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» Some Motivating Problems.

» Multiple Decision Problems.

» Mathematical Framework (Decision Functions, Losses, Risks).
» Special Case: Optimal Choice Between Two Actions.

» Multiple Decision Processes.

» Multiple Decision Size Function.

» Class of FWER-Controlling MDFs.

» Class of FDR-Controlling MDFs.

» An Application to a Microarray Data Set.

» Towards Optimal MDFs.

» Applicability and Some Comparisons.
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Some Motivating Questions and Areas of Relevance

» Microarray data analysis: Which genes are relevant?

» Variable selection: Which of many predictors are relevant?

» Survival analysis: Which predictors affects a lifetime variable?
» Reliability: Which components in a system are relevant?

» Epidemiology: Spread of a disease in a geographical area.

» Oil (mineral) exploration: Where to dig?

» Business: Locations of business ventures.

» Sporting Events: Predicting outcomes of NBA playoff games.
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A Microarray Data: HeatMap of Gene Expression Levels

First 100 genes out of 41267 genes in a colon cancer study at USC
(M Pefia’s Lab). Three groups (Control; 9 Days; 2 Weeks) with 6
replicates each.

HeatMap of First 100 Genes
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A Typical Variable Selection Problem

Model.

v

M
Y=08+) BiXi+e

j=1
» M is large, but many f3;s are equal to zero.
Observed Data: For j =1,2,...,n,

v

(Z;, 65, X1j, Xoj, - -, Xumgj)

with

Z=min(Y;,G) and & =I{Y; <G}

» Goal: To select the relevant predictor variables.
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A Reliability (or Biological Pathways) Problem

» System is composed of components.

» Structure function, ¢, relates components to system: series,
parallel, series-parallel, etc.

» M potential components that could constitute a system. We
do not know which components are relevant nor do we know
the structure function.

» Question: Given data regarding the states or lifetimes of the
system and components, how could we determine which
components are relevant for this system?

» Component lifetimes may be censored by system lifetime.

» Highly nonlinear types of relationships.
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The General Decision Problem

We would like to discover the value of a parameter
0= (61,6,...,00) €©={0,1}M

0, = 1 means mth component is relevant; 6,, = 0 means mth
component is not relevant.

Want to choose an action
_ _ M
a= (a1, a,...,ay) €A ={0,1}

am = 1 means we declare that 6, = 1, called a discovery;
am = 0 means we declare that 6,, = 0, a non-discovery.
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Assessing our Actions: Losses

» Family-wise error indicator:

M
{Zamlé >0}
m=1

» False Discovery Proportion:

M
L]_(a 0) _ Zm:l am(l B em)
max{Z:\nﬂzl am, 1}
» Missed Discovery Proportion:

>t (L = am)fm
L2 3,9 = o
=0 max{3 1 Om: 1}
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If Only We Still Have Paul, the Oracle!
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Sadly (or, Gladly), Revert to Being Statisticians!

» Obtain a BIG data (e.g., microarrays, Netflix):
Xex

Probabilistic Structure:

v

v

Marginal Components:
Xm=zm(X) € X and Xy ~ Py = Pzt

Parameters of Interest:

v

Om = O0m(Pm)

v

Example:

O =1 Pp € {N(p,0%) : p>0,0%>0}
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Multiple Decision Functions

Multiple Decision Function:

v

0: X —2

» Components:
0 =(01,02,...,0Mm)

Sm: X — {0,1}

v

®: space of multiple decision functions.
Mo={m:0,=0}and My ={m:6, =1}

Structure: {0m,(X) : m € My} is an independent collection,
and is independent of {0,(X) : m e My}

{dm(X) : m € Mi} need NOT be an independent collection.

v

v

v
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Risk Functions: Averaged Losses

> Given a § € D:
Family-Wise Error Rate (FWER):

v

Ro(6, P) = E[Lo(6(X),0(P))]

v

False Discovery Rate (FDR):

Ri(6, P) = E[L1(6(X), 0(P))]

v

Missed Discovery Rate (MDR):

Ra2(0, P) = E[L2(6(X),6(P))]

v

Expectations are with respect to X ~ P.

» Goal: Choose § € © with small risks, whatever P is.
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Special Case: A Pair of Choices (M = 1)

» )€ ©={0,1}
» acA={01}
» Lo(a,0) = Li(a,0) = al(6 =0)

v

L5(a,0) = (1 — a)I(6 = 1)
X ~ P with P € {Po,Pl}

v

v

> Ro(6,0) = R1(9,0) = Po(d(X)
|/

Ra(6,0) = [1 — P1(6(X) = 1) (

v

Assume Py and P; have respective densities:

fo(x) and f(x)
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Types | and Il Errors, Power, and Optimality

> Ro(6,0) : Type | error probability.
> R>(6,0) : Type Il error probability.

» Note
Rx(6,0 =1) =1 — 7w(0)

where
w(0) = P1(6(X) = 1) = POWER of 6.

» Desired Goal: Given Type | level a € [0, 1], find 6*(+; ) with
Ro(0*,0) < «, for all 0,

and
R1(0%,0) < Ry(0,6), for all 6,

for any other 0 with R1(4,0) < a, V6.

Edsel A. Pefia University of South Carolina Columbia, South ¢ Statistical Multiple Decision Making



Neyman-Pearson MP Test 4},

Edsel A. Peiia

Neyman and Pearson (1933) obtained the optimal [most
powerful] decision function to be of form

1 if A(x) > c(a)fh(x)
o (x) = ¢ (x) if fi(x) = c(a)fo(x)
0 if A(x) < c(a)fo(x)

where c(a) and y(«) satisfy
Ro(d%,0 =0) = .

Remark: Depends on «, hence power depends on .

Leads to the notion of a decision process.
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Concrete Example of a Decision Process

> Model: X = (X1, Xz, ..., Xn) © N(u,02).

Problem: Test Hp : < po [ = 0] vs Hy @ u > po [0 = 1]

Decision Function: t-test of size « given by

5(X:a)=1 {M > tnl;a}

v

v

v

Decision function depends on the size index a.

Decision Process:

v

A= (0(a)=0(;a):ae]0,1])

Size Condition:

v

sup{Ep[6(X; )] : 6(P) =0} < «
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Multiple Decision Process

» Consider a multiple decision problem with M components.

» Multiple Decision Process:
A=(An:meM={12 ..., M}
» Decision Process for mth Component:
Ap = (0m(a) : a€]0,1])

» Example: t-test decision process for each component.
» Usual Approach: Pick a é,, from A, using the same a.
» Common Choices for a: (weak) FWER Threshold of g use:

Bonferroni: a = q/M

Sidak: a=1—(1—q)'/M
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Notion of Size Functions

» A size function is a function
A:[0,1] — [0,1]

which is continuous, strictly increasing, A(0) = 0 and
A(1) <1, and possibly differentiable.

v

Bonferroni size function: A(a) = a/M
Sidak size function: A(a) =1 — (1 —a)¥/M

v

v

&: collection of possible size functions.

v

Given a decision process A and a size function A, we choose
the decision function from A according to

S[A(@)]-
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Multiple Decision Size Function

» For a multiple decision problem with M components, a
multiple decision size function is

A=(An:meM) with A,c6.

» Condition:

1= J] 11— An(a)] < a

meM

» Gvena A=(Ap:meM)andan A= (A,: me M),
multiple decision function is chosen according to

() = (6m[Am(a)] : m € M)
> Weak FWER of §(c):

Ro(3(a),P) = 1-]J1 - An(®)] <«

Edsel A. Pefia University of South Carolina Columbia, South ¢ Statistical Multiple Decision Making



Neyman-Pearson Paradigm

Control Type | error rate; minimize Type Il error rate.
Desired Type | error threshold: g € (0,1)
Weak Control: For P with 8,,(P) = 0 for all m, want a § with

v

v

v

Ro(6,P) < q or Ri(6,P)<gq.

v

Strong Control: Whatever P is, want a § such that

Ro(0,P) < g or Ry(6,P)<gq.

v

And, if above Type | error control is achieved, we want to
have R>(d, P) small, if not optimal.
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Towards Strong FWER Control

Given a MDP A = (Ap,) and MDS A = (Ap,), for the chosen § at
«, its FWER is

Ro(0.P) = Ep {1 (D dmlAm(@)]L — Om(P)] > 0) }

= P {Zém[Am(O‘)] > 0}
Mo

= 1- ][t~ An(a)]
Mo

= 1-]J1 - An(x)]* ")

Question: Given a threshold of g, what is the best a?
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‘Best’ Choice of «

» Oracle Paul’s Choice:

al(q; P) = inf {a €1[0,1] : H[l — Am(a)]} (P <1 — q}

» But, P is unknown, hence 6,(P) is also unknown. But we
could estimate 6,,(P) by

Sm[Am(a)—].

» The Oracle’s choice is then estimated by

ol(q) =inf{a € [0,1]: ]I — Am(e)]rMnl)T <1 - g}
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Strong FWER-Controlling MDF

» Chosen Multiple Decision Function:
6'(a) = (SmlAm(al ()] : m € M)

» Theorem
Given a A = (Ap,) and an A = (A,,), the 61(q) defined above has

Ro(d'(q).P) < q

whatever P is. That is, it is an MDF achieving strong FWER
control at level q.
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Generalized P-Values

» Definition
The mth component of the vector of generalized P-value statistic
associated with A and A is

am=am(A,A) =inf{a e [0,1]: om[Am(a)] =1}
» Smallest size to decide in favor of 6, = 1 under (A, A).
» Ordered Generalized P-Value Statistics:
0= <aq)<a2) <...<omwm <amiy =1
» Observe that for

a € [ay, 1)) <= Y om[Am(@)] = k

Edsel A. Pefia University of South Carolina Columbia, South ¢ Statistical Multiple Decision Making



Towards FDR Control

> Given MDP A = (A,,) and MDS A = (A,,), the MDF
0(a) = (Om[Am(@)] : me M)

has FDR

Z5m[A (a)]
» Observe:

Ep { D 0n[An(@](1 = 6n(P))} < 3" An(a)
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‘Best’ Choice of «

» Preceding considerations heuristically suggest the a:

a*(q) = sup {a €[0,1] : ZAm(a) < qz5m[Am(04)]}

» Chosen Multiple Decision Function:
5"(q) = (om[Am(a™(q))] : m € M)

» Theorem
Given a pair (A, A), the MDF ¢*(q) achieves FDR control at level
q in that
Ri(5"(9).P) < a.
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Classes of MDFs Controlling FWER and FDR

» A class of strong FWER-controlling MDFs at threshold q is:

@T:{éT(q;A,A):AGQ,AGG}

v

A class of FDR-controlling MDFs at threshold g is:
D ={0"(q;A,A): A e DA €S}
» Remark: Sidak’s sequential step-down strong FWER

controlling MDF belongs to ®F.

» Remark: Benjamini-Hochberg's step-up FDR controlling MDF
belongs to ©*.

» Potential Utility: May choose best MDF in ©f or ®* wrt the
missed discovery rate.
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Recalling BH FDR-Controlling MDF

» Benjamini-Hochberg (JRSS B, '95) paper. Most well-known
FDR-controlling procedure.

» Let P1, Py,..., Py be the ordinary P-values from the M tests.
> Let P1) < Py < ... < Py be the ordered P-values.
» For FDR-threshold equal to g, define

k
K:max{kE{O,l,Q,...,M}: P(k)gq—}.

» BH MDF 68 (q) = (68" : m € M) has

SE(X) = 1{Pm < Pucy}, me M.

v

Simple and easy-to-implement, but is it the BEST?
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Applying BH Procedure to a Two-Group Microarray Data

» Agilent Technology microarray data set from M. Pefia’s lab.
Jim Ryan of NOAA did the microarray analysis.

> M = 41267 genes.
» 2 groups, each group with 5 replicates.

» Applied t-test for each gene, using logged expression values.
P-values obtained.

» Applied Benjamini-Hochberg Procedure with g = .15 to pick
out the significant genes from the M = 41267 genes.

» Procedure picked out 2599 significant genes.

» Further analyzed the top (wrt to their p-values) 200 genes
from these selected genes.

» Performed a cluster analysis on these 200 genes.
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Histogram of the P-Values from the t-Tests

Histogram of data$P.CTFL
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Scatterplot of the Pairwise Gene Means

Significant and Chosen Genes
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Heatmap of the 200 Top Genes
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Pictorial Depiction of Gene Clusters of Top 200 Genes
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Can We Obtain a Better MDF than BH?

» IDEA: Given MDP A = (Ap, : m € M), we find the optimal
MDS A* = A*(A) € & achieving smallest MDR

Ral(A o A)(), Pa] = 22 3" {1~ T [Ana)]}.

» mm(a) = POWER of 6,,()
» FWER-controlling MDF:

5t(q) = 67(q: A, A%(D))
» FDR-controlling MDF:
5*(q) = 0"(q: A, A*(A))

» Use the best MDP A, e.g., MPs; UMPs; UMPUs; UMPIs.
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Role of Power or ROC Functions

» P-value based procedures ignore differences in powers.
» Neyman and Pearson: power germane in search for optimality.
» Power of mth Test: () = Ep, {Im(X; @)}

» ROC Function for mth Decision Process A;:
a = Tm(a)

» ROC functions in the missed discovery rate.
» Enables exploiting differences in the ROC functions.

» Why Power or ROC Differences? Different effect sizes,
decision processes, or dispersion parameters.

» EXCHANGEABILITY: EXCEPTION rather than RULE!
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Case with Simple Nulls and Simple Alternatives

» Neyman-Pearson Most Powerful Decision Process for each m.
» ROC Functions:

a = mTm(a)
» ROC functions are concave, continuous, and increasing.

» Assume that they are also twice-differentiable.

Theorem
Multiple decision size function (. — Am() : m € M) is optimal
if it satisfies the M + 1 equilibrium conditions

VvmeM: 7 (An)(1—Ayn) =X\ forsome ) € R;

m

Z log(1 — = log(1 — ).
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Example: Optimal Multiple Decision Size Function

» M = 2000
For each m: X, ~ N(um,o0 =1)

v

v

Multiple Decision Problem: To test
Hmo i tm =0 versus Hpi : ttm = Ym-

Effect Sizes: vnm 0 [N(0,3)]
For each m, Neyman-Pearson MP decision process.

v

v

Ay = (0m(a) : a€]0,1])

Om(xm; @) = {xm > ¢71(1 —a)}

Power or ROC Function for the mth NP MP Decision Process:

v

s () =1— & [071(1 — a) — 3]
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Optimal Test Sizes vs Effect Sizes
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Economic Aspect: A Size-Investing Strategy

» Do not invest your size on those where you will not make
discoveries (small power) or those that you will certainly make
discoveries (high power)!

» Rather, concentrate on those where it is a bit uncertain, since
your differential gain in overall discovery rate would be
greater!

» Some Wicked Consequences

» Departmental Merit Systems.
» Graduate Student Advising.
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BH MDF versus 6*(q): ¢

; 1000 Reps

[v] p ] 65-FDR [ 5;-MDR* ]| 657-FDR | 6°7-MDR" |
1701 8.03 70.80 8.43 72.64
102 7.55 79.64 8.77 81.99
104 6.05 77.47 6.65 80.30
201 7.70 54.42 8.43 55.80
202 7.39 56.32 7.59 57.31
2|04 6.47 47.82 6.21 49.38
401 9.14 8.62 9.48 10.30
4102 7.80 7.34 6.97 9.20
4|04 6.15 3.58 5.65 5.53
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BH MDF versus 6*(q): ¢* = .1; ; 1000 Reps

[v] p ] 6;-FDR | 5;-MDR" || 6P7-FDR | 657-MDR" ||
1]01 9.14 87.10 9.02 90.02
102 8.21 84.05 8.78 87.38
1|04 5.92 80.12 5.88 83.73
201 9.79 66.10 9.24 67.93
202 7.68 58.25 7.94 59.93
2|04 5.74 49.29 6.10 50.90
401 8.37 10.44 8.62 1236
4102 7.72 5.93 7.81 8.22
4|04 5.69 3.80 6.14 5.72
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Potential Applications and Concluding Remarks

» Microarray data analysis: which genes are important?

» Systems analysis (Biological Pathways?): which components
(subsystems of genes) are relevant?

» Variable selection: which predictor variables are important?

» For each gene, component, or predictor variable, apply a
decision function to decide whether, say, independence or
dependence holds with respect to the response variable.

» Test for Independence: Kendall's procedure, for example.

» Use MDFs 67(q) or 6*(q).

> Issues of determining effect sizes to determine power or ROC
functions still need further studies.

» Comparison with other methods, such as those using
regularization?
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