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Outline

▶ Some Motivating Problems.

▶ Multiple Decision Problems.

▶ Mathematical Framework (Decision Functions, Losses, Risks).

▶ Special Case: Optimal Choice Between Two Actions.

▶ Multiple Decision Processes.

▶ Multiple Decision Size Function.

▶ Class of FWER-Controlling MDFs.

▶ Class of FDR-Controlling MDFs.

▶ An Application to a Microarray Data Set.

▶ Towards Optimal MDFs.

▶ Applicability and Some Comparisons.

Edsel A. Peña University of South Carolina Columbia, South Carolina (E-Mail: pena@stat.sc.edu)Statistical Multiple Decision Making



Some Motivating Questions and Areas of Relevance

▶ Microarray data analysis: Which genes are relevant?

▶ Variable selection: Which of many predictors are relevant?

▶ Survival analysis: Which predictors affects a lifetime variable?

▶ Reliability: Which components in a system are relevant?

▶ Epidemiology: Spread of a disease in a geographical area.

▶ Oil (mineral) exploration: Where to dig?

▶ Business: Locations of business ventures.

▶ Sporting Events: Predicting outcomes of NBA playoff games.
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A Microarray Data: HeatMap of Gene Expression Levels

First 100 genes out of 41267 genes in a colon cancer study at USC
(M Peña’s Lab). Three groups (Control; 9 Days; 2 Weeks) with 6
replicates each.
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HeatMap of First 100 Genes
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A Typical Variable Selection Problem

▶ Model.

Y = �0 +
M
∑

j=1

�jXj + �

▶ M is large, but many �js are equal to zero.

▶ Observed Data: For j = 1, 2, . . . , n,

(Zj , �j ,X1j ,X2j , . . . ,XMj)

with
Zj = min(Yj ,Cj) and �j = I{Yj ≤ Cj}

▶ Goal: To select the relevant predictor variables.
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A Reliability (or Biological Pathways) Problem

▶ System is composed of components.

▶ Structure function, �, relates components to system: series,
parallel, series-parallel, etc.

▶ M potential components that could constitute a system. We
do not know which components are relevant nor do we know
the structure function.

▶ Question: Given data regarding the states or lifetimes of the
system and components, how could we determine which
components are relevant for this system?

▶ Component lifetimes may be censored by system lifetime.

▶ Highly nonlinear types of relationships.
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The General Decision Problem

▶ We would like to discover the value of a parameter

� = (�1, �2, . . . , �M) ∈ Θ = {0, 1}M

▶ �m = 1 means mth component is relevant; �m = 0 means mth
component is not relevant.

▶ Want to choose an action

a = (a1, a2, . . . , aM) ∈ A = {0, 1}M

▶ am = 1 means we declare that �m = 1, called a discovery;
am = 0 means we declare that �m = 0, a non-discovery.
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Assessing our Actions: Losses

▶ Family-wise error indicator:

L0(a, �) = I

{

M
∑

m=1

am(1− �m) > 0

}

▶ False Discovery Proportion:

L1(a, �) =

∑M
m=1 am(1− �m)

max{∑M
m=1 am, 1}

▶ Missed Discovery Proportion:

L2(a, �) =

∑M
m=1(1− am)�m

max{∑M
m=1 �m, 1}
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If Only We Still Have Paul, the Oracle!
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Sadly (or, Gladly), Revert to Being Statisticians!

▶ Obtain a BIG data (e.g., microarrays, Netflix):

X ∈ X

▶ Probabilistic Structure:

X ∼ P

▶ Marginal Components:

Xm = zm(X ) ∈ Xm and Xm ∼ Pm = Pz−1
m

▶ Parameters of Interest:

�m = �m(Pm)

▶ Example:

�m = 1 ⇐⇒ Pm ∈ {N(�, �2) : � ≥ 0, �2 > 0}
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Multiple Decision Functions

▶ Multiple Decision Function:

� : X → A

▶ Components:
� = (�1, �2, . . . , �M)

�m : X → {0, 1}
▶ D: space of multiple decision functions.

▶ ℳ0 = {m : �m = 0} and ℳ1 = {m : �m = 1}
▶ Structure: {�m(X ) : m ∈ ℳ0} is an independent collection,

and is independent of {�m(X ) : m ∈ ℳ1}.
▶ {�m(X ) : m ∈ ℳ1} need NOT be an independent collection.
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Risk Functions: Averaged Losses

▶ Given a � ∈ D:

▶ Family-Wise Error Rate (FWER):

R0(�,P) = E [L0(�(X ), �(P))]

▶ False Discovery Rate (FDR):

R1(�,P) = E [L1(�(X ), �(P))]

▶ Missed Discovery Rate (MDR):

R2(�,P) = E [L2(�(X ), �(P))]

▶ Expectations are with respect to X ∼ P .

▶ Goal: Choose � ∈ D with small risks, whatever P is.
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Special Case: A Pair of Choices (M = 1)

▶ � ∈ Θ = {0, 1}
▶ a ∈ A = {0, 1}
▶ L0(a, �) = L1(a, �) = aI (� = 0)

▶ L2(a, �) = (1− a)I (� = 1)

▶ X ∼ P with P ∈ {P0,P1}

▶ R0(�, �) = R1(�, �) = P0(�(X ) = 1)I (� = 0)

▶ R2(�, �) = [1− P1(�(X ) = 1)]I (� = 1)

▶ Assume P0 and P1 have respective densities:

f0(x) and f1(x)
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Types I and II Errors, Power, and Optimality

▶ R0(�, �) : Type I error probability.

▶ R2(�, �) : Type II error probability.

▶ Note
R2(�, � = 1) = 1− �(�)

where
�(�) = P1(�(X ) = 1) = POWER of �.

▶ Desired Goal: Given Type I level � ∈ [0, 1], find �∗(⋅;�) with

R0(�
∗, �) ≤ �, for all �,

and
R1(�

∗, �) ≤ R1(�, �), for all �,

for any other � with R1(�, �) ≤ �,∀�.
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Neyman-Pearson MP Test �∗�

▶ Neyman and Pearson (1933) obtained the optimal [most
powerful] decision function to be of form

�∗�(x) =

⎧

⎨

⎩

1 if f1(x) > c(�)f0(x)

(x) if f1(x) = c(�)f0(x)
0 if f1(x) < c(�)f0(x)

where c(�) and 
(�) satisfy

R0(�
∗
�, � = 0) = �.

▶ Remark: Depends on �, hence power depends on �.

▶ Leads to the notion of a decision process.
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Concrete Example of a Decision Process

▶ Model: X = (X1,X2, . . . ,Xn)
IID∼ N(�, �2).

▶ Problem: Test H0 : � ≤ �0 [� = 0] vs H1 : � > �0 [� = 1]

▶ Decision Function: t-test of size � given by

�(X ;�) = I

{√
n(X̄ − �0)

S
≥ tn−1;�

}

▶ Decision function depends on the size index �.

▶ Decision Process:

Δ = (�(�) ≡ �(⋅;�) : � ∈ [0, 1])

▶ Size Condition:

sup{EP [�(X ;�)] : �(P) = 0} ≤ �
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Multiple Decision Process

▶ Consider a multiple decision problem with M components.

▶ Multiple Decision Process:

Δ = (Δm : m ∈ ℳ = {1, 2, . . . ,M})

▶ Decision Process for mth Component:

Δm = (�m(�) : � ∈ [0, 1])

▶ Example: t-test decision process for each component.

▶ Usual Approach: Pick a �m from Δm using the same �.

▶ Common Choices for �: (weak) FWER Threshold of q use:

Bonferroni: � = q/M

Sidak: � = 1− (1− q)1/M
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Notion of Size Functions

▶ A size function is a function

A : [0, 1] → [0, 1]

which is continuous, strictly increasing, A(0) = 0 and
A(1) ≤ 1, and possibly differentiable.

▶ Bonferroni size function: A(�) = �/M

▶ Sidak size function: A(�) = 1− (1− �)1/M

▶ S: collection of possible size functions.

▶ Given a decision process Δ and a size function A, we choose
the decision function from Δ according to

�[A(�)].
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Multiple Decision Size Function

▶ For a multiple decision problem with M components, a
multiple decision size function is

A = (Am : m ∈ ℳ) with Am ∈ S.

▶ Condition:
1−

∏

m∈ℳ

[1− Am(�)] ≤ �

▶ Given a Δ = (Δm : m ∈ ℳ) and an A = (Am : m ∈ ℳ),
multiple decision function is chosen according to

�(�) = (�m[Am(�)] : m ∈ ℳ)

▶ Weak FWER of �(�):

R0(�(�),P) = 1−
∏

[1− Am(�)] ≤ �
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Neyman-Pearson Paradigm

▶ Control Type I error rate; minimize Type II error rate.

▶ Desired Type I error threshold: q ∈ (0, 1)

▶ Weak Control: For P with �m(P) = 0 for all m, want a � with

R0(�,P) ≤ q or R1(�,P) ≤ q.

▶ Strong Control: Whatever P is, want a � such that

R0(�,P) ≤ q or R1(�,P) ≤ q.

▶ And, if above Type I error control is achieved, we want to
have R2(�,P) small, if not optimal.
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Towards Strong FWER Control

Given a MDP Δ = (Δm) and MDS A = (Am), for the chosen � at
�, its FWER is

R0(�,P) = EP

{

I
(

∑

�m[Am(�)][1 − �m(P)] > 0
)}

= P

⎧

⎨

⎩

∑

ℳ0

�m[Am(�)] > 0

⎫

⎬

⎭

= 1−
∏

ℳ0

[1− Am(�)]

= 1−
∏

[1− Am(�)]
1−�m(P)

Question: Given a threshold of q, what is the best �?
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‘Best’ Choice of �

▶ Oracle Paul’s Choice:

�†(q;P) = inf
{

� ∈ [0, 1] :
∏

[1− Am(�)]
1−�m(P) < 1− q

}

▶ But, P is unknown, hence �m(P) is also unknown. But we
could estimate �m(P) by

�m[Am(�)−].

▶ The Oracle’s choice is then estimated by

�†(q) = inf
{

� ∈ [0, 1] :
∏

[1− Am(�)]
1−�m [Am(�)−] < 1− q

}
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Strong FWER-Controlling MDF

▶ Chosen Multiple Decision Function:

�†(q) =
(

�m[Am(�
†(q))] : m ∈ ℳ

)

▶ Theorem
Given a Δ = (Δm) and an A = (Am), the �†(q) defined above has

R0(�
†(q),P) ≤ q

whatever P is. That is, it is an MDF achieving strong FWER

control at level q.
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Generalized P-Values

▶ Definition
The mth component of the vector of generalized P-value statistic
associated with Δ and A is

�m ≡ �m(Δ,A) = inf{� ∈ [0, 1] : �m[Am(�)] = 1}

▶ Smallest size to decide in favor of �m = 1 under (Δ,A).

▶ Ordered Generalized P-Value Statistics:

0 ≡ �(0) < �(1) < �(2) < . . . < �(M) < �(M+1) ≡ 1

▶ Observe that for

� ∈ [�(k), �(k+1)) ⇐⇒
∑

�m[Am(�)] = k
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Towards FDR Control

▶ Given MDP Δ = (Δm) and MDS A = (Am), the MDF

�(�) = (�m[Am(�)] : m ∈ ℳ)

has FDR

R1(�(�),P) = EP

{∑

�m[Am(�)](1− �m(P))
∑

�m[Am(�)]

}

▶ Observe:

EP

{

∑

�m[Am(�)](1− �m(P))
}

≤
∑

Am(�)
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‘Best’ Choice of �

▶ Preceding considerations heuristically suggest the �:

�∗(q) = sup
{

� ∈ [0, 1] :
∑

Am(�) ≤ q
∑

�m[Am(�)]
}

▶ Chosen Multiple Decision Function:

�∗(q) = (�m[Am(�
∗(q))] : m ∈ ℳ)

▶ Theorem
Given a pair (Δ,A), the MDF �∗(q) achieves FDR control at level

q in that

R1(�
∗(q),P) ≤ q.
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Classes of MDFs Controlling FWER and FDR

▶ A class of strong FWER-controlling MDFs at threshold q is:

D
† =

{

�†(q;Δ,A) : Δ ∈ D,A ∈ S

}

▶ A class of FDR-controlling MDFs at threshold q is:

D
∗ = {�∗(q;Δ,A) : Δ ∈ D,A ∈ S}

▶ Remark: Sidak’s sequential step-down strong FWER
controlling MDF belongs to D

†.

▶ Remark: Benjamini-Hochberg’s step-up FDR controlling MDF
belongs to D

∗.

▶ Potential Utility: May choose best MDF in D
† or D∗ wrt the

missed discovery rate.
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Recalling BH FDR-Controlling MDF

▶ Benjamini-Hochberg (JRSS B, ’95) paper. Most well-known
FDR-controlling procedure.

▶ Let P1,P2, . . . ,PM be the ordinary P-values from the M tests.

▶ Let P(1) < P(2) < . . . < P(M) be the ordered P-values.

▶ For FDR-threshold equal to q, define

K = max

{

k ∈ {0, 1, 2, . . . ,M} : P(k) ≤
qk

M

}

.

▶ BH MDF �BH(q) = (�BHm : m ∈ ℳ) has

�BHm (X ) = I
{

Pm ≤ P(K)

}

, m ∈ ℳ.

▶ Simple and easy-to-implement, but is it the BEST?
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Applying BH Procedure to a Two-Group Microarray Data

▶ Agilent Technology microarray data set from M. Peña’s lab.
Jim Ryan of NOAA did the microarray analysis.

▶ M = 41267 genes.

▶ 2 groups, each group with 5 replicates.

▶ Applied t-test for each gene, using logged expression values.
P-values obtained.

▶ Applied Benjamini-Hochberg Procedure with q = .15 to pick
out the significant genes from the M = 41267 genes.

▶ Procedure picked out 2599 significant genes.

▶ Further analyzed the top (wrt to their p-values) 200 genes
from these selected genes.

▶ Performed a cluster analysis on these 200 genes.
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Histogram of the P-Values from the t-Tests
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Scatterplot of the Pairwise Gene Means
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Heatmap of the 200 Top Genes
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Pictorial Depiction of Gene Clusters of Top 200 Genes
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Can We Obtain a Better MDF than BH?

▶ IDEA: Given MDP Δ = (Δm : m ∈ ℳ), we find the optimal
MDS A∗ ≡ A∗(Δ) ∈ S achieving smallest MDR

R2[(Δ ∘ A)(�),P1] =
1

M

∑

{1− �m [Am(�)]} .

▶ �m(�) = POWER of �m(�)

▶ FWER-controlling MDF:

�†(q) = �†(q;Δ,A∗(Δ))

▶ FDR-controlling MDF:

�∗(q) = �∗(q;Δ,A∗(Δ))

▶ Use the best MDP Δ, e.g., MPs; UMPs; UMPUs; UMPIs.
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Role of Power or ROC Functions

▶ P-value based procedures ignore differences in powers.

▶ Neyman and Pearson: power germane in search for optimality.

▶ Power of mth Test: �m(�) = EPm1
{�m(X ;�)}

▶ ROC Function for mth Decision Process Δm:

� 7→ �m(�)

▶ ROC functions in the missed discovery rate.

▶ Enables exploiting differences in the ROC functions.

▶ Why Power or ROC Differences? Different effect sizes,
decision processes, or dispersion parameters.

▶ EXCHANGEABILITY: EXCEPTION rather than RULE!
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Case with Simple Nulls and Simple Alternatives

▶ Neyman-Pearson Most Powerful Decision Process for each m.

▶ ROC Functions:
� 7→ �m(�)

▶ ROC functions are concave, continuous, and increasing.

▶ Assume that they are also twice-differentiable.

Theorem
Multiple decision size function (� 7→ Am(�) : m ∈ ℳ) is optimal

if it satisfies the M + 1 equilibrium conditions

∀m ∈ ℳ : �′
m(Am)(1− Am) = � for some � ∈ ℜ;

∑

ℳ

log(1− Am) = log(1− �).
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Example: Optimal Multiple Decision Size Function

▶ M = 2000

▶ For each m: Xm ∼ N(�m, � = 1)

▶ Multiple Decision Problem: To test

Hm0 : �m = 0 versus Hm1 : �m = 
m.

▶ Effect Sizes: 
m
IID∼ ∣N(0, 3)∣

▶ For each m, Neyman-Pearson MP decision process.

Δm = (�m(�) : � ∈ [0, 1])

�m(xm;�) = I{xm ≥ Φ−1(1− �)}
▶ Power or ROC Function for the mth NP MP Decision Process:

� 7→ �m(�) = 1− Φ
[

Φ−1(1 − �)− 
m
]

Edsel A. Peña University of South Carolina Columbia, South Carolina (E-Mail: pena@stat.sc.edu)Statistical Multiple Decision Making



Optimal Test Sizes vs Effect Sizes

Effect Size
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Economic Aspect: A Size-Investing Strategy

▶ Do not invest your size on those where you will not make
discoveries (small power) or those that you will certainly make
discoveries (high power)!

▶ Rather, concentrate on those where it is a bit uncertain, since
your differential gain in overall discovery rate would be
greater!

▶ Some Wicked Consequences
▶ Departmental Merit Systems.
▶ Graduate Student Advising.
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BH MDF versus �∗(q): q∗ = .1; M = 20; 1000 Reps

� p �∗F -FDR �∗F -MDR∗ �BH -FDR �BH -MDR∗

1 0.1 8.03 70.80 8.43 72.64
1 0.2 7.55 79.64 8.77 81.99
1 0.4 6.05 77.47 6.65 80.30

2 0.1 7.70 54.42 8.43 55.80
2 0.2 7.39 56.32 7.59 57.31
2 0.4 6.47 47.82 6.21 49.38

4 0.1 9.14 8.62 9.48 10.30
4 0.2 7.80 7.34 6.97 9.20
4 0.4 6.15 3.58 5.65 5.53
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BH MDF versus �∗(q): q∗ = .1; M = 100; 1000 Reps

� p �∗F -FDR �∗F -MDR∗ �BH -FDR �BH -MDR∗

1 0.1 9.14 87.10 9.02 90.02
1 0.2 8.21 84.05 8.78 87.38
1 0.4 5.92 80.12 5.88 83.73

2 0.1 9.79 66.10 9.24 67.93
2 0.2 7.68 58.25 7.94 59.93
2 0.4 5.74 49.29 6.10 50.90

4 0.1 8.37 10.44 8.62 12.36
4 0.2 7.72 5.93 7.81 8.22
4 0.4 5.69 3.80 6.14 5.72
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Potential Applications and Concluding Remarks

▶ Microarray data analysis: which genes are important?

▶ Systems analysis (Biological Pathways?): which components
(subsystems of genes) are relevant?

▶ Variable selection: which predictor variables are important?

▶ For each gene, component, or predictor variable, apply a
decision function to decide whether, say, independence or
dependence holds with respect to the response variable.

▶ Test for Independence: Kendall’s procedure, for example.

▶ Use MDFs �†(q) or �∗(q).

▶ Issues of determining effect sizes to determine power or ROC
functions still need further studies.

▶ Comparison with other methods, such as those using
regularization?
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