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1. Practical Problem

e Right-censored survival data for lung cancer patients from Gatsonis,

Hsieh and Korwar (1985).

e Survival times (in months): n = 86 with 23 right-censored.

0.99, 1.28, 1.77, 1.97, 2.17, 2.63, 2.66, 2.76, 2.79, 2.86, 2.99, 3.06, 3.15,
3.45, 3.71, 3.75, 3.81, 4.11, 4.27, 4.34, 4.40, 4.63, 4.73, 4.93, 4.93, 5.03,
5.16, 5.17, 5.49, 5.68, 5.72, 5.85, 5.98, 8.15, 8.26, 8.48, 8.61, 9.46, 9.53,
10.05, 10.15, 10.94, 10.94, 11.04+, 11.24, 11.63, 12.26, 12.65, 12.78,
13.18, 13.47, 13.53+, 13.96, 14.23+, 14.65+, 14.88, 14.91+, 15.05,
15.31, 15.47+, 16.13, 16.46, 16.49+, 17.05+, 17.28+, 17.45, 17.61,
17.88+4, 17.97+, 18.20, 18.37 18.83+ 19.06 19.55+ 19.58+ 19.75+
19.78+4 19.95+ 20.04-+, 20.24+, 20.70, 20.73+, 21.55+, 21.98+, 22.54,

23.36
e Probability histograms of the Complete and Censored Values.
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e Product-limit estimator and best-fitting exponential survivor function.
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e Question: Did the survival data come from the family of exponential

distributions? Or was it from the family of Weibull distributions?

e Another Data Set: Times to withdrawal (in hours) of 171 car tires in
Davis and Lawrance (1989, Scand. J. Statist.) from a car-tire testing

study, with withdrawal either due to failure or right-censoring.

e The pneumatic tires were subjected to laboratory testing by rotating
each tire against a steel drum until either failure [actually, there were
several competing causes| or removal (right-censoring).
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e Plots of the product-limit estimator, best-fitting exponential, and best-

fitting Weibull distribution.
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e Question: Is this failure-time car tires data consistent with an un-

derlying Weibull distribution?

e Both situations point to a goodness-of-fit problem with right-censored

data.



2. Densities and Hazards

e T' = a positive-valued continuous failure-time variable, e.g.,

¢ time-to-failure of a mechanical or electronic system
¢ time-to-occurrence of an event

¢ survival time of a patient in a clinical trial

e f(t) = density function of 7.
fR) At~ P{T € [t,t + At)}.
e F(t) =P{T <t} = distribution function
e F(t) =1 — F(t) = survivor function
e \(t) = f(t)/F(t) = hazard rate function.
AAt = PA{T € [t,t + At)|T > t}.

e A(t) = [E Mw)dw = —log[F(t)] = (cumulative) hazard function

e Equivalences:
F(t) = exp{—A(t)}

f(t) = At) exp{—A(t)}



e Two Common Examples:

¢ Exponential:

f(t;n) = nexp{—nt}
F(t;n) = exp{—nt}
At;m) =n

Atsm) = nt

o Two-Parameter Weibull:

f(t;a,m) = (an)(nt)* " exp{—(nt)*}
F(t; a,n) = exp{—(nt)*}
A(t; o, m) = (am)(nt)*~!

A(t; a,m) = (nt)”

¢ Qualitative Aspects from Plots of Hazards

Weibull Hazard Plots
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3. A Pitch for Hazard-Based Modeling

e Advantages of specifying models via hazards:

¢ Vantage point in density modeling: Time origin.

¢ Vantage point in hazard modeling: ‘Present, together with infor-

mation that accumulated in the past.’
o Qualitative aspects (e.g., [FR, or bath-tub) can be incorporated.

¢ Facilitates incorporation of dynamic evolution of system or com-

ponent.
¢ Likelihood construction natural via product integrals.
¢ Adapts well in the presence of right-censored or truncated data.

¢ Conducive to modeling with point processes (popularized by Aalen;

Andersen and Gill; etc.).



e Theory to be presented applicable to more general models, but will

only consider the following hazard-based models.

o IID Model: Ti,T5,...,T, IID with common unknown hazard

rate function A(t). Observable vectors:
(Zla 51)7 (Z27 52)7 ey (Zn7 571)

with

(SZ’:1:>TZ':ZZ'

0, =0="1T;, > Z,.

¢ Cox PH Model (also Andersen and Gill Model):
(T, X1), (To, X32), ..., (T, X;)
with
Arix (¢1X) = A(t) exp{ "X}

A(+) an unknown hazard rate function, and S a regression coeffi-

cient vector. Observable vectors:
(71,61, X1), (Z2, 02, X2),y - o s (Z, Oy X))

with

0=1=1T,= 7

0, =0=1T; > Z,.



4. Problems and Issues
e Problem (Goodness-of-Fit): Given
{(Zi,0i),i=1,2,...,n}
in the IID model, or
{(Z;,6:,X;),i=1,2,...,n}
in the Cox model, decide whether
A() €C={Xo(m) :meT}
where 7 is a nuisance parameter vector.

¢ C could be: Exponential, Weibull, Gamma; or IFRA class.

¢ Importance?

¢ Previous works on GOF problem with censored data: Akritas (88,
JASA), Hjort (90, AS), Hollander and Pena (92, JASA), Li and

Doss (93, AS), and others.

¢ Generalize Pearson’s:

¢ Difficulty: O;’s not computable with censored data. Also, any
optimality properties of existing tests?

9



e Problem (Model Validation): Given {(Z;,d;),7 = 1,2,...,n} or
{(Zi,0i, X;),i = 1,2,...,n}, how to assess model assumptions (e.g.,

[ID assumption, model structure)?

o Unit Exponentiality Property (UEP)

T ~ A(-) = A(T) ~ EXP(1)

o IID model: If Ag(+) is the true hazard function, then with R) =
AO(Zi))
(RY,01), (R, 83), ..., (R, b,)

is a right-censored sample from EXP(1).
o Since Ag(-) is not known, the R)’s are estimated by R;’s with
R, =A(Z), i=1,2,...,n,

~

A(+) is an estimator of Ay(-) based on the (Z;, d;)’s.

o Idea: (R;,0;)’s assumed to form an approximate right-censored
sample from EXP(1), so to validate model, test whether (R;, d;)’s

is a right-censored sample from EXP(1).

¢ Question: How good is this approximation, even in the limit??7?
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o For Cox PH model, the analogous expressions for RY and R; are:

R? = AO(ZZ) GXP{BXZ'}, 1=1,2,...,m;

Ri = /A\(ZZ) eXp{BXZ-}, 1= 1,2,...,’[1.

+ A(-) is an estimator of Ag(-) [e.g., Aalen-Breslow estimator].

x (3 is an estimator of 3 [partial likelihood MLE].

o RY’s are true generalized residuals (Cox and Snell (68, JRSS)).

¢ R;’s are estimated generalized residuals.

¢ Generalized residuals are analogs of linear model residuals:

“(Observed Value) minus (Fitted Value).”

¢ Question: Effects of substituting estimators for the unknown pa-

rameters, even when the estimators are consistent??
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5. Class of Smooth GOF Tests
e Convert observed data
(71,61, X1), (Z2, 02, X2),y - oy (Z, Oy X))
into stochastic processes.
e For:=1,2,...,n,and t > 0, let
Ni(t) = I{Z; <t,6; = 1};

Yi(t) = I{Z: > t}.

At NC), B) = /Oty,-(w)A(w) exp{ ' X; }dw:
Mi(t; /\()7 5) — Nz(t) - Az(ta )‘()7 ﬁ)
e If \o(-) and Sy are the true parameters,

MO(t) = (Mi(t; Xo(-), Bo)s - - -, Mo (t; M0(+), Bo))

are orthogonal sg-int zero-mean martingales with predictable quadratic

variation processes
<Mi07 M10>(t) = Al(t7 )‘0(')) 60)
e Problem: Test

Hy: X)) eC={X(sm):ne X} versus Hy: A(-) ¢C.

12



e Idea: If \y(+) is the true hazard rate function, then under Hy there is

some 19 € T such that
Ao(+) = Ao(+5m0)-

e Define

K(t;m) :log[ Yolt) ]

Ao(t;m)

e IC = collection of such {k(:;n):n € T}.
e Basis set (e.g., trigonometric, polynomial, wavelet, etc.) for K:
U= {¢1(5m), ¥2(55m), -5
K(t;n) = Zl 0;(t;n) = 0"
J:
e For smoothing order K, approximate x(-;n) by
K /
K(t;n) = Zl Ojh(t;n) = O Wi
J:
e Equivalently,
K

Zl9j¢(t; n)} :

]:

Ao(t) & Ao(t;n) eXp{
e Define:
K
Cr = {AK(-;H,W) = Xo(5m) exp{Zlﬁj%(-;n)} . Ok eRNne T} :
i

e Embedding: Hy C Ck.
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o Goodness-of-Fit Tests: Score tests for

Hy:0k=0,6€B versus H;:0 #0,0€B.

e Tests introduced in Pefia (1998, JASA; 1998, AS).
e Since score tests, they possess local optimality properties.
e Likelihood function: obtained via product integration.

e Score function for i at 0 = 0:
Q(n,B) = 21/0 Uk (n) {dN; — Yido(n) exp{B'X;}dt} .
e Not a statistic since n and § are unknown.

e Plug-in estimators for 7 and 8 under the restriction 6 = 0.

e Estimate 8 by B which solves

S(8) = 3. [ 1X: = B(8))N, = o

~SU,B).
E(t,ﬁ) - S(O)(t,ﬂ)’
St B) = 3° XEMY exp{BX;}, m=0,1,2.
=1

e Estimate n by n which solves
R(n, ) = 2/0 p(n) {dN; = Yido(n) exp{B'X;}dt} = 0;
0
p(t,n) = -—log Ao(t, 7).

on
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e Test statistic:

with

N n

Q= Q1,8 = X [ Ux(i) {AN; — Yido(d) exp{ 5 X }dt}

1=1

e = is an estimator of the limiting covariance matrix of %Q.

e Sk is a function of the generalized residuals (Ry,d1), ..., (Rn, 0n).

6. Asymptotics

e Proposition: If the parameters are known,

1 Q (10, Bo) ; 0 Y11 Y12 0
7n R(no,Bo) | — N || 0 [, X=] X ¥ 0 :
S(Bo) 0 0 0 i
SO
1

ﬁQmo,ﬁo) 45 N(0,31y).

e Theorem: With estimated parameters,

1
NG

1

%Q(ﬁ,ﬁ) 4 Ng(0, B)

Q

where
E =1 Y1080 Yo 4 (A — T19X50 Ag) X5 (A — 215555 Ay)'.

e Proof: Relies on Rebolledo’s MCT.
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7. Effects of the Plug-In Procedure
¢ From
E =1 — 210 Yo + (A1 — D195 A0) S5 (A1 — 19855 As)Y,

replacing (n, 8) by (7, B) to obtain the statistic Q has no asymptotic
effect if

212 =0 and Al = 0,
since Y11 is the limiting covariance for ﬁQ(an Bo)-

¢ Essence of “adaptiveness:” it does not matter that nuisance parame-

ters (n, §) are unknown in Q(n, 3) since replacing them by their esti-

A
~

mators does not make the asymptotic distribution of Q(7,

from Q(no, Bo)-

) different

o Y12 = 0 is an orthogonality condition between W (1) and p(np).
o Ay = 0 is an orthogonality condition between p(ny) and e(no, 5y).

¢ Orthogonality defined in a Hilbert space whose inner product is

<f) g> = /OT ngO(dt)a
with
vo(A) = /A 9 (10, Bo) Ao (10)dt;

o1
s (t;m0, Bo) = thﬁs(o) (#3105 Bo)-

16



¢ Can we always choose Vi to satisfy orthogonality conditions? Yes,

via a Gram-Schmidt process ... but hard to implement!

o If orthogonality conditions are not satisfied, substituting (77,3) for
(mo, Bo) in Q(no, Bo) impacts on the asymptotic distribution of Q, even

iof the estimators are consistent.
¢ Second term in =: effect of estimating n by 7.
¢ Third term in =: effect of estimating 3 by the partial MLE B

¢ Estimating 8 by B leads to an increase in variance because this esti-

mator is less efficient than the full MLE of 3.

¢ Ignoring effect on variance could have dire consequences in the

goodness-of-fit testing.

o If overall effect is a variance reduction, ignoring effect may result in a
highly conservative test and lead into concluding model appropriate-

ness when model is inappropriate.
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8. Form of Test Procedure

e Recall:
= Q. B) = X [} W) {aN; — Yido(i) exp X, )t}

A

Q

e Estimating Limiting Covariance Matrix, =: With

®2
{dN; + Yido () exp{ Bt X;}dt}

() B(B) {aN; + Yido(7) exp{B' X }at}

n T

A 1
~ 1 r T ~ ~
Ao =50 3 [ P)E(B) {AN: +Yido (i) exp {5 Xt}

an estimator of = is

= =311 — S1oX5 S + (A1 — B85 Ag) S5 (Ag — D185 Ay)f

e Asymptotic a-Level Test:
Reject Hy : A\(+) € C; 8 € B whenever
_Llyan a1y g 2
SK — E {Q }{‘—‘ }{Q} 2 XK*;a7

=~ = Moore-Penrose generalized inverse of = and K* = rank(Z)
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9. Choices for Vg

e Partition [0,7]: 0 =ay < a1 < ... <ag1<ag =T

o Let
Vic() = [Tio.) (): Tawan (8)s ooy T 111(8)]
e Then
Q=[01—E;,0y— E,, ..., O — Ex]’
where

O—Z L dANi(t)

E; = z/ (£) exp{ 8" X; Y Ao(t; ) dt.
e O;’s are observed frequencies.

o I;’s are estimated dynamic expected frequencies.

e Extends Pearson’s statistic, but ‘counts are in a dynamic fashion.’

e Resulting test statistic not of form

£ (0~ B)’
& E

because correction terms in variance destroys diagonal nature of co-

variance matrix.

e If adjustments are ignored, distribution is not chi-squared.

e Procedure extends Akritas (1988) and Hjort (1990).
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e Example:

— Consider no covariates (so X; = 0);

— C = {)\o(t;n) = n}, that is, Exponential distribution.

efForj=12,... K,
0j=% [ dn

=%, "
i1 Jg dN;(t)  Number of events
Sy JgYi(t)dt

= Total exposure

e Resulting test statistic:

Sk = E.[p — 7] [Dg(#) — #7'] " [p — 7],
where
K
E, =) Ej;

j=1
= 10,0, ..., 00)
p_E. 1,V2,. y VK )
R 1 ¢
= —(El, EZ: 7EK)

o [/, £n.

e Appropriate degrees-of-freedom for the statistic is K —1 since 1*7 = 1.
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¢ Polynomial-type:
_11t
Ur(t;n) = [1, Ao(m), Ao(t;n)? ..., Ao(tsm)* ']

e Resulting Q vector has components Qj,j =1,2,..., K given by

Q= X exp{~( = DX [ '™ {AN] (w) = ¥ (w)dw)

where, with

R; = No(Zi; ) exp{BX;}

being the estimated residuals,

NR(’LU) :]{Rz gw,& = 1};

Y (w) = I{R; > w}.

e Nfs and Y/®’s are generalized residual processes.

e Resulting test generalizes test proposed by Hyde’s (mid '70’s).

e Other Choices: Total-time-on-test ... this leads to a generalization of
a test proposed by Barlow, Bartholomew, Brunk and Bremmer (1972)

... good for IFR alternatives.
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10. Levels of Tests for Different K'’s

e Polynomial: Ui (t;n) = (1, Ao(t;n), .. -,AO(tW)K—l)t

e K € {1,2,3,4}; censoring proportion € {25%,50%} and true failure

time model were exponential and 2-Weibull. # of Reps = 2000

Null Dist. Exponential(n)

Parameters n=2 n=2>
% Uncensored | 75% | 50% || 75% | 50%
Level 5% 5% 5% 5%

n K

2 4.65| 6.65 5.00 | 5.60
50 3 5.45 | 5.50 4.35| 4.95
4 6.95 | 5.50 5.10| 5.85
5 6.40 | 5.00 5.20 | 4.20
2 490 | 4.75 4.45| 4.35
100 3 4.55| 4.35 4.65 | 4.25
4 5.70 | 5.30 5.10 | 4.80
5) 5.75 | 4.90 5.30 | 4.75

Null Dist. Weibull(«, n)
Parameters | (o,n) = (2,1) | (o, n) = (3,2)
% Uncensored | 75% | 50% || 75% | 50%

Level 5% 5% 5% 5%

n K
2 4.30 | 4.80 4.60 | 6.20
50 3 5.40 | 5.15 6.30 | 5.70
4 4.80 | 4.80 6.10 | 5.30
5 5.25 | 3.45 6.70 | 4.60
2 3.90 | 4.95 4.20| 4.80
100 3 5.75 | 4.65 5.15| 5.25
4 5.55 | 4.15 5.00 | 4.30
5 6.00 | 4.65 5.80 | 5.30
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11. Power Function of Tests

Simulation Parameters: n = 100; 25% censoring.
Legend: Solid line (K = 2); Dots (K = 3); Short dashes (K = 4); Long
dashes (K =5).

Figure 1: Simulated Powers for Null: Exponential vs. Alt: 2-Weibull
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Figure 2: Simulated Powers for Null: Exponential vs. Alt: 2-Gamma
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Figure 3: Simulated Powers for Null: 2-Weibull vs. Alt: 2-Gamma
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Some Observations:

e Appropriate smoothing order K depends on alternative considered.
e Not always necessary to have large K'!

e Tests based on S3 and Sy could serve as omnibus tests, at least for the

models in these simulations.

e Calls for a formal method to dynamically determine K. Plan: to
utilize information-based criteria to determine appropriate smoothing

order.
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12. Back to the Lung Cancer Data

e Product-Limit Estimator (PLE) of survival curve together with confi-

dence band, and the best fitting exponential survival curve.
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e Testing Exponentiality: Values of test statistics using the polynomial-

type specification, together with their p-values are:
Sy =1.92(p = .1661); S3 = 1.94(p = .3788);
Sy =T7.56(p=.0561); S;=12.85(p=.0121).
e Close to a constant function, but with high frequency terms.

e Testing Two-Parameter Weibull: Value of S3, together with its
p-value, is

S3=28.35 (p=.0153)

Values of S5 and S5 both indicate rejection of two-parameter Weibull

model.
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13. Back to the Car Tire Example
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Results for Testing Exponentiality

Summary of Results of Smooth Goodness-of-Fit Test
Testing for Exponential Distribution

Input FileName: C:\Talks\TalkATUG\davislawrancecartiredata.txt
Output FileName: C:\Talks\TalkATUG\cartire.out

Sample Size = 171

Sum of Z_i = 36457 .0000000000

Sum of Delta_i = 150

Estimate of Eta = 4.114436185094769E-003
Estimate of Mean = 243

k S_k DF P-Value
1 0.0000 0 1.00000
2 172.3710 1 0.00000
3 174.9297 2 0.00000
4 175.7617 3 0.00000
5 175.7839 4 0.00000

Conclusion: Results very consistent with the graphical display: the
exponential model does not hold.
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Results for Testing the Weibull Class

Summary of Results of Smooth Goodness-of-Fit Test
Testing for the Two-Parameter Weibull Distribution
Using the Polynomial Specification for Psi

Input FileName: C:\Talks\TalkATUG\davislawrancecartiredata.txt
Output FileName: C:\Talks\TalkATUG\cartireWeibull.txt

Sample Size = 171

# of Uncensored Values = 150.000000000000
Estimate of alpha = 3.41809555692639
Estimate of eta = 4.085166006131305E-003

k S_k DF P-Value

1 0.0000 0 1.00000

2 0.5013 1 0.47891

3 0.5550 2 0.75769

4 6.4203 3 0.09286

5 6.5183 4 0.16364

Conclusions From Analysis

e Cannot reject the hypothesis that the Weibull class holds for this car

tire data.

e Notice in particular the p-values associated with the different smooth-

ing order.

e Result of test consistent with the plots of the survivor estimates.
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14. Extensions and Open Problems

e When failure times are discrete or interval=censored. Paper with V.
Nair now in draft form. New twist is that embedding of the discrete

hazards is through their odds!

e How about if the failure times are of a mixed-type, i.e., with continuous

and discrete components?

e Problem of adaptively determining the smoothing order to be ad-

dressed.

e Promising possibility for k: Wavelets as Basis??!

15. Conclusions

e Presented a formal approach for developing GOF tests with censored

data, and extends in a more natural way Neyman’s smooth gof tests

(cf., Rayner and Best (1989), Smooth Goodness of Fit Tests).

e Resulting tests possess optimality conditions by virtue of being score

tests.

e Able to see effects of estimating nuisance parameters: (Morale: Don’t

Ignore!)

e Potential problems when using generalized residuals in model valida-

tion: (Morale: Intuitive considerations may Fail!)
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