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Practical Problem

¢ Right-censored survival data for lung cancer patients from Gatsonis,

Hsieh and Korwar (1985).

a Survival times. (in maonths):. 2. = 8G with 23 rightocansorad..

0.99, 1.28, 1.77, 1.97, 2.17, 2.63, 2.66, 2.76, 2.79, 2.86, 2.99, 3.06, 3.15,
3.45, 3.71, 3.75, 3.81, 4.11, 4.27, 4.34, 4.40, 4.63, 4.73, 4.93, 4.93, 5.03,
5.16, 5.17, 5.49, 5.68, 5.72, 5.85, 5.98, 8.15, 8.26, 8.48, 8.61, 9.46, 9.53,
10.05, 10.15, 10.94, 10.94, 11.04+, 11.24, 11.63, 12.26, 12.65, 12.78,
13.18, 13.47, 13.53+, 13.96, 14.23+, 14.65-+, 14.88, 14.91+, 15.05,
15.31, 15.47+, 16.13, 16.46, 16.49+, 17.05+, 17.28+, 17.45, 17.61,
AE&S+, 1m0+, IS0 ISST IEEI+ IN0E INFEF4 38584 I35+
19.78+ 19.95+ 20.04-+, 20.24+, 20.70, 20.73+, 21.55+, 21.98+, 22.54,
23.36



Product-Limit Estimator and Best-Fitting Exponential
Survivor Function

Survivor Function Estimates

T T T
5 10 15 20

Survival Time {in months)

Question: Is the underlying survivor function modeled by a
family of exponential distributions? a ?



A Car Tire Data Set

* Times to withdrawal (in hours) of 171 car tires, with
withdrawal either due to failure or right-censoring.

» Reference: Davis and Lawrance, in Scand. J. Statist.,
1989.

e Pneumatic tires subjected to laboratory testing by rotating
each tire against a steel drum until either failure (several
modes) or removal (right-censoring).



Product-Limit Estimator, Best-Fitting Exponential and
Weibull Survivor Functions

Weibull
a

T T T T T T T
50 100 180 200 250 300 350

Question: Is the Weibull family a good model for this data?



300dness-of-Fit Problem

*T,,T,, ..., T, are IID from an unknown distribution function F

e Case 1



Statement of the GOF Problem
On the basis of the data (Z,, 9,), (Z,, 0,), ..., (Z., 9,):

Simple GOF Problem: For a pre-specified F,, to test the null
hypothesis that

H,: F=F, versus H;: F #F,.

Composite GOF Problem: For a pre-specified family of dfs
F = {F,(.;n): N € I'}, to test the hypotheses that

Hy Fe & versus Hi:Fe¢ &



Generalizing Pearson

With complete data, the famous Pearson test statistics are:

K 2
Simple Case: ¥ = Z (9, EEi)
i=l1 ;

l

- £(0,-E)
Composite Case: y° = Z (O, —E)

where O, is the # of observations in the i interval; E. is the
expected number of observations in the i interval; and

lay

E; = nFy(1;7)

1s the estimated expected number of observations in the
i™" interval under the null model.



Obstacles with Censored Data

« With right-censored data, determining the exact values of
the O;’s 1s not possible.

e Need to estimate them using the product-limit estimator
(Hollander and Pena, ‘92; L1 and Doss, ‘93), Nelson-Aalen
estimator (Akritas, ‘88; Hjort, ‘90), or by self-consistency
arguments.

e Hard to examine the power or optimality properties of the
resulting Pearson generalizations because of the ad hoc

nature of their derivations.



In Hazards View: Continuous Case

For T an abs cont +rv, the hazard rate function A(t) is:

Ayt = PU<T <i+di|T 21y = 204
F (1)

Cumulative hazard function A(t) 1s:
4
A1) = [ A(w)dw
0

Survivor function 1in terms of A:

F(t)=PiT >t} = exp{~A(¢)}
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Two Common Examples

Exponential: At;n) =1
Two-parameter Weibull:  A(#; e, 1) = (an) ()

Weibull Hazard Plots
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Counting Processes and Martingales
N(t)= Zn"l{zi <t,0 =1}
Y(t) = Z I{Z. > 1)

M(t)=N(t)- jY(w)/l(w)dw

{M(t): 0 <t <t} 1s a square-integrable zero-mean martingale
with predictable quadratic variation (PQV) process

(M, M)1t) = jY(w)l(w)dw
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Idea in Continuous Case

e For testing Hy: M(\) € C={A,(.;n): nel}, if H, holds, then
there is some 1M, such that the true hazard A(.) is such

Ao() = Ag(5Mp)

Let «x(t;n)= log{ /Qth(;t;)} € some space K

e Basis Set for 3¢: W4 (), v, (517),..

« Expansion: K(t;1) = Z@l//i(f;ﬂ)
k=1

p
* Truncation: k(;1m) =Y 6y, (t;n), p 1s smoothing order
k=1
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Hazard Embedding and Approach

* From this truncation, we obtain the approximation
P
Ay (2) = A (5;17) exp{z kak(t;n)} = A () exp{0™Y(6;m)}
k=1
 Embedding Class
P
G, = {ﬂp(t;é’,ﬂ) = A (6:17) GXP{ZHMU;U)} 1 fe W}
k=1

* Note: Hj c €, obtains by taking 6 = 0.
* GOF Tests: Score tests for Hy: 0 = 0 versus H;: 0 # 0.

* Note that 1 is a in this testing problem.
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Class of Statistics

 Estimating equation for the nuisance 1:

p(t;m) =V, log A\ (t;n)

| POV AN () = Y () A (w; ) dw}= 0

e Quadratic Statistic:

0 = [ ¥, (w;DIAN (w) = Y (W) 2, (w3 7)dw}
5,=-0'{& o
n

* Z 1s an estimator of the limiting covariance of

1 -
WQ
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Asymptotics and Test

e Under regularity conditions,

1 .
“>N 0, 2=2,,—2 ; 21
05N, (0 523, -5, BT,

» Estimator of = obtained from the matrix:

S 1 ( {TP(W;?)
p(w;1)

®?2
> } {ANW) +Y (W) A (w; H)dw}
0
. . 2
Test: Reject H, if Sp > Zp*;a'
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A Choice of ¥ Generalizing Pearson

* Partition [0,7] into 0 =a, <a, <... <a =T, and let

()=o) D5 L0y (Dol 0/ O)

 Then . . . A\,
0=(0,-E.0,-E,...0 -E)

O, = J{dN(W) =N(a;)—N(a,,)

a;

£, = [YO)A0nids

a;
N

» E's are dynamic expected frequencies
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Special Case: Testing Exponentiality

* Exponential Hazards: C= {Ay(t;n)=}

a; a; JdN (W)

0, = j dN(w) and E, =7 j Y(wydw  with 7 =3
aj aj- IY (w)dw

0

» Test Statistic (“generalized Pearson”):

S, =E,(p—7#) {Dg(#)- A%} (p—7)
where

N

E, =

- 1 ) )
E: p:ET(ol,oz,...,Op)f; #=—(E, BB

p
k=1
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A Polynomial-Type Choice of ¥

¥ (61) = (L, Ag(657)s s [Ny ()

N

« Components of ()

Qk = _[wk_l{dNR(w) — YR(w)dw}, k=12,..., p;
0
where
R = A(Zi): N*(0)= IR <6:6,=1}; and Y*(0)= Y I{R > 1}.

 Resulting test based on the ‘generalized’ residuals. The

framework allows correcting for the estimation of nuisance 1.
19



Simulated Levels
(Polynomial Specification, K = p)

Null Dist. || Exponential(n) Null Dist. Weibull(r, )
Parameters | n=2 [ »n=5 Parameters || (a,n) = (2,1) | (a, 1) =(3,2)
T A s e L va” st (| % Uncemsored | 75% | 50% | 75% | 50%
Level 5% | 5% 5% 5%

n K

2 4.30 | 4.80 4.60 | 6.20
o0 3 5400 5.15 6.30 | 5.70
1 4.80 | 4.80 6.10| 5.30
5! 0.20| 3.45 6.70 | 4.60
2 3.90 | 4.95 4.20 | 4.80
100 3 5.75 | 4.65 2.15 | 9.25
4 0.00 | 4.15 5.00| 4.30
2 6.00 | 4.65 2.80 | 5.30
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Simulated Powers

Simulation Parameters: n = 100; 25% censoring.

Legend: Solid: p=2; Dots: p=3; Short Dashes: p = 4; Long Dashes: p=5

Null: Exponential vs. Alt: 2-Weibull

100
. 1
e
N'?

0.8

0.a 1.0 1.2 1.4 1.6

Alpha (Weibull Shape Parameter)

Fower

Qry

4_."!

20

Paower

Null: 2-Weibull vs. Alt: 2-Gamma

10 15

Alpha (Gamma Shape Parameter)
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Back to Lung Cancer Data

=
;-
—

o
=1

L
=1

Function Estrmates
04

Survivor

02

0.0

Test for Weibull
S3=28.35 (p=.0153)

S, and S; also both indicate
rejection of Weibull family.

Test for Exponentiality
So = 1.92(p=.1661); S3= 1.94(p = .3788);

Sy =T7.56(p = .0561); S5=12.85(p=.0121).
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Back to Davis & Lawrance Car Tire Data

Weibull
a

Survivor Function Estimates

T T T T T T T
50 100 180 200 250 300 350



Test of Exponentiality

Results for Testing Exponentiality

summary of Results of Smooth Goodness-of-Fit Test
Testing for Exponential Distribution

Input FileName: C:\Talks\TalkATUG\davislawrancecartiredata.txt
Output FileName: C:\Talks\TalkATUG\cartire.out

sample Size = 171
sum of Z_1 = 36457, 0000000000
| My o . El Al

Ry i

_k DF P-Value k S
000 0 1.00000 1 0.0
710 1 0.00000 2 172.3
297 2 0.00000 3 174.9
AT 2 N 0ONDN_ . oL, 3 A 17k, 7.

P S g — T i = S ! Lot FT

Conclusion: Exponentiality does not hold as in graph!
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Test of Weibull Family

Results for Testing the Weibull Class

summary of Results of Smooth Goodness-of-Fit Test
Testing for the Two-Parameter Weibull Distribution
Using the Polynomial Specification for Psi

Input FileName: C:\Talks\TalkATUG\davislawrancecartiredata.txt

Output FileName: C:\Talks\TalkATUG\cartireWeibull.txt

cample Size =
# of Uncensored Values
Estimate of alpha =

s_k
0.0000
0.5013
0.5550
6.4203
6.5183

N W=

Conclusion: Cannot reject Weibull family of distributions.

171

DF

BN EeE O

150.000000000000
3.41809555692639
Estimate of eta = 4.085166006131305E-003

P-Value
1.00000
0.47891
0.75769
0.09286
0.16364
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Simple GOF Problem: Discrete Data

 T.’s are discrete +rvs with jump points {a,, a,, a, ...}.

* Let {Af,Ad..... A% ...} be such that AY € [0,1]

» Problem: To test the hypotheses

Hn:)\.;,':)\_.?, jg=1,2,u.., VeIsus Hl:.}xj#)xg for some j € {1,2,...}

based on the right-censored data (Z,, 9,), ..., (Z,, 0,).
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* True and hypothesized hazard odds:

Aj 0 A)
) = and p;=-——
TTE=N T T EER
 For p a pre-specified order, let
[ '?If'JL |
P2
U= (9, Cs.n, Oy)= |
| ¥p |

be a p x J (possibly random) matrix, with its p rows
linearly independent, and with [0, a,] being the maximum
observation period for all n units.

27



Embedding Idea

e To embed the hypothesized hazard odds (#1:/5:....0}) Into
P = {(ﬂ].('f})n’f"z('g): ceespg(0)) 10 = (01,05, :ﬂ}:)" € WJ}

pi(0) = plexp{0'¥;}, j=1.2,....A

» Equivalent to assuming that the log hazard odds ratios satisfy

jL
]ﬂg{ﬂjiﬁ})}=ﬂL@J=Zﬂh‘I’#ﬁ j=1=2:...5J.
f k=1

* Class of tests are the score tests of Hy: =0 vs. H;: 0 20 as
p and ¥ are varied.
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Class of Test Statistics

Y HZi=aj,0i=1} and Rj=) I{Zi>a;} Oj=

=] =1
O = {OI:OE:-":OJ)L Eo = CE?_-_EE,..._-_E_?)L
EY = R;\ Vii = [Aj(1 = A}

Vo =Dg(Vi}.Vyyoees Vi)
e Quadratic Score Statistic:
(%) = (0 — Eq)'¥' (¥Vo¥') ¥(O — Eo)

* Under H,, this converges 1n distribution to a chi-square rv.
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A Pearson-Type Choice of ¥
Partition {1,2,...,0}: A1, Az.....Ap with 4; # 0,4 = 1. 2.....p
14 the J x 1 vector whose jth element is 1{j € A}
Urndi = [1a- 1400 w000 1a,]"
Os(4) = 14,0 = 2jcA O EY(A) =14Eq = E_—;‘e.-iE?

VI(A) = 14 Vola = Tjea Vij = Ljea £7(1 = A))

0 4.Y]2
S Wppai) = E[O. igu(f )C )

=1
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A Polynomial-Type Choice

=) () (3]

U (¥poyy) = (%)_1 (0-Bg)= ; (%)™ ;-
oo = [ T[S

SJ(T}I",{ﬂy] = quadratic form from the above matrices.
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Hyde’s Test: A Special Case

When p = 1 with polynomial specification, we obtain:

() = =10 = ENF [0.—E9r

E_r—lﬂj}'rj(l_ }'U} Ifl-

K =max{j € {L.2,....J} 1a; < Z;}

Ou — Z(@ —Z}f*‘)

=1

Resulting test coincides with Hyde’s (77, Btka) test.
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Adaptive Choice of Smoothing Order

L;(0p) = partial likelihood of 6 = (¢1.....6;)

L;(0p) = associated observed information matrix

g, =partial MLE of 6, = (0.....6,)

Adjusted Schwarz (°78, Ann. Stat.) Bayesian Information Criterion

PRICcAqg) = ATEMNAX )] «pe pyy {1‘3@ Ly (‘gp) — ‘%J [105(“) + 5 L] }
¢} is the largest eigenvalue of I}k, Cﬁ;,)
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Simulation Results for Simple Discrete Case

Table 1: Empirical levels and powers (in percents) of the 5% asvmptotic level fixed-order and adaptive
tests tor testing the veometric distribution. The second column contains the achieved levels, while the

other colmnns contain the achieved powers for different hazard alternatives,

Test Geometrie Geommetrie N -_-_';nth'{- P rh'm mial 'Tl"if,_‘] nometric’
Statistic (Null} (Different Mean) | Binomial | Hazards Hazards
52 1.6 52.5 2.0 11.7 8.8
Sz 51 15.8 (2.8 58,2 33.9
92 5. 415 00.6 53.7 83.6
53 7.0 10.3 87.9 5.3 42.1
1T | SpeAnaptvd by PRSI e TR

Note: Based on polynomial-type specification. Performances of
Pearson type tests were not as good as for the polynomial type.
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Concluding Remarks

Framework 1s general enough so as to cover both
continuous and discrete cases.

Mixed case dealt with via hazard decomposition.
Since tests are score tests, they possess local
optimality properties.

Enables automatic adjustment of effects due to
estimation of nuisance parameters.

Basic approach extends Neyman’s 1937 1dea by
embedding hazards instead of densities.

More studies needed for adaptive procedures.
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