �

; 2
 
�� 1 +

n

2

!1CCA :

� For the non-informative prior (~�i = 1=p, � ! 0, � ! 1),

the limiting Bayes estimator of � (t) is

�̂p;LB(t) =
pX
i=1

8>><
>>:

(�̂2i )
�n=2

Pp
j=1 (�̂

2
j )
�n=2

9>>=
>>; T

0
@t� �i

�̂i
; n

1
A :

� Which is an adaptively weighted combination of the limit-

ing Bayes estimators in the sub-models.

� Bayes framework therefore leads to estimators that are adap-

tively weighted combinations of the sub-model estimators.

� Classical framework (MLE, for example) produces two-step

estimators: Step 1 is the process of choosing the model; and

Step 2 is the process of using the estimator in the chosen

model.
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Recap: Estimators of �2 under Mp

� Developed under M:

� �̂2UMV U = S2 = 1
n�1

Pn
i=1(Xi � �X)2

� �̂2MLE = 1
n

Pn
i=1(Xi � �X)2 and �̂2MRE = n

n+1�̂
2
MLE

� Developed under Mp:

� �̂2i = 1
n

Pn
j=1(Xj � �i)

2; i = 1; 2; : : : ; p:

� M̂ = argmin1�i�p �̂
2
i = argmin1�i�p j �X � �ij

� �̂2p;MLE = �̂2
M̂

=
Pp
i=1 IfM̂ = ig�̂2i

� �̂2MRE;i =
n

n+2�̂
2
i ; i = 1; 2; : : : ; p:

� �̂2p;MRE = �̂2
MRE;M̂

=
Pp
i=1 IfM̂ = ig�̂2MRE;i

� �̂2p;ALB = ~�2
LB;M̂

=
�

n
n�2

� Pp
i=1 IfM̂ = ig�̂2i

� �̂2p;LB =
Pp
j=1

8<
: (�̂2i )

�(n=2)Pp
j=1(�̂

2
j )
�(n=2)

9=
; �̂2i

� Question: Which among these �2 estimators is best in

terms of their risk function?



18

6. Comparison of �2 Estimators

� R �
�̂2UMV U ; (�; �

2)
�
= 2

n�1:

� R �
�̂2MRE; (�; �

2)
�
= 2

n+1:

� EÆciency measure relative to �̂2UMV U :

E�(�̂2 : �̂2UMV U) =
R(�̂2UMV U ; (�; �

2))

R(�̂2; (�; �2))
:

� E�(�̂2MRE : �̂2UMV U) =
n+1
n�1 = 1 + 2

n�1:

Properties of Mp-Based Estimators

� Notation: Z � N(0; 1),Z = (Z1; Z2; : : : ; Zn)
0 � Nn(0; I),

and � = (�1; �2; : : : ; �p)
0. With �i0 the true mean with

i0 2 f1; 2; : : : ; pg, let

� =
�� �i01

�

where 1 = (1; 1; : : : ; 1)0.

� Proposition: Under Mp with �i0 the true mean,

�̂2i
�2

d=
1

n

�
W + V 2

i

�
; i = 1; 2; : : : ; p;

W � �2n�1; V = (V1; : : : ; Vp)
0 � Np(�

p
n�;J � 110);

with W and V stochastically independent.
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� Representation of V :

V = Z1�pn�

� Implication: Distributional characteristics of �̂2i =�
2 de-

pends on (�; �2) only through � (and n)! This simpli�es

comparisons, both theoretical and simulated.

� Notation: Given�, let �(1) < �(2) < : : : < �(p) denote

the associated ordered values. Note that � always has a

zero component.

� Theorem: Under Mp with �i0 the true mean,

�̂2p;MLE

�2
d=
1

n
fW+

pX
i=1

IfL(�(i);�) < Z < U(�(i);�)g(Z �pn�(i))
2

9=
; ;

W � �2n�1, Z � N(0; 1), and with W
`
Z; and

L(�(i);�) =

p
n

2

�
�(i) + �(i�1)

�
;

U(�(i);�) =

p
n

2

�
�(i) + �(i+1)

�
:

[Convention: �(0) = �1 and �(p+1) = +1.]

� Representation leads to exact mean and variance:
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� Mean:

EpMLE(�) � E

8><
>:
�̂2p;MLE

�2

9>=
>;

= 1� 2p
n

pX
i=1

�(i)[�(L(�(i);�))� �(U(�(i);�))] +

pX
i=1

�2
(i)[�(U(�(i);�))� �(L(�(i);�))];

� Variance:

VpMLE(�) � Var

8><
>:
�̂2p;MLE

�2

9>=
>;

=
1

n

8><
>:2

0
@1� 1

n

1
A + 1

n

2
64 pX
i=1

�(i)(4)�
0
@ pX
i=1

�(i)(2)

1
A2
3
75
9>=
>; ;

with

�(k; 
(i)) � E
�
ZkI(
(i))

�
=

Z U(�(i);�)

L(�(i);�)
zk�(z)dz;

and, for m 2 Z+,

�(i)(m) � E
�
I(
(i))(Z �

p
n�(i))

m
�

=
mX
k=0

(�1)(m�k)

0
B@ m
k

1
CA
�p

n�(i)

�(m�k)
�(k; 
(i)):

� These lead to exact expressions of the risk functions of

�̂2p;MLE , and of �̂2p;MRE and �̂2p;ALB.
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� When p = 2, expressions simplify. The mean becomes

EpMLE(�) = 1�
0
B@ 2p

n
j�j

1
CA
8><
>:�

0
B@
p
n

2
j�j

1
CA �

0
B@
p
n

2
j�j

1
CA
2
641� �

0
B@
p
n

2
j�j

1
CA
3
75
9>=
>; :

� Follows from this that �̂2p;MLE is negatively biased for �2.

� Question: What happens when the number of sub-models

increases inde�nitely?

� Theorem: With n > 1 �xed, if as p!1, max2�i�p j�(i)�
�(i�1)j ! 0, �(1) ! �1, and �(p) !1, then

(i) E�
�
�̂2p;MLE : �̂2UMV U

�
! 2n2

(n�1)(2n�1) > 1;

(ii) E�
�
�̂2p;MRE : �̂2UMV U

�
! 2(n+2)2

(n�1)(2n+7) > 1;

(iii) E�
�
�̂2p;MRE : �̂2p;MLE

�
! (2n�1)(n+2)2

(2n+7)n2
> 1; and

(iv) E�
�
�̂2p;MRE : �̂2MRE

�
! 2(n+2)2

(n+1)(2n+7) < 1:

Also, in the limit, �̂2p;ALB is dominated by �̂2UMV U .

� From (iv), the advantage of exploiting Mp could be lost

forever when p increases!
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Representation: Limiting Bayes Estimator

� Theorem: Under Mp with �i0 the true mean,

�̂2p;LB
�2

d=
W

n
f1 +H(T )g ;

where

T = (T1; T2; : : : ; Tp)
0 = V =

p
W;

H(T ) =
pX
i=1

�i(T )T
2
i ;

�i(T ) =
(1 + T 2

i )
�(n=2)

Pp
j=1(1 + T 2

j )�(n=2)
; i = 1; 2; : : : ; p:

� However, even with this nice-looking representation, it is

diÆcult to obtain exact expressions for the mean and vari-

ance.

� Developed 2nd-order approximations, but were not so sat-

isfactory when n � 15.

� In the comparisons, we resorted to simulations to approxi-

mate the risk function of �̂2p;LB.
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Table 1: 2nd-order approximation and simulation results for the

mean and variance functions of �̂2p;LB=�
2, and the risk function

of �̂2p;LB for di�erent combinations of p, �, and n. For each

combination, 10000 simulation replications were performed.

Combinations Mean Variance Risk

of p and � n Appr. Sim. Appr. Sim. Appr. Sim.

3 0.802 0.961 0.450 0.650 0.489 0.651

�=(-0.25,0,0.25) 10 0.956 0.989 0.182 0.204 0.184 0.204

p=3 30 0.988 0.994 0.066 0.067 0.066 0.067

3 0.844 0.937 0.401 0.652 0.425 0.656

�=(-0.5,0,0.5) 10 0.994 0.985 0.204 0.206 0.204 0.206

p=3 30 1.024 1.004 0.074 0.067 0.074 0.067

3 0.951 1.036 0.596 0.745 0.598 0.746

�=(0,0.25, 0.50) 10 1.005 1.006 0.201 0.205 0.201 0.205

p=3 30 1.004 1.004 0.068 0.068 0.068 0.068

3 1.071 1.106 0.726 0.886 0.731 0.898

�=(0,0.5,1) 10 1.025 1.021 0.220 0.220 0.220 0.221

p=3 30 1.012 1.004 0.070 0.068 0.071 0.068

3 0.857 0.977 0.495 0.648 0.515 0.649

�=(-0.25:0.0625:0.25) 10 0.970 0.984 0.185 0.203 0.186 0.204

p=9 30 0.986 0.993 0.065 0.066 0.065 0.066

3 0.867 0.974 0.504 0.670 0.522 0.671

�=(-0.25:0.03125:0.25) 10 0.972 0.988 0.186 0.202 0.187 0.202

p=17 30 0.987 0.994 0.065 0.067 0.065 0.067

3 0.992 1.031 0.642 0.742 0.642 0.743

�=(0:0.0625:0.5) 10 1.021 1.033 0.206 0.221 0.206 0.222

p=9 30 1.013 1.013 0.069 0.071 0.069 0.071

3 1.000 1.042 0.652 0.755 0.652 0.756

�=(0:0.03125:0.5) 10 1.024 1.030 0.207 0.215 0.207 0.216

p=17 30 1.015 1.018 0.069 0.071 0.069 0.071
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Figure 1: Relative eÆciencies of �2 estimators for p = 2 and

� = (0;�) for n 2 f3; 10; 30g. For the (p,LB) the (connected)
scatterplot represents the simulated estimates of relative eÆ-

ciency based on the 10000 replications for each �.
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Table 2: Relative eÆciencies of the variance estimators for di�er-

ent combinations of p, �, and n. For the (p,LB) estimator,

95% empirical con�dence intervals are shown in parenthesis.

Combinations EÆciency %

of p and � n UMVU MRE LB pMLE pMRE ALB

3 100 200 156 (148, 165) 173 222 14
�=(-0.25,0,0.25) 10 100 122 110 (110, 117) 117 123 71

p=3 30 100 106 105 (102, 107) 105 107 90

3 100 200 162 (153, 168) 183 209 17
�=(-0.5,0,0.5) 10 100 122 107 (107, 114) 119 124 72

p=3 30 100 106 97 (99, 105) 106 110 88

3 100 200 137 (133, 146) 164 226 12
�=(0,0.25, 0.50) 10 100 122 103 (102, 109) 114 126 65

p=3 30 100 106 98 (99, 105) 104 108 87

3 100 200 109 (111, 125) 165 221 13
�=(0,0.5,1) 10 100 122 98 (97, 105) 114 128 65

p=3 30 100 106 102 (100, 106) 104 110 86

3 100 200 154 (148, 163) 173 221 14
�=(-0.25:2�4:0.25) 10 100 122 109 (110, 118) 117 122 71

p=9 30 100 106 102 (102, 108) 105 105 91

3 100 200 150 (148, 161) 173 221 14
�=(-0.25:2�5:0.25) 10 100 122 113 (109, 118) 116 122 71

p=17 30 100 106 104 (102, 108) 105 105 91

3 100 200 136 (132, 146) 163 225 12
�=(0:2�4:0.5) 10 100 122 100 (100, 108) 114 125 65

p=9 30 100 106 98 (97, 103) 104 107 87

3 100 200 134 (132, 146) 163 225 12
�=(0:2�5:0.5) 10 100 122 102 (100, 107) 114 125 65

p=17 30 100 106 99 (96, 103) 104 107 87
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Figure 2: Relative eÆciencies of �̂2p;MRE (pMRE) wrt �̂2MRE

(MRE) in a symmetric and asymmetric � cases, as a function

of �max and p for sample size of n = 10. Symmetric case of

form � = [��max : �max=(p � 1) : �max]; while asymmetric

case of form � = [0 : �max=(2(p� 1)) : �max].
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7. Recap: � (t) = F (t) Estimators

� M-UMVU:

z1(t) =

p
n

n� 1

0
B@t�

�X

S

1
CA

�̂UMV U(t) = T
0
BB@
p
n� 2z1(t)r
1� z1(t)2

;n� 2

1
CCA Ifjz1(t)j � 1g

+Ifz1(t) > 1g

� Mp-UMVU:

z3i(t) =
1p
n

0
@t� �i

�̂i

1
A ; i = 1; 2; : : : ; p

�̂UMV U;i(t) = T
0
BB@
p
n� 1z3i(t)r
1� z3i(t)2

;n� 1

1
CCA Ifjz3i(t)j � 1g

+Ifz3i(t) > 1g

�̂p;UMV U(t) = �̂UMV U;M̂(t) =
pX
i=1

IfM̂ = ig�̂UMV U;i(t)

� Mp-Limiting Bayes:

�̂p;LB(t) =
pX
i=1

8>><
>>:

(�̂2i )
�n=2

Pp
j=1 (�̂

2
j )
�n=2

9>>=
>>;
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� Also obtained distributional representations for these es-

timators which show that their distributions depend on

(t;�; �2) only through (�(t);�), where

�(t) =
t� �i0
�

= standardized t-value.

� But, even with the representations, no exact expressions of

their risk functions were obtained.

� Comparisons for the � (t)-estimators were therefore per-

formed through simulations.

Results of Comparisons

� For the � -estimators, eÆciencies are relative to �̂UMV U .

� To compare globally the � -estimators, we approximated the

risk functions arising from the global loss function

L3(�̂ ; (�; �
2)) =

Z 2
4�̂ (t)� �

0
@t� �

�

1
A
3
52�

0
@dt� �

�

1
A :



29

−2 −1 0 1 2

−
0
.0

2
0
.0

0
0
.0

2

Bias Plots

Standardized t−Values

B
ia

s

biasUMVU
biaspUMVU
biaspLB
biaspALB

−2 −1 0 1 2
0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Variance Plots

Standardized t−Values

V
a
ri
a
n
c
e

varUMVU
varpUMVU
varpLB
varpALB

−2 −1 0 1 2

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Risk Plots

Standardized t−Values

R
is

k

riskUMVU
riskpUMVU
riskpLB
riskpALB

−2 −1 0 1 2

5
0

1
0
0

1
5
0

Efficiency Plots

Standardized t−Values

E
ff
i 
R

e
 U

M
V

U

effiUMVU
effipUMVU
effipLB
effipALB

Figure 3: Pointwise biases, variances, risks, and relative eÆciencies

of the four distribution estimators �̂ , for � = (�1; 0; 1) and
sample size n = 10. For each standardized time point �(t),

10000 simulation replications were performed.
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Table 3: Relative global eÆciencies (rel. to the UMVU estimator

�̂ 2UMV U) of the three distribution estimators for di�erent com-

binations of p, �, and n. 10000 simulation replications were

performed for each combination.

Combinations pUMVU LB ALB Combinations pUMVU LB ALB
of p and � n E� % E� % E� % of p and � E� % E� % E� %

3 316 704 395 105 181 117
�=(-0.25,0,0.25) 10 190 419 197 �=(-1, 0, 1) 108 138 111

p=3 30 107 194 107 p=3 352 389 359

3 169 367 194 109 199 123
�=(-0.5,0,0.5) 10 94 158 96 �=(-1: 2�1 :1) 87 115 89

p=3 30 83 110 84 p=5 82 108 82

3 274 428 334 110 214 125
�=(0,0.25, 0.50) 10 190 220 197 �=(-1: 2�2 :1) 95 120 98

p=3 30 158 163 159 p=9 88 103 89

3 180 239 209 111 227 125
�=(0,0.5,1) 10 152 166 157 �=(-1: 2�3 :1) 98 123 101

p=3 30 145 181 146 p=17 97 103 97

3 321 779 403 110 230 124
�=(-0.25:2�4:0.25) 10 205 530 213 �=(-1: 2�4 :1) 99 125 102

p=9 30 128 288 129 p=33 99 103 99

3 319 774 400 111 239 125
�=(-0.25:2�5:0.25) 10 204 560 212 �=(-1: 2�5 :1) 99 126 102

p=17 30 130 313 131 p=65 99 103 100

3 274 431 334 110 237 124
�=(0:2�4:0.5) 10 196 204 204 �=(-1: 2�6 :1) 99 127 102

p=9 30 174 131 175 p=129 99 103 100

3 276 432 336 111 238 125
�=(0:2�5:0.5) 10 203 209 211 �=(-1: 2�7 :1) 99 127 102

p=17 30 176 125 178 p=257 99 103 100

3 176 259 204 111 239 125
�=(0, 1) 10 186 227 193 �=(-1: 2�8 :1) 99 127 102
p=2 30 525 553 539 p=513 99 103 100
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Figure 4: Relative global eÆciencies of pLB with respect to UMVU in a
asymmetric (p = 2) and symmetric (p = 3) � cases, as a function of
�max and sample size n. Scenario 1: Corresponds to an asymmetric
case of form � = (0;�max). Scenario 2: Corresponds to a symmetric
case of form � = (��max; 0;�max). For each combination of (n;�),
10000 simulation replications were performed.
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8. Concluding Remarks

� In models with sub-models, and interest is to infer about a

common parameter, possible approaches are:

� Approach I: Utilize procedures for a wider model sub-

suming the sub-models. Could lead to loss of eÆciency.

� Approach II: Utilize a two-step approach: First step is

to select the sub-model using the data; second step is to

use a procedure (e.g., estimator) for the chosen sub-model,

again using the same data.

Should recognize that properties of the two-step procedure

will be di�erent from the sub-model properties of the pro-

cedures.

� Approach III: Utilize a Bayesian framework. Assign a

prior to the sub-models, and (conditional) priors on the

parameters within the sub-models.

Resulting procedure is an adaptively weighted combination

of the (Bayes) procedures in the sub-models.
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� Approaches (II) and (III) appear preferable over approach

(I), but when the number of sub-models is large, approach

(I) may provide better estimators and a simpler determi-

nation of the properties.

� Hard to conclude which of approaches (II) or (III) is prefer-

able. In the Gaussian model considered, approach (II) per-

formed better in estimating the variance �2, but approach

(III) performed better in estimating the distribution func-

tion.

This calls for further studies in more complicated settings,

such as those that motivated our study.

� To conclude,

Observe Caution!

when doing inference after model selection especially when

double-dipping on the data!


