
Appetizers: By A. Einstein

The important thing is not to stop questioning.
Curiosity has its own reason for existing. One cannot
help but be in awe when he contemplates the
mysteries of eternity, of life, of the marvelous
structure of reality. It is enough if one tries merely to
comprehend a little of this mystery every day. Never
lose a holy curiosity.

Reading, after a certain age, diverts the mind too
much from its creative pursuits. Any man who reads
too much and uses his own brain too little falls into
lazy habits of thinking.
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Some Events of Interest
Death.

First publication after PhD graduation.

Occurrence of tumor.

Onset of depression.

Machine/system failure.

Occurrence of a natural disaster.

Hospitalization.

Non-life insurance claim.

Accident or terrorist attack.

Onset of economic recession.

Divorce.
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Event Times and Distributions
T : the time to the occurrence of an event of interest.

F (t) = Pr{T ≤ t} : the distribution function of T .

S(t) = F̄ (t) = 1− F (t) : survivor/reliability function.

Hazard rate/ probability and Cumulative Hazards:

Cont: λ(t)dt ≈ Pr{T ≤ t+ dt|T ≥ t} = f(t)

S(t−)dt

Disc: λ(tj) = Pr{T = tj |T ≥ tj} =
f(tj)

S(tj−)

Cumulative: Λ(t) =

∫ t

0
λ(w)dw or Λ(t) =

∑

tj≤t

λ(tj)

USC Stat Talk – p.3



Representation/Relationships
0 < t1 < . . . < tM = t,M(t) = max |ti − ti−1| = o(1),

S(t) = Pr{T > t} =
M
∏

i=1

Pr{T > ti|T ≥ ti−1}

≈
M
∏

i=1

[1− {Λ(ti)− Λ(ti−1)}] .

S as a product-integral of Λ: When M(t)→ 0,

S(t) =
∏

w≤t

[1− Λ(dw)]

In general, Λ in terms of F : Λ(t) =
∫ t

0
dF (w)

1−F (w−) .
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Estimation of F and Why?
Most Basic Problem: Given a sample T1, T2, . . . , Tn
from an unknown distribution F , to obtain an
estimator F̂ of F .

Why is it important to know how to estimate F?
Functionals/parameters θ(F ) of F (e.g., mean,
median, variance) can be estimated via θ̂ = θ(F̂ ).
Prediction of time-to-event for new units.
Knowledge of population of units or event times.
For comparing groups, e.g., thru a statistic

Q =

∫

W (t)d
[

F̂1(t)− F̂2(t)
]

where W (t) is some weight function.
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Gastroenterology Data: Aalen and Husebye (’91)

Migratory Motor Complex (MMC) Times for 19 Subjects
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Question: How to estimate the MMC period dist, F?
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Parametric Approach
Unknown df F is assumed to belong to some
parametric family (e.g., exponential, gamma, Weibull)

F = {F (t; θ) : θ ∈ Θ ⊂ <p}
with functional form of F (·; ·) known; θ is unknown.

Based on data t1, t2, . . . , tn, θ is estimated by θ̂, say,
via maximum likelihood (ML). θ̂ maximizes likelihood

L(θ) =
n
∏

i=1

f(ti; θ) =
n
∏

i=1

λ(ti; θ) exp{−Λ(ti; θ)}.

The distribution function F is estimated by

F̂pa(t) = F (t; θ̂). USC Stat Talk – p.7



Parametric Estimation: Asymptotics

When F holds, MLE of θ satisfies

θ̂ ∼ AN
(

θ,
1

n
I(θ)−1

)

;

I(θ) = Var{ ∂
∂θ log f(T1; θ)} = Fisher information.

Therefore, when F holds, by δ-method, with

•

F (t; θ) =
∂

∂θ
F (t; θ)

then

F̂pa(t) ∼ AN
(

F (t; θ),
1

n

•

F (t; θ)′I(θ)−1
•

F (t; θ)

)

.
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Nonparametric Approach
No assumptions are made regarding the family of
distributions to which the unknown df F belongs.

Empirical Distribution Function (EDF):

F̂np(t) =
1

n

n
∑

i=1

I{Ti ≤ t}

F̂np(·) is a nonparametric MLE of F .

Since I{Ti ≤ t}, i = 1, 2, . . . , n, are IID Ber(F (t)), by
Central Limit Theorem,

F̂np(t) ∼ AN

(

F (t),
1

n
F (t)[1− F (t)]

)

.

USC Stat Talk – p.9



An Efficiency Comparison
Assume that family F = {F (t; θ) : θ ∈ Θ} holds. Both
F̂pa and F̂np are asymptotically unbiased.

To compare under F , we take ratio of asymptotic
variances to give the efficiency of parametric
estimator over nonparametric estimator.

Eff(F̂pa(t) : F̂np(t)) =
F (t; θ)[1− F (t; θ)]

•

F (t; θ)′I(θ)−1
•

F (t; θ)
.

When F = {F (t; θ) = 1− exp{−θt} : θ > 0}, then

Eff(F̂pa(t) : F̂np(t)) =
exp{θt} − 1

(θt)2
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Efficiency: Parametric/Nonparametric

Asymptotic efficiency of parametric
versus nonparametric estimators under a correct

negative exponential family model.
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Whither Nonparametrics?
Consider however the case where the negative
exponential family is fitted, but it is actually not the
correct model. Let us suppose that the gamma family
of distributions is the correct model.

Under wrong model, with T̄ = 1
n

∑n
i=1 Ti the sample

mean, the parametric estimator of F is

F̂pa(t) = 1− exp{−t/T̄}.

Under gamma with shape α and scale θ, and since
T̄ ∼ AN(α/θ, α/(nθ2)), by δ-method

F̂pa(t) ∼ AN
(

1− exp{−θt/α}, 1
n

(θt)2

α
exp{−2(θt)/α}

)

.
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Efficiency: Under a Mis-specified Model

Simulated efficiency: parametric over nonparametric
under a mis-specified exponential family model.

True Family of Model: Gamma Family
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MMC Data: Censoring Aspect
For each unit, red mark is the potential termination time.
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Remark: All 19 MMC times completely observed.
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Estimation of F : With Censoring

For ith unit, a right-censoring variable Ci with
C1, C2, . . . , Cn IID df G.

Observables are (Zi, δi), i = 1, 2, . . . , n with
Zi = min{Ti, Ci} and δi = I{Ti ≤ Ci}.
Problem: For observed (Zi, δi)s, to estimate df F or
hazard function Λ of the Tis.

Nonparametric Approaches:
‘Naive’ (product-limit)!
Nonparametric MLE (Kaplan-Meier).
Martingale and method-of-moments.

Pioneers: Kaplan & Meier; Efron; Nelson; Breslow;
Breslow & Crowley; Aalen; Gill.
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Product-Limit Estimator
Counting and At-Risk Processes:

N(t) =
∑n

i=1 I{Zi ≤ t; δi = 1};
Y (t) =

∑n
i=1 I{Zi ≥ t}

Hazard probability estimate at t:

Λ̂(dt) =
∆N(t)

Y (t)
=

# of Observed Failures at t
# at-risk at t

Product-Limit Estimator (PLE):

1− F̂ (t) = Ŝ(t) =
∏

w≤t

[

1− ∆N(t)

Y (t)

]
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Some Properties of PLE

Nonparametric MLE of F (Kaplan-Meier, ’58).

PLE is a step-function which jumps only at observed
failure times.

With censored data, unequal jumps.

Efron (’67): Possesses self-consistency property.

Biased for finite n.

When no censoring and no tied values: ∆N(t(i)) = 1

and Y (t(i)) = n− i+ 1, so

Ŝ(t(i)) =
i
∏

j=1

[

1− 1

n− j + 1

]

= 1− i

n
.
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Stochastic Process Approach
A martingale M is a zero-mean process which
models a fair game. With Ht = history up to t:

E{M(s+ t)|Ht} =M(t).

M(t) = N(t)−
∫ t

0 Y (w)Λ(dw) is a martingale, so with
J(t) = I{Y (w) > 0} and stochastic integration,

E

{
∫ t

0

J(w)

Y (w)
dN(w)

}

= E

{
∫ t

0
J(w)Λ(dw)

}

.

Nelson-Aalen estimator of Λ, and PLE:

Λ̂(t) =

∫ t

0

dN(w)

Y (w)
, so Ŝ(t) =

∏

w≤t

[1− Λ̂(dw)].
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Likelihood Process: Hazard-Based

J. Jacod’s likelihood:

Lt(Λ(·)) =
∏

w≤t

[Y (w)Λ(dw)]N(dw) [1− Y (w)Λ(dw)]1−N(dw) .

When Λ(·) is continuous,

Lt(Λ(·)) =







∏

w≤t

[Y (w)Λ(dw)]N(dw)







e−
∫ t

0
Y (w)Λ(dw).

With T (t) =
∫ t

0 Y (w)dw = TTOT(t), for λ(t) = θ,

Lt(θ) = θN(t) exp{−θT (t)}.
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Asymptotic Properties

Proofs uses martingale central limit theorem.

NAE:
√
n[Λ̂(t)− Λ(t)]⇒ Z1(t) with {Z1(t) : t ≥ 0} a

zero-mean Gaussian process with

d1(t) = Var(Z1(t)) =
∫ t

0

Λ(dw)

S(w)Ḡ(w−) .

PLE:
√
n[F̂ (t)− F (t)]⇒ Z2(t)

st
= S(t)Z1(t) so

d2(t) = Var(Z2(t)) = S(t)2
∫ t

0

Λ(dw)

S(w)Ḡ(w−) .

If Ḡ(w) ≡ 1 (no censoring), d2(t) = F (t)S(t)!
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Gaussian Process: Sample Paths
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Regression Models

In many situations we observe covariates: age, blood
pressure, race, etc. How to account of them to
improve knowledge of time-to-event.

Modelling approaches:
Log-linear models:

log(T ) = β′x + σε.

The accelerated failure-time model. Error
distribution to use? Normal errors not appropriate.
Hazard-based models: Cox proportional hazards
(PH) model; Aalen’s additive hazards model.
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Cox (’72) PH Model: Single Event

Conditional on x, hazard rate of T is:

λ(t|x) = λ0(t) exp{β′x}.

β̂ maximizes partial likelihood function of β:

LP (β) ≡
n
∏

i=1

∏

t<∞

[

exp(β′xi)
∑n

j=1 Yj(t) exp(β
′xj)

]∆Ni(t)

.

Aalen-Breslow semiparametric estimator of Λ0(·):

Λ̂0(t) =

∫ t

0

∑n
i=1 dNi(w)

∑n
i=1 Yi(w) exp(β̂

′xi)
.
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MMC Data: Recurrent Aspect
Aalen and Husebye (’91) Full Data
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Problem: Estimate inter-event time distribution.
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Another Data Set: Bladder Cancer

Bladder Cancer Data Set
(Byar, 1980; Wei, Lin, Weissfeld, 1989)
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Representation: One Subject

3

A Pictorial Representation: One Subject

An observable covariate vector: X(s) = (X1(s), X2(s), …, Xq(s))t

Z

Unobserved

Frailty

s

0
τ

End of observation period
Observed events

Unobserved

EventAn intervention is performed just after each event

T1 T2 T3 T4

S1 S2 S3 S4

τ-S4
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On Recurrent Event Modelling

Performed intervention after each event occurrence.

Accumulating event occurrences. Could have a
weakening or strengthening effect.

Covariates, possibly time-dependent.

Association of event occurrences per subject.

Random observation monitoring period.

Number of events observed is informative.

Informative right-censoring mechanism because of
sum-quota accrual scheme.
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Observables: One Subject

X(s) = covariate vector, possibly time-dependent

T1, T2, T3, . . . = inter-event or gap times

S1, S2, S3, . . . = calendar times of event occurrences

τ = end of observation period: Assume τ ∼ G

K = max{k : Sk ≤ τ} = number of events in [0, τ ]

Z = unobserved frailty variable

N †(s) = number of events in [0, s]

Y †(s) = I{τ ≥ s} = at-risk indicator at time s

F† = {F†s : s ≥ 0} = filtration: information that
includes interventions, covariates, etc.
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Recurrent Event Models: IID Case

Parametric Models:

HPP: Ti1, Ti2, Ti3, . . . IID EXP(λ).
IID Renewal Model: Ti1, Ti2, Ti3, . . . IID F where

F ∈ F = {F (·; θ) : θ ∈ Θ ⊂ <p};

e.g., Weibull family; gamma family; etc.

Non-Parametric Model: Ti1, Ti2, Ti3, . . . IID F which is
some df.

With Frailty: For each unit i, there is an unobservable
Zi from some distribution H(·; ξ) and (Ti1, Ti2, Ti3, . . .),
given Zi, are IID with survivor function

[1− F (t)]Zi .
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Sum-Quota Effect: HPP Model

T1, T2, . . . IID EXP(λ) and τ ∼ G = EXP(η).

K = max{k :
∑k

j=1 Tj ≤ τ} = max{k : Sk ≤ τ}.

Given τ and K = k: With V1, V2, . . . , Vk
iid∼ UNIF[0, τ ],

then (S1, S2, . . . , Sk)
d
= (V(1), V(2), . . . , V(k)).

Given τ : K is sufficient (completely informative) for λ.

Given τ and K, (T1, T2, . . . , Tk) and (S1, S2, . . . , Sk) are
completely uninformative about λ;

Also, E{TK+1} = 1/θ + 1/(θ + η) > 1/θ.

MLE of λ based on n units:

λ̂ =
K•
τ•
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More General Models
References: Therneau and Grambsch (’00) book;
Therneau and Hamilton (’97); Cook and Lawless (’01);
Also, Kalbfleisch and Prentice, Lawless, Nelson books.

Time-to-first event: ignores information hence
inefficient.

Wei, Lin Weissfeld (WLW) marginal model: event
number used as stratification variable; separate
model per stratum.

Prentice, Williams and Peterson (PWP) conditional
method: ‘at-risk process’ for jth event only becomes
1 after the (j − 1)th event.

Andersen and Gill (AG) intensity model: ‘at-risk
process’ remains at 1 until unit is censored.
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A General Class of Models
Peña and Hollander (2004) model.

N †(s) = A†(s|Z) +M †(s|Z)

M †(s|Z) ∈M2
0 = sq-int martingales

A†(s|Z) =
∫ s

0
Y †(w)λ(w|Z)dw

Intensity:

λ(s|Z) = Z λ0[E(s)] ρ[N †(s−);α]ψ[βtX(s)]

This class of models includes as special cases many
models in reliability and survival analysis.
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Effective Age Process

10

Illustration: Effective Age Process

“Possible Intervention Effects”

s

0
τCalendar Time

Effective

Age, E(s)

No 

improvement

Perfect

intervention
Some

improvement

Complications
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Effective Age Process, E(s)
Predictable, observable, nonnegative, dynamically
specified, monotone, and differentiable on [Sk−1, Sk),
E(s) with E ′(s) ≥ 0.

Perfect Intervention: E(s) = s− SN†(s−).

Imperfect Intervention: E(s) = s.

Minimal Intervention (Brown & Proschan, ’83; Block,
Borges & Savits, ’85):

E(s) = s− SΓη(s−)

where, with I1, I2, . . . IID BER(p),

η(s) =

N†(s)
∑

i=1

Ii and Γk = min{j > Γk−1 : Ij = 1}.
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Semi-Parametric Estimation: No Frailty

Observed Data for n Subjects:

{(Xi(s), N
†
i (s), Y

†
i (s), Ei(s)) : 0 ≤ s ≤ s∗}, i = 1, . . . , n

N †i (s) = # of events in [0, s] for ith unit

Y †i (s) = at-risk indicator at s for ith unit

with the model for the ‘signal’ being

A†i (s) =

∫ s

0
Y †i (v) ρ[N

†
i (v−);α]ψ[βtXi(v)]λ0[Ei(v)]dv

where λ0(·) is an unspecified baseline hazard rate
function.
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Processes and Notations
Calendar/Gap Time Processes:

Ni(s, t) =

∫ s

0
I{Ei(v) ≤ t}N †i (dv)

Ai(s, t) =

∫ s

0
I{Ei(v) ≤ t}A†i (dv)

Notational Reductions:

Eij−1(v) ≡ Ei(v)I(Sij−1,Sij ](v)I{Y
†
i (v) > 0}

ϕij−1(w|α, β) ≡
ρ(j − 1;α)ψ{βtXi[E−1ij−1(w)]}

E ′ij−1[E−1ij−1(w)]
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Generalized At-Risk Process

Yi(s, w|α, β) ≡
∑N

†
i (s−)

j=1 I(Eij−1(Sij−1), Eij−1(Sij)](w) ϕij−1(w|α, β)+
I(E

iN
†
i
(s−)

(S
iN

†
i
(s−)

), E
iN

†
i
(s−)

((s∧τi))](w) ϕiN
†
i (s−)

(w|α, β)

For IID Renewal Model (PSH, 01) this simplifies to:

Yi(s, w) =

N
†
i (s−)
∑

j=1

I{Tij ≥ w}+ I{(s ∧ τi)− S
iN

†
i (s−)

≥ w}
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Estimation of Λ0

Ai(s, t|α, β) =
∫ t

0
Yi(s, w|α, β)Λ0(dw)

S0(s, t|α, β) =
n
∑

i=1

Yi(s, t|α, β)

J(s, t|α, β) = I{S0(s, t|α, β) > 0}

Generalized Nelson-Aalen ‘Estimator’:

Λ̂0(s, t|α, β) =
∫ t

0

{

J(s, w|α, β)
S0(s, w|α, β)

}

{

n
∑

i=1

Ni(s, dw)

}
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Estimation of α and β

Partial Likelihood (PL) Process:

LP (s
∗|α, β) =

n
∏

i=1

N
†
i (s

∗)
∏

j=1

[

ρ(j − 1;α)ψ[βtXi(Sij)]

S0[s∗, Ei(Sij)|α, β]

]∆N
†
i (Sij)

PL-MLE: α̂ and β̂ are maximizers of the mapping

(α, β) 7→ LP (s
∗|α, β)

Iterative procedures. Implemented in an R package
called gcmrec (Gonzaléz, Slate, Peña ’04).
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Estimation of F̄0

G-NAE of Λ0(·): Λ̂0(s∗, t) ≡ Λ̂0(s
∗, t|α̂, β̂)

G-PLE of F̄0(t):

ˆ̄F 0(s
∗, t) =

t
∏

w=0

[

1−
∑n

i=1Ni(s
∗, dw)

S0(s∗, w|α̂, β̂)

]

For IID renewal model with Ei(s) = s− S
iN

†
i (s−)

,
ρ(k;α) = 1, and ψ(w) = 1, the estimator in PSH
(2001) obtains.
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Sum-Quota Effect: IID Renewal

Generalized product-limit estimator F̂0 of common
gap-time df F0 presented in PSH (2001, JASA).

√
n( ˆ̄F 0(·)− F̄0(·)) =⇒ GP(0, σ2(·))

σ2(t) = F̄0(t)
2

∫ t

0

dΛ0(w)

F̄0(w)Ḡ(w−) [1 + ν(w)]

ν(w) =
1

Ḡ(w−)

∫ ∞

w

ρ∗(v − w)dG(v)

ρ∗(·) =
∞
∑

j=1

F ?j
0 (·) = renewal function
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Semi-Parametric Estimation: With Frailty

Recall the intensity rate:

λi(s|Zi,Xi) = Zi λ0[Ei(s)] ρ[N †i (s−);α]ψ(βtXi(s))

Frailties Z1, Z2, . . . , Zn are unobserved and assumed
to be IID Gamma(ξ, ξ)

Unknown parameters: (ξ, α, β, λ0(·))
Use of the EM algorithm (Dempster, et al; Nielsen, et
al), with frailties as missing observations.

Estimator of baseline hazard function under no-frailty
model plays an important role.

Details are in Peña, Slate & Gonzalez (2004, JSPI?).
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First Application: MMC Data Set

Aalen and Husebye (1991) Data
Estimates of distribution of MMC period

Migrating Moto Complex (MMC) Time, in minutes
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Second Application: Bladder Data Set

Bladder cancer data pertaining to times to recurrence for
n = 85 subjects studied in Wei, Lin and Weissfeld (’89).
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Results and Comparisons

Estimates from Different Methods for Bladder Data
Cova Para AG WLW PWP General Model

Marginal Cond*nal Perfect a Minimal b

logN(t−) α - - - .98 (.07) .79

Frailty ξ - - - ∞ .97

rx β1 -.47 (.20) -.58 (.20) -.33 (.21) -.32 (.21) -.57
Size β2 -.04 (.07) -.05 (.07) -.01 (.07) -.02 (.07) -.03

Number β3 .18 (.05) .21 (.05) .12 (.05) .14 (.05) .22

aEffective Age is backward recurrence time (E(s) = s− SN†(s−)).
bEffective Age is calendar time (E(s) = s).
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Estimates of SFs for Two Groups
Blue: Thiotepa Group Red: Placebo Group
Solid: Perfect Repair Dashed: Minimal Repair
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Concluding Remarks
Background in the estimation of an event-time
distribution under different settings.

General and flexible model: incorporates aspects of
recurrent event modelling.

Current deficiency: Effective age! paradigm shift in
data gathering.

Further studies: asymptotics; goodness of fit, and
validation & diagnostics. (R. Stocker, J. Quiton, R.
Strawderman)

Recurrent event model and longitudinal markers via
latent classes. (J. Han, E. Slate)

Special Topics (Stat 718) Spr 2006 dealing with
stochastic process approach to event-time modelling.
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