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Multiple Hypotheses Testing
Multiple hypotheses testing problems (MHTP); large
M , small n settings; microarrays, proteomics,
astronomy, other areas.

Recent papers in Annals of Stat; Stat Science; JASA,
notably Efron’s. Books, e.g., Dudoit and van der Laan
(2007). Well-known researchers involved on this!

Many MHTP procedures start with p-values of the
tests for the M pairs of null and alternative
hypotheses. Example: Benjamini-Hochberg (JRSS
B, ’95) FDR-controlling procedure.

Active and challenging area with many challenges:
conceptual (frequentist vs Bayes), theoretical
(distributions), and computational (particle filters?).
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Mathematical Setting

Table 1: Tabular Form of Elements in an MHTP.
‘Genes’ 1 2 ... M

Observable Vectors (Data) X1 X2 ... XM

Data Spaces X1 X2 ... XM

Null Hypotheses H10 H20 ... HM0

Alternative Hypotheses H11 H21 ... HM1

True States (Unknown) θ1 θ2 ... θM

Test Functions δ1 δ2 ... δM

P -Values P1 P2 ... PM

Note: Each Xm could be of a complicated structure, and
they need not be of the same structure.
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Usual Assumptions
θm = I{Hm1 is true}: indicates whether Hm1 is true.

Pm|Hm0 ∼ U [0, 1] and Pm|Hm1

st
≤ U [0, 1].

δm(xm) ∈ {0, 1}, i.e., nonrandomized. The test
δm : Xm → {0, 1} depends only on Xm.

Usually δm is chosen to be the ‘best’ test (MP, UMP,
UMPU) when dealing with Hm0 versus Hm1 only, for
each m.

Generally, the Xms are tacitly assumed continuous
and the tests (or the Xms) are independent.

Continuity needed for uniformity of P -values to hold
under the null hypotheses.
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Example: Two-Groups, M ‘Genes’

‘Genes’ Group 1 (Control) Group 2 (Diseased)
1 X11, . . . , X1n11

Y11, . . . , Y1n12

2 X21, . . . , X2n21
Y21, . . . , Y2n22

...
...

...
M XM1, . . . , XMnM1

YM1, . . . , YMnM2

May have, for example:

Xm1, Xm2, . . . , Xmnm1
IID Fm

Ym1, Ym2, . . . , Ymnm2
IID Gm

X ⊥ Y

For each m: Hm0 : Fm = Gm vs Hm1 : Fm
st
< Gm
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Components of Data Set
Number of replications, the nmg, g = 1, 2, need not be
identical; usually nmg << M .

Distributions of X and Y may vary from gene to gene.

For some m, X and Y may be discrete, in others
continuous.

For each gene data could be a multi-group data, a
regression-type data, or of more complicated form.

Problem: Determine genes for which the distributions
of X and Y differ. Thus, to test M pairs of null and
alternative hypotheses, Hm0 vs Hm1.

Issues: Presentation and visualization of data. Also,
efficient reduction to lower-dimensional spaces.
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Illustration: Simulated Data
Data Generation

G = 2 groups; M = 100 ‘genes’

θ1, θ2, . . . , θm IID Ber(0.20). These are the indicators
of which alternative hypotheses are correct. 80%
chance of a correct null.

ηm = |Normal(2, 1)|I{θm = 1}. These are the true
alternative means. If non-zero, alternative is correct.

n1 = n2 = 10: number of replications per group per
gene.

Xmj , j = 1, 2, . . . , n are IID Normal(0, 1)

Ymj , j = 1, 2, . . . , n are IID Normal(ηm, 1)
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Visualizations: Paired Box Plots, First 8 Genes
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Visualizations: A Heat Map
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Decision-Making
P -Values are from the two-sample t-test for each gene.
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‘Unconscious’ Statistician’s Rule
Decision Rule: Reject all Hm0s with Pm ≤ 0.05.

A summary of the performance:

Hypotheses Hypotheses Total
Accepted Rejected

Correct Nulls U = 80 V = 5 M0 = 85

False Nulls T = 3 S = 12 M1 =15
Total M − R = 83 R = 17 M = 100

Family-wise error rate (FWER) = 100%.

False Discovery Rate (FDR) = (5/17)*100 = 29%.

Missed Discovery Rate (MDR) = (3/15)*100 = 20%.
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‘Jekyll & Hyde’ of Multiplicity
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Random Typewriter duplicates Dan Brown’s Angels
and Demons, not only once, but twice!

Someone wins a multimillion lottery twice!

Some Issues of Optimality in Multiple Hypotheses Testing – p.11



Formalization: Spaces and Losses
Parameter (θ) Space: Θ = {0, 1}M

Action (a) Space: A = {0, 1}M

Data (x) Space: X = X1 ×X2 × · · · × XM

L0(a, θ) = I
{

∑M
m=1 am(1 − θm) > 0

}

L1(a, θ) =
[∑

M

m=1
am(1−θm)

∑

M

m=1
am

]

I
{

∑M
m=1 am > 0

}

L2(a, θ) =
[∑

M

m=1
(1−am)θm

∑

M

m=1
θm

]

I
{

∑M
m=1 θm > 0

}

Note that L1(a, θ) is the false discovery rate (FDR)
and L2(a, θ) is the missed discovery rate (MDR) for
action a and state θ.
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Decision and Risk Functions
MHTP Decision Function (MHTPDF):

δ = (δ1, δ2, . . . , δM ) : X → A

Risk Functions for a MHTPDF δ

R0(δ, θ) = Eθ[L0(δ(X), θ)].

FWER(δ) ≡ R0(δ,0), family-wise error rate.

R1(δ, θ) = Eθ[L1(δ(X), θ)], (expected) FDR.

R2(δ, θ) = Eθ[L2(δ(X), θ)], (expected) MDR.
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FWER Control: Sidak Procedure

Given α ∈ (0, 1), define

η = 1 − (1 − α)1/M .

The Sidak MHTPDF rejects all null hypothesis Hm0

with pm(xm) ≤ η, where pm(xm) is the observed
p-value for testing Hm0 versus Hm1.

Procedure is p-value based.

Independence of the Xm,m = 1, 2, . . . ,M , crucially
needed to achieve control.
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FDR Control: BH Procedure
Let q∗ ∈ (0, 1) be the desired FDR level.

Let p(1) ≤ p(2) ≤ . . . ≤ p(M) be the ordered p-values,
and let H(m)0 be the null hypothesis associated with
p(m). Define

J = max

{

m ∈ {1, 2, . . . ,M} : p(m) ≤
q∗m

M

}

.

BH MHTPDF: Reject all H(m)0 for m = 1, 2, . . . , J .

Benjamini-Hochberg (JRSS B (95)) proved that this
p-value based procedure, which is adaptive, achieves
the desired FDR control at q∗ whatever θ0 is.
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BH Plot on Illustrative Data
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Sidak & BH Performances: α = .05

Hypotheses Hypotheses Total
Accepted Rejected

Correct Nulls 85, 84 0, 1 85
False Nulls 7, 6 8, 9 15

Total 92, 90 8, 10 100

Observed Error Rates:

Sidak: FWER = 0; FDR = 0; MDR = (7/15)*100 =
47%.

BH: FWER = 100%; FDR = (1/10)*100 = 10%; MDR
= (6/15)*100 = 40%.
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The Motivating Question

What is the role of the power functions of the
individual tests in MHTP procedures, or did we use
them at all?

FWER-controlling procedures, e.g., Sidak procedure,
or FDR-controlling procedures, e.g., BH procedure,
assumes the same powers for each of the M tests as
the p-values are treated in a symmetric fashion.

Unlikely however that M tests will all have the same
powers.

Different power functions may arise due to different
distributions, tests used (t-test; Wilcoxon), or effect
sizes.
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A Look into History

1920-30s, Neyman and Pearson: consider
alternatives. Contrast to then-existing significance
testing (p-value) approach.

NP framework: most powerful (MP) and uniformly
most powerful (UMP) tests; monotone likelihood ratio
(MLR) property.

In MHTP, view configurations of M pairs of
hypotheses as ‘alternative.’ From NP lesson,
behooves to exploit alternative configuration and
individual powers of the tests.

As in NP theory, start with simple versus simple
hypotheses per gene!
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Revised Mathematical Setting

‘Genes’ 1 2 ... M

Observed Data X1 X2 ... XM

Data Spaces X1 X2 ... XM

Density of Xm f1 f2 ... fM

Randomizers U1 U2 ... UM

Nulls H10 : f10 H20 : f20 ... HM0 : fM0

Alternatives H11 : f11 H21 : f21 ... HM1 : fM1

True States θ1 θ2 ... θM

NP MP Tests δ∗1(η1) δ∗2(η2) ... δ∗M (ηM )

Test Sizes η1 η2 ... ηM

Test Powers π1(η1) π2(η2) ... πM (ηM )
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Elements of Revised Setting
fm0: known density or mass functions.

fm1: known density or mass functions.

U1, U2, . . . , UM are IID U [0, 1] variables, independent
of the Xms.

Ums auxiliary data generated at start of experiment.
Used only if there is a need to randomize in each of
the tests.

δ∗m(Xm, Um; ηm) is the nonrandomized (we have a
randomizer Um) Neyman-Pearson most powerful test
for Hm0 vs Hm1 of size ηm.

πm(ηm) = Pr{δm(Xm, Um; ηm) = 1|Xm ∼ fm1}: power
of test δm(ηm). Viewed as a function of the size ηm.
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Students, Quick! NP MP-Test
For testing Hm0 : fm = fm0 versus Hm1 : fm = fm1 based
on Xm, the size ηm most powerful test is of form:

δm(Xm; ηm) =











1 if λm(Xm) > cm(ηm)

γm(ηm) if λm(Xm) = cm(ηm)

0 if λm(Xm) < cm(ηm)

,

where

λm(xm) =
fm1(xm)

fm0(xm)

and cm(ηm) and γm(ηm) ∈ [0, 1) are chosen to satisfy the
size requirement E{δm(Xm; ηm)|Xm ∼ fm0} = ηm.
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Using the Randomizer Um

The NP most powerful test may need to randomize when
λm(xm) = cm(ηm). As we statisticians are apt to proclaim,

When in doubt, Randomize!

When given the auxiliary data Um, it could be made a
nonrandomized test via:

δ∗m(Xm, Um; ηm) = I{δm(Xm; ηm) = 1}+

I{δm(Xm; ηm) = γm(ηm); Um ≤ γm(ηm)}.

This is the form of the tests displayed in the table of the
revised mathematical setting.
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(Optimal) Choice of MHTPDF δ

With FWER-Control at Level α:

Given an α ∈ (0, 1), to find a δ such that
FWER(δ) = R0(δ,0) ≤ α with R2(δ,1) minimized (or
made small).

With FDR-Control at Level q∗:

Given a q∗ ∈ (0, 1), to find a δ such that R1(δ, θ0) ≤ q∗

with R2(δ,1) minimized (or made small). Here, θ0 is
the true state and is unknown.
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(Weak) FWER and MDR

Suppose then that the respective sizes of the MP tests
are η1, η2, . . . , ηM . Then,

FWER(δ∗) = 1 −
M
∏

m=1

(1 − ηm);

and

R2(δ
∗,1) =

1

M

M
∑

m=1

(1 − πm(ηm)).
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Optimal FWER Control
The problem of choosing an MHTPDF with FWER ≤ α
amounts therefore to choosing the test sizes

(η1(α), η2(α), . . . , ηM (α))

such that
M
∑

m=1

πm(ηm) is maximized

subject to the constraint

M
∏

m=1

(1 − ηm) ≥ 1 − α.
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Existence

Theorem: For any α ∈ (0, 1), there always exists a size
vector

η(α) = (η1(α), η2(α), . . . , ηM (α))

that solves the constrained optimization problem.

Hence an optimal MHTPDF that controls the FWER
among the (restricted) class of decision functions always
exists.

Remark: Restricted class since δm is made only to
depend on Xm for each m.
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Main Ideas Behind Proofs
ηm 7→ πm(ηm) is a concave, continuous, and
nondecreasing function, with πm(1) = 1.

The constraint set Cα = {η :
∏

m(1 − ηm) ≥ 1 − α} is
a closed and convex set containing 0.

For each b, the set Nb = {η :
∑

m πm(ηm) ≥ Mb} is a
closed and convex set containing 1 and is
nonincreasing in b. Also, N0 = [0, 1]M .

Maximize b such that Cα ∩Nb 6= ∅.

Separating Hyperplane Theorem guarantees the
existence of such an optimal b∗ = b.

A size vector in the non-empty intersection Cα ∩Nb∗

is optimal.
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Case of M = 2: Regions in η-Space
BLUE: Upper Boundary of Cα for α = .40; Other Colors:
Lower Boundaries of Nb for Increasing b.
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Uniqueness
Theorem: If the power functions ηm 7→ πm(ηm) are strictly
increasing for each m = 1, 2, . . . ,M , then the optimal size
vector (η1(α), η2(α), . . . , ηM (α)) is unique.

Remark: Cases where non-uniqueness occur are
associated with non-regular families such as the uniform
distribution or shifted exponential where the power
function, as a function of the size, could equal one for
sizes less than one.

Corollary: The Sidak MHTFDF obtains when the power
functions ηm 7→ πm(ηm) for m = 1, 2, . . . ,M are identical.
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When Twice-Differentiable
Theorem: If ηm 7→ πm(ηm) is twice-differentiable with
first derivative π′

m(ηm) and second derivative π′′

m(ηm),
the optimal size vector (η1, η2, . . . , ηM ) solves the
Lagrange equations

∀m : π′

m(ηm)(1 − ηm) = λ ∈ ℜ;

M
∑

m=1

log(1 − ηm) = log(1 − α).

In PHM (08) we have written an R code to compute
this optimal size vector for certain situations involving
normal, exponential, and binomial distributions.
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Families with MLR Property
Formulation is for simple null vs simple alternative for
each m so appears limited.

Suppose Xm ∼ fm ∈ Fm = {fm(x;βm) : βm ∈ ℜ}
possessing monotone likelihood ratio (MLR) property.

UMP exists for Hm0 : βm ≤ βm0 vs Hm1 : βm > βm0.

Focus might be on βm1(> βm0) on which a desired
power is needed, and this determines effect size.
Power is evaluated at the value βm1.

Therefore, framework extends more generally in MLR
families.

In the examples, the elements of effect size vector is
varied to induce different powers.

Some Issues of Optimality in Multiple Hypotheses Testing – p.32



Example: Normal Distributions
Setting: Xm ∼ N(µm, 1),m = 1, 2, . . . ,M .

At each m, to test Hm0 : µm ≤ 0 vs Hm1 : µm > 0.

The UMP test of level ηm:

δ∗m(Xm; ηm) = I{Xm > Φ−1(1 − ηm)}

with Φ−1(·) is standard normal quantile function.

Effect Size: γm = µm1. Power at this effect size is

πm(ηm) = 1 − Φ(Φ−1(1 − ηm) − γm).

Effect Size Vector: γ = (γ1, γ2, . . . , γM ).
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Normal Example: Small M

Effect Size, γ, Size Vector/[Effi over Sidak]

Configuration M = 20

M/2 : (.5, 1) 10 : (0, .0051)

[125.1]

M/2 : (1, 5) 10 : (.0035, .0016)

[100.3]

M/4 : (0.5, 1, 2, 4) 5 : (0, .0003, .0068, .0031)

[107.1]
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Normal Example: M = 2000; γm

IID
∼ |N(0, 3)|
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Testing with Exponential DFs
Xmi, i = 1, . . . , n, IID Exp(λm).

Test: Hm0 : λm = λm0 vs Hm1 : λm = λm1(> λm0).

Sufficient Statistics: Sm =
∑n

i=1 Xmi.

NP Test of Size ηm:

δNP
m (Sm; ηm) = I{2λm0Sm ≤ cm(ηm)}

cm(ηm) = G−1
2n (ηm); Gk(·) is χ2

k df.

Effect Sizes: ρm = λm1/λm0.

Power Functions:

πNP
m (ηm) = G2n(ρmG−1

2n (ηm))
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Exponential Example: M = 400; γm

IID
∼ U [1.1, 12]; n = 10
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Testing with Binomials
Set-Up: Xm ∼ B(nm = 5, θm); Hm0 : θm = θm0 = .2;
Hm1 : θm = θm1. θm1 generated uniformly over [.2, 1].

m θm0 θm1 Optimal Size Optimal Power Sidak Size Sidak Power

1 0.2 0.329 9.55e-04 0.019 0.005 0.060

2 0.2 0.440 1.04e-02 0.277 0.005 0.207

3 0.2 0.599 9.76e-03 0.658 0.005 0.575

4 0.2 0.661 6.37e-03 0.775 0.005 0.722

5 0.2 0.682 6.36e-03 0.818 0.005 0.769

6 0.2 0.780 6.40e-03 0.952 0.005 0.927

7 0.2 0.795 6.36e-03 0.964 0.005 0.943

8 0.2 0.843 3.56e-03 0.965 0.005 0.977

9 0.2 0.949 8.64e-04 0.998 0.005 0.999

10 0.2 0.999 4.19e-06 0.999 0.005 1.000

Total NA NA NA 7.430 NA 7.184
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Some Observations
Computations in the binomial example more
elaborate since each power function (wrt size) is
polygonal (see below) hence does not allow the
Lagrange approach.
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Continued ...

Both the normal and exponential settings allowed the
Lagrange solution approach.

General characteristics of the optimal size vector and
the powers under this optimal size vector for the
binomial example are similar to the normal and
exponential examples.

Patterns similar as well when the effect sizes were
generated by a non-uniform distribution.

Observe the improvement in overall discovery rate
over the Sidak procedure.
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Lesson on Investing Size
Observe that small optimal sizes are allocated to
those where effect size is either small (which
converts to low power) or effect size is large (which
converts to high power).

Intuitive, in hindsight, and is indeed a size investment
strategy!

Do not invest your size on those where you will not
make discoveries (small power) or those that you will
certainly make discoveries (high power)! Rather,
concentrate on those where it is a bit uncertain, since
your differential gain in overall discovery rate would
be greater!
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Extending to FDR-Control

The optimal FWER-controlling procedure can be
extended to make it into an FDR-controlling
procedure in the spirit of Benjamini-Hochberg.

Idea is to use the FWER value α as the ‘anchor’
which will then lead to the determination of the
optimal sizes for the M tests.

Let
α 7→ (η1(α), η2(α), . . . , ηM (α))

denote the mapping from FWER-value α to the M
tests’ optimal sizes as guaranteed by the earlier
results.
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Proposed Generalized BH Procedure

Desired FDR-level: q∗. Define α∗

M ≡ α∗

M (X,U) via

α∗

M = sup

{

α ∈ (0, 1) :
M
∑

m=1

ηm(α) ≤

q∗
M
∑

m=1

δ∗m(Xm, Um; ηm(α))

}

.

The proposed FDR-controlling MHTPDF is

δ∗(α∗

M ) = (δ∗m(Xm, Um; ηm(α∗

M )),m = 1, 2, . . . ,M).

Conjecture: Whatever θ0 is, R1(δ
∗(α∗

M ), θ0) ≤ q∗.
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Intuition & Motivation (Informal Proof)

QM (δ∗(α)) =

∑

m δm(ηm(α)))(1 − θm)
∑

m δm(ηm(α))

E

{

∑

m

δm(ηm(α)(1 − θm)

}

≤ E0

{

∑

m

δm(ηm(α))

}

=
∑

m

ηm(α)

QM (δ∗(α))
∼

≤

∑

m ηm(α)
∑

m δm(ηm(α))

Optimize! α∗

M = sup

{

α :
∑

m

ηm(α) ≤ q∗
∑

m

δm(ηm(α))

}
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Illustration: On Simulated Data
Data Generation

M = 100

One-group model; by sufficiency, n = 1

Xm ∼ N(µm, 1),m = 1, 2, . . . ,M

µm = ξmI{θm = 1}

ξ1, ξ2, . . . , ξM ∼ |N(2, 1)|

θ1, θ2, . . . , θM ∼ Ber(p = .30)

Hm0 : µm = 0 versus Hm1 : µm > 0

Tests: δm(Xm; ηm) = I{Xm > Φ−1(1 − ηm)}

Effect Size: γm = ξm
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Generalized BH Procedure
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While BH on Same Data
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Performances: GenBH and BH

Interestingly, for the generated simulated data, both
procedures have the same observed FDR and MDR.

Hypotheses Hypotheses Total
Accepted Rejected

Correct Nulls 69 0 69
False Nulls 22 9 31

Total 91 9 100

Observed FDR = 0.

Observed MDR = 70.9%.
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Simulation (100 reps): Error Rates (in %)

First 10 replicates:
GenBHfdr GenBHmdr BHfdr BHmdr

1 8.333333 60.71429 15.384615 60.71429

2 0.000000 67.64706 0.000000 70.58824

3 7.142857 51.85185 7.142857 51.85185

4 0.000000 82.75862 0.000000 82.75862

5 0.000000 58.82353 0.000000 64.70588

6 9.090909 64.28571 9.090909 64.28571

7 0.000000 55.17241 0.000000 62.06897

8 0.000000 54.54545 0.000000 57.57576

9 0.000000 63.88889 0.000000 72.22222

10 0.000000 66.66667 0.000000 83.33333

Means (based on 100 replications):

GenBHfdr GenBHmdr BHfdr BHmdr

3.450762 61.93329 4.134463 63.46749
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Concluding Remarks
Needed: More analytical and simulated examination
of properties of generalized BH.

Power functions of individual tests do matter!
Heeded a lesson of Neyman and Pearson.

Invest your size on tests with neither too small nor
too high a power.

FWER-controlling procedure: anchor to developing
FDR-controlling procedures.

BUT, procedures probably not yet the truly optimal
ones, since we started with δm that depended only on
(Xm, Um).

Is the Route to Real Optimality the Bayesian Way!?
Currently being explored.
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