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Practical Problem
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Product-Limit Estimator and Best-Fitting Exponential
Survivor Function

Question: Is the underlying survivor function modeled by a
family of exponential distributions? a Weibull distribution?
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A Car Tire Data Set

• Times to withdrawal (in hours) of 171 car tires, with
withdrawal either due to failure or right-censoring.

• Reference:  Davis and Lawrance, in Scand. J. Statist.,
1989.

• Pneumatic tires subjected to laboratory testing by rotating
each tire against a steel drum until either failure (several
modes) or removal (right-censoring).
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Product-Limit Estimator, Best-Fitting Exponential and
Weibull Survivor Functions

Exp
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Weibull

Question: Is the Weibull family a good model for this data? 
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Goodness-of-Fit Problem

• T1, T2, …, Tn are IID from an unknown distribution function F

• Case 1

:  F is continuous df
• Cas2 1

:  F is dcrete df with unkno jump points• Cas3 1
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Simple GOF Problem: For a pre-specified F0, to test the null
hypothesis that

H0: F = F0  versus  H1: F ≠ F0.

On the basis of the data (Z1, δ1), (Z2, δ2), …, (Zn, δn):

Composite GOF Problem: For a pre-specified family of dfs
F  = {F0(.;η): η ∈ Γ}, to test the hypotheses that

H0: F ∈ F    versus   H1: F ∉ F .

Statement of the GOF Problem
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Generalizing Pearson
With complete data, the famous Pearson test statistics are:
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where Oi is the # of observations in the ith interval; Ei is the
expected number of observations in the ith interval; and
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is the estimated expected number of observations in the
ith interval under the null model.
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Obstacles with Censored Data

•  With right-censored data, determining the exact values of
the Oj’s is not possible.
•  Need to estimate them using the product-limit estimator
(Hollander and Pena, ‘92; Li and Doss, ‘93), Nelson-Aalen
estimator (Akritas, ‘88; Hjort, ‘90), or by self-consistency
arguments.
•  Hard to examine the power or optimality properties of the
resulting Pearson generalizations because of the ad hoc
nature of their derivations.
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In Hazards View: Continuous Case

For T an abs cont +rv, the hazard rate function λ(t) is:
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Two Common Examples

Exponential: ηηλ =);(t

Two-parameter Weibull: 1))((),;( −= αηαηηαλ tt
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Counting Processes and Martingales
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{M(t): 0 < t < τ} is a square-integrable zero-mean martingale
with predictable quadratic variation (PQV) process
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Idea in Continuous Case

• For testing H0: λ(.) ∈ C ={λ0(.;η): η∈Γ}, if H0 holds, then
there is some η0 such that the true hazard λ0(.) is such

λ0(.) = λ0(.;η0)
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Hazard Embedding and Approach

• From this truncation, we obtain the approximation
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• Note:  H0 ⊆ Cp obtains by taking θ = 0. 

• GOF Tests: Score tests for H0: θ = 0 versus H1: θ ≠ 0. 

• Note that η is a nuisance parameter in this testing problem.



15

Class of Statistics
• Estimating equation for the nuisance η:
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• Quadratic Statistic: 
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Asymptotics and Test
• Under regularity conditions,

)  ,0(ˆ1
21

1
221211 ∑∑∑−∑≡Ξ→ −

p
d NQ

n

• Estimator of Ξ obtained from the matrix:

{ }dwwwYdN(w)
w
w

n
p )ˆ;()( 

)ˆ;(
)ˆ;(

2
1ˆ

0

2

0

ηλ
ηρ
ητ

+






Ψ=∑
⊗

∫

• Test: Reject H0 if .2
*;αχ ppS >



17

A Choice of Ψ Generalizing Pearson

• Partition [0,τ] into 0 = a1 < a2 < … < ap = τ, and let
t
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Special Case: Testing Exponentiality

 C = {λ0(t;η)=η}
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)(ˆˆ     and    )( η with

• Exponential Hazards:

• Test Statistic (“generalized Pearson”):
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A Polynomial-Type Choice of Ψ
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• Components of Q̂
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• Resulting test based on the ‘generalized’ residuals.  The
framework allows correcting for the estimation of nuisance η.
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Simulated Levels
(Polynomial Specification, K = p)
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Simulated Powers

Legend: Solid: p=2; Dots: p=3; Short Dashes: p = 4; Long Dashes: p=5
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Back to Lung Cancer Data

Test for Exponentiality Test for Weibull

S4 and S5 also both indicate
rejection of Weibull family.



23

Back to Davis & Lawrance Car Tire Data
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Test of Exponentiality

Conclusion: Exponentiality does not hold as in graph!
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Test of Weibull Family

Conclusion: Cannot reject Weibull family of distributions.
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Simple GOF Problem: Discrete Data

• Ti’s are discrete +rvs with jump points {a1, a2, a3, …}.

• Hazards:

• 

• Problem: To test the hypotheses

based on the right-censored data (Z1, δ1), …, (Zn, δn).
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• True and hypothesized hazard odds:

• For p a pre-specified order, let

be a p x J (possibly random) matrix, with its p rows
linearly independent, and with [0, aJ] being the maximum
observation period for all n units.
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Embedding Idea
• To embed the hypothesized hazard odds into

• Equivalent to assuming that the log hazard odds ratios satisfy

• Class of tests are the score tests of H0: θ θ θ θ = 0000 vs. H1: θ θ θ θ ≠ 0000 as
p and Ψ are varied.
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Class of Test Statistics
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• Quadratic Score Statistic:

• Under H0, this converges in distribution to a chi-square rv.

p
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A Pearson-Type Choice of Ψ

Partition {1,2,…,J}:
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A Polynomial-Type Choice

quadratic form from the above matrices.
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Hyde’s Test: A Special Case

When p = 1 with polynomial specification, we obtain:

Resulting test coincides with Hyde’s (‘77, Btka) test.
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Adaptive Choice of Smoothing Order

= partial likelihood of 

= associated observed information matrix

= partial MLE of 

Adjusted Schwarz (‘78, Ann. Stat.) Bayesian Information Criterion

*
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Simulation Results for Simple Discrete Case

Note: Based on polynomial-type specification. Performances of
Pearson type tests were not as good as for the polynomial type.
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Concluding Remarks
• Framework is general enough so as to cover both

continuous and discrete cases.
• Mixed case dealt with via hazard decomposition.
• Since tests are score tests, they possess local

optimality properties.
• Enables automatic adjustment of effects due to

estimation of nuisance parameters.
• Basic approach extends Neyman’s 1937 idea by

embedding hazards instead of densities.
• More studies needed for adaptive procedures.


