Goodness-of-Fit Tests with Censored Data

Edsel A. Pena

Statistics Department University of South Carolina Columbia, SC [E-Mail: pena@stat.sc.edu]

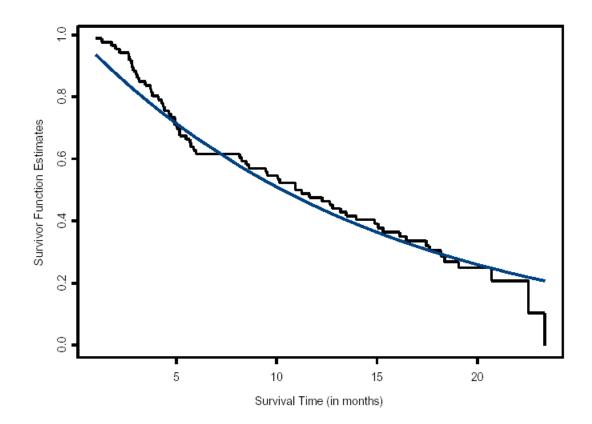
Talk at Cornell University, 3/13/02

Research support from NIH and NSF.

Practical Problem

- Right-censored survival data for lung cancer patients from Gatsonis, Hsieh and Korwar (1985).
- Survival times (in months): n = 86 with 23 right-censored. 0.99, 1.28, 1.77, 1.97, 2.17, 2.63, 2.66, 2.76, 2.79, 2.86, 2.99, 3.06, 3.15,3.45, 3.71, 3.75, 3.81, 4.11, 4.27, 4.34, 4.40, 4.63, 4.73, 4.93, 4.93, 5.03,5.16, 5.17, 5.49, 5.68, 5.72, 5.85, 5.98, 8.15, 8.26, 8.48, 8.61, 9.46, 9.53,10.05, 10.15, 10.94, 10.94, 11.04+, 11.24, 11.63, 12.26, 12.65, 12.78,13.18, 13.47, 13.53+, 13.96, 14.23+, 14.65+, 14.88, 14.91+, 15.05,15.31, 15.47+, 16.13, 16.46, 16.49+, 17.05+, 17.28+, 17.45, 17.61,17.88+, 17.97+, 18.20, 18.37 18.83+ 19.06 19.55+ 19.58+ 19.75+ 19.78 + 19.95 + 20.04 + 20.24 + 20.70, 20.73 + 21.55 + 21.98 + 22.5423.36

Product-Limit Estimator and Best-Fitting Exponential Survivor Function

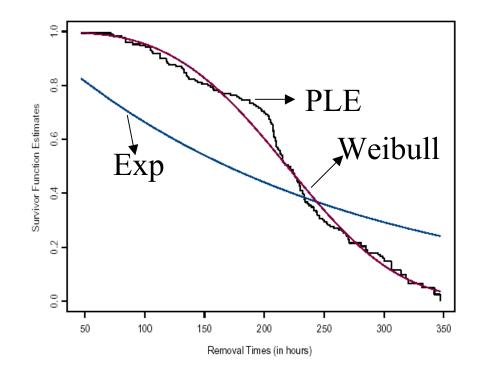


Question: Is the underlying survivor function modeled by a family of exponential distributions? a Weibull distribution?

A Car Tire Data Set

- Times to withdrawal (in hours) of 171 car tires, with withdrawal either due to failure or right-censoring.
- <u>Reference</u>: Davis and Lawrance, in *Scand. J. Statist.*, 1989.
- Pneumatic tires subjected to laboratory testing by rotating each tire against a steel drum until either failure (several modes) or removal (right-censoring).

Product-Limit Estimator, Best-Fitting Exponential and Weibull Survivor Functions



Question: Is the Weibull family a good model for this data?

Goodness-of-Fit Problem

- $T_1, T_2, ..., T_n$ are IID from an unknown distribution function F
 - <u>Case 1</u>

Statement of the GOF Problem

On the basis of the data $(Z_1, \delta_1), (Z_2, \delta_2), \dots, (Z_n, \delta_n)$:

<u>Simple GOF Problem</u>: For a pre-specified F_0 , to test the null hypothesis that

$$H_0: F = F_0$$
 versus $H_1: F \neq F_0$.

<u>Composite GOF Problem</u>: For a pre-specified family of dfs $\mathcal{F} = \{F_0(.;\eta): \eta \in \Gamma\}$, to test the hypotheses that

 $H_0: F \in \mathcal{F}$ versus $H_1: F \notin \mathcal{F}$.

Generalizing Pearson

With complete data, the famous Pearson test statistics are:

Simple Case:
$$\chi^2 = \sum_{i=1}^{K} \frac{(O_i - E_i)^2}{E_i}$$

Composite Case:
$$\chi^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{\hat{E}_i}$$

where O_i is the # of observations in the ith interval; E_i is the expected number of observations in the ith interval; and

$$\hat{E}_i = nF_0(I_i;\hat{\eta})$$

is the estimated expected number of observations in the i^{th} interval under the null model.

Obstacles with Censored Data

- With right-censored data, determining the exact values of the O_i 's is not possible.
- Need to estimate them using the product-limit estimator (Hollander and Pena, '92; Li and Doss, '93), Nelson-Aalen estimator (Akritas, '88; Hjort, '90), or by self-consistency arguments.
- Hard to examine the power or optimality properties of the resulting Pearson generalizations because of the *ad hoc* nature of their derivations.

In Hazards View: Continuous Case

For T an abs cont +rv, the hazard rate function $\lambda(t)$ is:

$$\lambda(t)dt \approx P\{t \le T < t + dt \mid T \ge t\} = \frac{f(t)dt}{\overline{F}(t)}$$

Cumulative hazard function $\Lambda(t)$ is:

$$\Lambda(t) = \int_{0}^{t} \lambda(w) dw$$

Survivor function in terms of Λ :

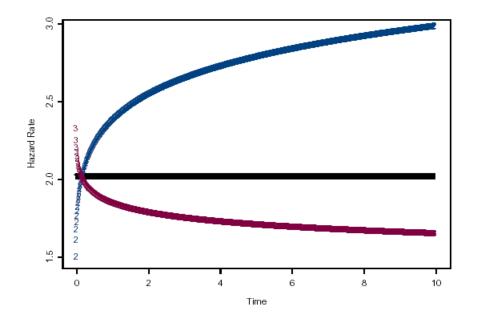
$$\overline{F}(t) = P\{T > t\} = \exp\{-\Lambda(t)\}$$

Two Common Examples

Exponential: $\lambda(t;\eta) = \eta$

Two-parameter Weibull: $\lambda(t; \alpha, \eta) = (\alpha \eta)(\eta t)^{\alpha - 1}$

Weibull Hazard Plots



Counting Processes and Martingales

$$N(t) = \sum_{i=1}^{n} I\{Z_i \le t, \delta_i = 1\}$$
$$Y(t) = \sum_{i=1}^{n} I\{Z_i \ge t\}$$
$$M(t) = N(t) - \int_{0}^{t} Y(w)\lambda(w)dw$$

{M(t): $0 < t < \tau$ } is a square-integrable zero-mean martingale with predictable quadratic variation (PQV) process

$$\langle M, M \rangle(t) = \int_{0}^{t} Y(w)\lambda(w)dw$$

12

Idea in Continuous Case

• For testing $H_0: \lambda(.) \in \mathcal{C} = \{\lambda_0(.;\eta): \eta \in \Gamma\}$, if H_0 holds, then there is some η_0 such that the true hazard $\lambda_0(.)$ is such

• Let
$$\kappa(t;\eta) = \log\left\{\frac{\lambda_0(t)}{\lambda_0(t;\eta)}\right\} \in \text{ some space } \mathcal{K}$$

• Basis Set for \mathcal{K} : { $\psi_1(.;\eta), \psi_2(.;\eta), ...$ }

• Expansion:

$$\kappa(t;\eta) = \sum_{k=1}^{\infty} \theta_i \psi_i(t;\eta)$$

• Truncation:

$$\kappa(t;\eta) \approx \sum_{k=1}^{p} \theta_{k} \psi_{k}(t;\eta)$$
, p is smoothing order

Hazard Embedding and Approach

• From this truncation, we obtain the approximation

$$\lambda_0(t) \approx \lambda_0(t;\eta) \exp\left\{\sum_{k=1}^p \theta_k \psi_k(t;\eta)\right\} = \lambda_0(t;\eta) \exp\left\{\theta^t \Psi(t;\eta)\right\}$$

• Embedding Class

$$\mathcal{C}_{p} = \left\{ \lambda_{p}(t;\theta,\eta) = \lambda_{0}(t;\eta) \exp\left\{ \sum_{k=1}^{p} \theta_{k} \psi_{k}(t;\eta) \right\} : \theta \in \Re^{p} \right\}$$

- <u>Note</u>: $H_0 \subseteq \mathcal{C}_p$ obtains by taking $\theta = 0$.
- <u>GOF Tests</u>: Score tests for H_0 : $\theta = 0$ versus H_1 : $\theta \neq 0$.
- Note that η is a nuisance parameter in this testing problem.

Class of Statistics

• Estimating equation for the nuisance η :

$$\rho(t;\eta) = \nabla_{\eta} \log \lambda_0(t;\eta)$$
$$\int_0^\tau \rho(w;\hat{\eta}) \{ dN(w) - Y(w)\lambda_0(w;\hat{\eta}) dw \} = 0$$

• Quadratic Statistic:

$$\hat{Q} = \int_{0}^{\tau} \Psi_{p}(w;\hat{\eta}) \{ dN(w) - Y(w)\lambda_{0}(w;\hat{\eta})dw \}$$
$$S_{p} = \frac{1}{n}\hat{Q}^{t} \{ \hat{\Xi}^{-} \}\hat{Q}$$

• $\hat{\Xi}$ is an estimator of the limiting covariance of $\frac{1}{\sqrt{n}}\hat{Q}$

Asymptotics and Test

• Under regularity conditions,

$$\frac{1}{\sqrt{n}}\hat{Q} \xrightarrow{d} N_p(0, \Xi \equiv \sum_{11} - \sum_{12} \sum_{22}^{-1} \sum_{21})$$

• Estimator of Ξ obtained from the matrix:

$$\hat{\Sigma} = \frac{1}{2n} \int_{0}^{\tau} \left[\frac{\Psi_{p}(w;\hat{\eta})}{\rho(w;\hat{\eta})} \right]^{\otimes 2} \left\{ dN(w) + Y(w)\lambda_{0}(w;\hat{\eta})dw \right\}$$

• Test: Reject
$$H_0$$
 if $S_p > \chi_{p^*;\alpha}^2$.

A Choice of Ψ Generalizing Pearson

• Partition $[0,\tau]$ into $0 = a_1 < a_2 < \ldots < a_p = \tau$, and let

$$\Psi_p(t) = (I_{[0,a_1]}(t), I_{(a_1,a_2]}(t), \dots, I_{(a_{p-1},a_p]}(t))^t$$

- Then $\hat{Q} = \left(O_1 - \hat{E}_1, O_2 - \hat{E}_2, ..., O_p - \hat{E}_p\right)^{t}$ $O_j = \int_{a_{j-1}}^{a_j} dN(w) = N(a_j) - N(a_{j-1})$ $\hat{E}_j = \int_{a_{j-1}}^{a_j} Y(w) \lambda_0(w; \hat{\eta}) dw$
- \hat{E}_j 's are *dynamic* expected frequencies

Special Case: Testing Exponentiality

• Exponential Hazards: $C = \{\lambda_0(t;\eta)=\eta\}$

$$O_{j} = \int_{a_{j-1}}^{a_{j}} dN(w) \text{ and } \hat{E}_{j} = \hat{\eta} \int_{a_{j-1}}^{a_{j}} Y(w) dw \text{ with } \hat{\eta} = \frac{\int_{0}^{0} dN(w)}{\int_{0}^{\tau} Y(w) dw}$$

• Test Statistic ("generalized Pearson"):

$$S_{p} = \hat{E}_{\bullet} (p - \hat{\pi})^{t} \{ Dg(\hat{\pi}) - \hat{\pi}\hat{\pi}^{t} \}^{-} (p - \hat{\pi})$$

where

$$\hat{E}_{\bullet} = \sum_{k=1}^{p} \hat{E}_{k}; \quad p = \frac{1}{\hat{E}_{\bullet}} (O_{1}, O_{2}, ..., O_{p})^{t}; \quad \hat{\pi} = \frac{1}{\hat{E}_{\bullet}} (\hat{E}_{1}, \hat{E}_{2}, ..., \hat{E}_{p})^{t}$$

 τ

A Polynomial-Type Choice of Ψ $\Psi_{p}(t;\eta) = (1, \Lambda_{0}(t;\eta), ..., [\Lambda_{0}(t;\eta)]^{p-1})^{t}$

• Components of \hat{Q}

$$\hat{Q}_{k} = \int_{0}^{\tau^{*}} w^{k-1} \{ dN^{R}(w) - Y^{R}(w) dw \}, \ k = 1, 2, ..., p;$$

where

$$R_i = \Lambda_0(Z_i;\hat{\eta}); \quad N^R(t) = \sum_{i=1}^n I\{R_i \le t; \delta_i = 1\}; \text{ and } Y^R(t) = \sum_{i=1}^n I\{R_i \ge t\}.$$

• Resulting test based on the 'generalized' residuals. The framework allows correcting for the estimation of nuisance η .

Simulated Levels

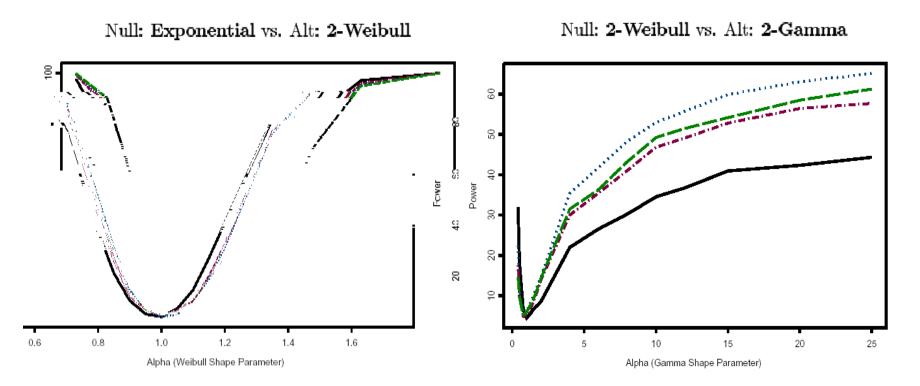
(Polynomial Specification, K = p)

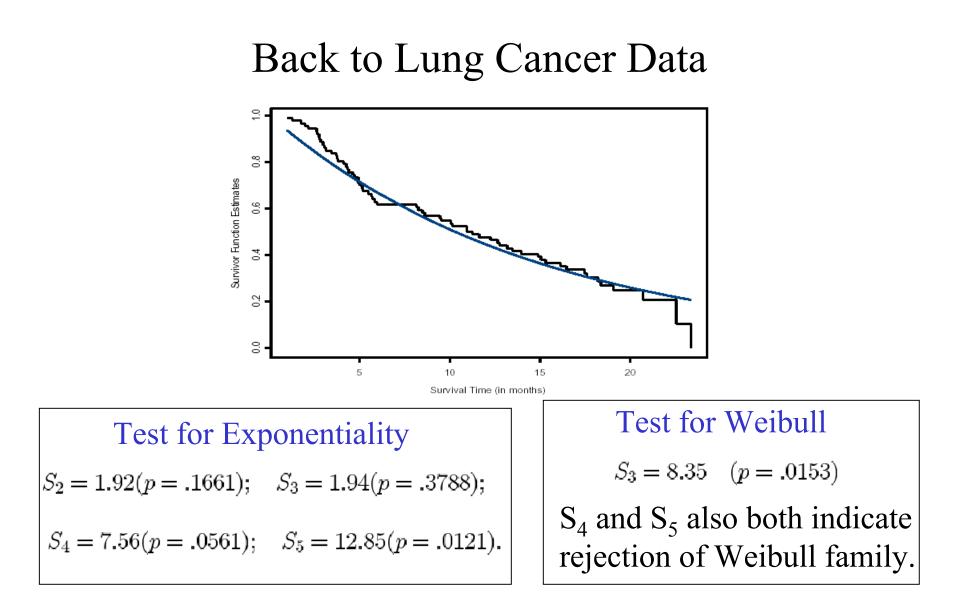
Null Dist. Exponential (η)						Nı	ıll Dist.	Weibull (α, η)					
Parameters			$\eta = 2$	$\eta = 2$ $\eta = 5$			Parameters		$(\alpha,\eta) = (2,1)$		$(\alpha,\eta) = (3,2)$		
M 1175%			% _u	% undersored 11 75% 1		S.	% Uncensored		75%	50%	75%	50%	
5%	5%	5%		level_	_	5%			Level	5%	5%	5%	5%
			n = 1	-K				n	K				
.65 il	5.00	5.60		2	-	4.65 i	6		2	4.30	4.80	4.60	6.20
.5C	4.35	4.95	" 5C	3		5.45	C7	50	3	5.40	5.15	6.30	5.70
.5C.: =	5.10 -	5.85		4	:	_ 6.55 :_	5		4	4.80	4.80	6.10	5.30
_CC	5.20	4.20		5	<u> </u>	<u> 6.40 </u>	¢,77		5	5.25	3.45	6.70	4.60
.75	4.45	4.35		2		4.90	4		2	3.90	4.95	4.20	4.80
.35	4.65	4.25	$+100^{+}$	3		4.55	4	100	3	5.75	4.65	5.15	5.25
.30 🛛	5.10 .	4.80		4	ļ	5 . 70 l	5		4	5.55	4.15	5.00	4.30
<u>.90 </u> ‼	5 <u>.30</u>	4 <u>.75</u>		5		5.75 !	4		5	6.00	4.65	5.80	5.30

Simulated Powers

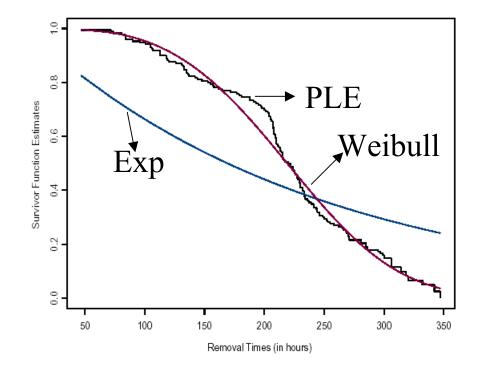
Simulation Parameters: n = 100; 25% censoring.

Legend: Solid: p=2; Dots: p=3; Short Dashes: p = 4; Long Dashes: p=5





Back to Davis & Lawrance Car Tire Data



Test of Exponentiality

Results for Testing Exponentiality

Summary of Results of Smooth Goodness-of-Fit Test Testing for Exponential Distribution

Input FileName: C:\Talks\TalkATUG\davislawrancecartiredata.txt
Output FileName: C:\Talks\TalkATUG\cartire.out

Sample Siz	ze =	171	
Sum of Z_i	L = 36	6457.000000000	
<u>= ft; a</u>	<u>+</u>		water and
—sf Bta—	-4.]][443	85185703477833-0003	Estinate
of Mean =		243	Estimate
_k	DF	P-Value	k S
000	0	1.00000	1 0.0
710	1	0.00000	2 172.3
297	2	0.00000	3 174.9
617.	3		្ល 175,7
	· · · <u>-</u>		1

Conclusion: Exponentiality does not hold as in graph!

Test of Weibull Family

Results for Testing the Weibull Class

```
Summary of Results of Smooth Goodness-of-Fit Test
Testing for the Two-Parameter Weibull Distribution
Using the Polynomial Specification for Psi
```

Input FileName: C:\Talks\TalkATUG\davislawrancecartiredata.txt
Output FileName: C:\Talks\TalkATUG\cartireWeibull.txt

# of Esti	le Size = Uncensored Va mate of alpha	= 3.418	
Esti	mate of $eta =$	4.085166	006131305E-003
k	S_k	DF	P-Value
1	0.0000	0	1.00000
2	0.5013	1	0.47891
3	0.5550	2	0.75769
4	6.4203	3	0.09286
5	6.5183	4	0.16364

Conclusion: Cannot reject Weibull family of distributions.

Simple GOF Problem: Discrete Data

• T_i 's are discrete +rvs with jump points $\{a_1, a_2, a_3, \ldots\}$.

• Hazards:
$$\lambda_i = \mathbf{P}\{T = a_i | T > a_i\}$$

- Let $\{\lambda_1^0, \lambda_2^0, \dots, \lambda_j^0, \dots\}$ be such that $\lambda_j^0 \in [0, 1]$
- Problem: To test the hypotheses

 $H_0: \lambda_j = \lambda_j^0, \quad j = 1, 2, \dots, \quad \text{versus} \quad H_1: \lambda_j \neq \lambda_j^0 \text{ for some } j \in \{1, 2, \dots\}$

based on the right-censored data $(Z_1, \delta_1), ..., (Z_n, \delta_n)$.

• True and hypothesized hazard odds:

$$\rho_j = \frac{\lambda_j}{(1-\lambda_j)} \quad \text{and} \quad \rho_j^0 = \frac{\lambda_j^0}{(1-\lambda_j^0)}$$

• For p a pre-specified order, let

$$\boldsymbol{\Psi} = (\boldsymbol{\Psi}_1, \boldsymbol{\Psi}_2, \dots, \boldsymbol{\Psi}_J) = \begin{bmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_p \end{bmatrix}$$

be a p x J (possibly random) matrix, with its p rows linearly independent, and with $[0, a_J]$ being the maximum observation period for all n units.

Embedding Idea

• To embed the hypothesized hazard odds $(\rho_1^0, \rho_2^0, \dots, \rho_J^0)$ into

$$\mathcal{C}_p = \left\{ (\rho_1(\theta), \rho_2(\theta), \dots, \rho_J(\theta)) : \theta = (\theta_1, \theta_2, \dots, \theta_p)^{\mathsf{t}} \in \Re^p \right\}$$
$$\rho_j(\theta) = \rho_j^0 \exp\{\theta^{\mathsf{t}} \Psi_j\}, \quad j = 1, 2, \dots, J.$$

• Equivalent to assuming that the log hazard odds ratios satisfy

$$\log\left\{\frac{\rho_j(\theta)}{\rho_j^0}\right\} = \theta^{\mathrm{t}}\Psi_j = \sum_{k=1}^p \theta_k \Psi_{kj}, \quad j = 1, 2, \dots, J.$$

• Class of tests are the score tests of H_0 : $\theta = 0$ vs. H_1 : $\theta \neq 0$ as p and Ψ are varied.

Class of Test Statistics

$$\sum_{i=1}^{n} I\{Z_i = a_j, \delta_i = 1\} \text{ and } R_j = \sum_{i=1}^{n} I\{Z_i \ge a_j\} O_j = O_j = (O_1, O_2, \dots, O_J)^{\mathsf{t}} = \mathbf{E}_0 = (E_1^0, E_2^0, \dots, E_J^0)^{\mathsf{t}}$$
$$E_j^0 = R_j \lambda_j^0 \qquad \qquad V_{jj}^0 = R_j \lambda_j^0 (1 - \lambda_j^0)$$
$$V_0 = Dg(V_{11}^0, V_{22}^0, \dots, V_{JJ}^0)$$

• Quadratic Score Statistic:

$$S_p^2(\Psi) = (\mathbf{O} - \mathbf{E}_0)^t \Psi^t \left(\Psi \mathbf{V}_0 \Psi^t \right)^- \Psi(\mathbf{O} - \mathbf{E}_0)$$

• Under H_0 , this converges in distribution to a chi-square rv.

A Pearson-Type Choice of
$$\Psi$$

Partition {1,2,...,J}: A_1, A_2, \dots, A_p with $A_i \neq \emptyset, i = 1, 2, \dots, p$
 $\mathbf{1}_A$ the $J \times 1$ vector whose j th element is $I\{j \in A\}$
 $\Psi_{\text{Indi}} = [\mathbf{1}_{A_1}, \mathbf{1}_{A_2}, \dots, \mathbf{1}_{A_p}]^{\text{t}}$
 $O_{\bullet}(A) = \mathbf{1}_A^{\text{t}} \mathbf{O} = \sum_{j \in A} O_j, E_{\bullet}^0(A) = \mathbf{1}_A^{\text{t}} \mathbf{E}_0 = \sum_{j \in A} E_j^0$
 $V_{\bullet}^0(A) = \mathbf{1}_A^{\text{t}} \mathbf{V}_0 \mathbf{1}_A = \sum_{j \in A} V_{jj}^0 = \sum_{j \in A} E_j^0 (1 - \lambda_j^0)$
 $S^2(\Psi_{\text{Indi}}) = \sum_{i=1}^p \frac{[O_{\bullet}(A_i) - E_{\bullet}^0(A_i)]^2}{V_{\bullet}^0(A_i)}$

A Polynomial-Type Choice

$$\Psi_{\text{Poly}}^{p} = \left[\left(\frac{\mathbf{R}}{n}\right)^{0}, \left(\frac{\mathbf{R}}{n}\right)^{1}, \dots, \left(\frac{\mathbf{R}}{n}\right)^{p-1} \right]^{n}$$

$$U_{i}^{*}(\Psi_{\text{Poly}}^{p}) = \left[\left(\frac{\mathbf{R}}{n}\right)^{i-1} \right]^{t} (\mathbf{O} - \mathbf{E}_{0}) = \sum_{j=1}^{J} \left(\frac{R_{j}}{n}\right)^{i-1} (O_{j} - E_{j}^{0});$$

$$I_{i_{1}i_{2}}^{*}(\Psi_{\text{Poly}}^{p}) = \left[\left(\frac{\mathbf{R}}{n}\right)^{i_{1}-1} \right]^{t} \mathbf{V}_{0} \left[\left(\frac{\mathbf{R}}{n}\right)^{i_{2}-1} \right] = \sum_{j=1}^{J} \left(\frac{R_{j}}{n}\right)^{i_{1}+i_{2}-2} V_{jj}^{0}.$$

 $S^2(\Psi_{\text{Poly}}^p) = \text{ quadratic form from the above matrices.}$

Hyde's Test: A Special Case

When p = 1 with polynomial specification, we obtain:

$$S^{2}(\psi_{1}) = \frac{\left[\sum_{j=1}^{J} (O_{j} - E_{j}^{0})\right]^{2}}{\sum_{j=1}^{J} R_{j} \lambda_{j}^{0} (1 - \lambda_{j}^{0})} = \left[\frac{O_{\bullet} - E_{\bullet}^{0}}{\sqrt{V_{\bullet}^{0}}}\right]^{2}$$
$$K_{i}^{*} = \max\{j \in \{1, 2, \dots, J\} : a_{j} \le Z_{i}\}$$
$$O_{\bullet} - E_{\bullet}^{0} = \sum_{i=1}^{n} \left(\delta_{i} - \sum_{j=1}^{K_{i}^{*}} \lambda_{j}^{0}\right)$$

Resulting test coincides with Hyde's ('77, Btka) test.

Adaptive Choice of Smoothing Order

 $L_p^*(\theta_p) = \text{partial likelihood of } \theta_p = (\theta_1, \dots, \theta_p)$

 $\mathbf{I}_{p}^{*}(\theta_{p})$ = associated observed information matrix $\hat{\theta}_{p}$ = partial MLE of $\theta_{p} = (\theta_{1}, \dots, \theta_{p})$

Adjusted Schwarz ('78, Ann. Stat.) Bayesian Information Criterion

$$\begin{split} p_{BICAdj} &= \operatorname{argmax}_{1 \leq p \leq P_m} \left\{ \log L_p(\hat{\theta}_p) - \frac{p}{2} \left[\log(n) + \hat{\zeta}_1 \right] \right\} \\ &\hat{\zeta}_1 \text{ is the largest eigenvalue of } \mathbf{I}_p^*(\hat{\theta}_p) \end{split}$$

Simulation Results for Simple Discrete Case

Table 1: Empirical levels and powers (in percents) of the 5% asymptotic level fixed-order and adaptive tests for testing the geometric distribution. The second column contains the achieved levels, while the other columns contain the achieved powers for different hazard alternatives.

Test	Geometric	Geometric	Negative	'Polynomial'	'Trigonometric'
Statistic	(Null)	$({\rm Different \ Mean})$	Binomial	Hazards	Hazards
S_{1}^{2}	4.6	52.5	2.0	11.7	8.8
S_{2}^{2}	5.1	45.8	92.8	58.2	33.9
S_{3}^{2}	5.9	41.5	90.6	53.7	83.6
S_4^2	7.6	40.3	87.9	54.3	92.1
"49][5 ~~ ()	S_{p^*} (Acapt	ive)}] ¢⊎" ⇔	<u> </u>		

<u>Note</u>: Based on polynomial-type specification. Performances of Pearson type tests were not as good as for the polynomial type.

Concluding Remarks

- Framework is general enough so as to cover both continuous and discrete cases.
- Mixed case dealt with via hazard decomposition.
- Since tests are score tests, they possess local optimality properties.
- Enables automatic adjustment of effects due to estimation of nuisance parameters.
- Basic approach extends Neyman's 1937 idea by embedding hazards instead of densities.
- More studies needed for adaptive procedures.