Statistical Multiple Decision Making

Edsel A. Peña University of South Carolina
Columbia, South Carolina
(E-Mail: pena@stat.sc.edu)

University of Miami Colloquium Talk April 22, 2011

Outline

- Some Motivating Problems.
- Multiple Decision Problems.
- Mathematical Framework (Decision Functions, Losses, Risks).
- Special Case: Optimal Choice Between Two Actions.
- Multiple Decision Processes.
- Multiple Decision Size Function.
- Class of FWER-Controlling MDFs.
- Class of FDR-Controlling MDFs.
- An Application to a Microarray Data Set.
- Towards Optimal MDFs.
- Applicability and Some Comparisons.

Some Motivating Questions and Areas of Relevance

- Microarray data analysis: Which genes are relevant?
- Variable selection: Which of many predictors are relevant?
- Survival analysis: Which predictors affects a lifetime variable?
- Reliability: Which components in a system are relevant?
- Epidemiology: Spread of a disease in a geographical area.
- Oil (mineral) exploration: Where to dig?
- Business: Locations of business ventures.
- Sporting Events: Predicting outcomes of NBA playoff games.

A Microarray Data: HeatMap of Gene Expression Levels

First 100 genes out of 41267 genes in a colon cancer study at USC (M Peña's Lab). Three groups (Control; 9 Days; 2 Weeks) with 6 replicates each.

HeatMap of First 100 Genes

A Typical Variable Selection Problem

- Model.

$$
Y=\beta_{0}+\sum_{j=1}^{M} \beta_{j} X_{j}+\epsilon
$$

- M is large, but many $\beta_{j} \mathrm{~s}$ are equal to zero.
- Observed Data: For $j=1,2, \ldots, n$,

$$
\left(Z_{j}, \delta_{j}, X_{1 j}, X_{2 j}, \ldots, X_{M j}\right)
$$

with

$$
Z_{j}=\min \left(Y_{j}, C_{j}\right) \quad \text { and } \quad \delta_{j}=I\left\{Y_{j} \leq C_{j}\right\}
$$

- Goal: To select the relevant predictor variables.

A Reliability (or Biological Pathways) Problem

- System is composed of components.
- Structure function, ϕ, relates components to system: series, parallel, series-parallel, etc.
- M potential components that could constitute a system. We do not know which components are relevant nor do we know the structure function.
- Question: Given data regarding the states or lifetimes of the system and components, how could we determine which components are relevant for this system?
- Component lifetimes may be censored by system lifetime.
- Highly nonlinear types of relationships.

The General Decision Problem

- We would like to discover the value of a parameter

$$
\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{M}\right) \in \Theta=\{0,1\}^{M}
$$

- $\theta_{m}=1$ means m th component is relevant; $\theta_{m}=0$ means m th component is not relevant.
- Want to choose an action

$$
a=\left(a_{1}, a_{2}, \ldots, a_{M}\right) \in \mathfrak{A}=\{0,1\}^{M}
$$

- $a_{m}=1$ means we declare that $\theta_{m}=1$, called a discovery; $a_{m}=0$ means we declare that $\theta_{m}=0$, a non-discovery.

Assessing our Actions: Losses

- Family-wise error indicator:

$$
L_{0}(a, \theta)=I\left\{\sum_{m=1}^{M} a_{m}\left(1-\theta_{m}\right)>0\right\}
$$

- False Discovery Proportion:

$$
L_{1}(a, \theta)=\frac{\sum_{m=1}^{M} a_{m}\left(1-\theta_{m}\right)}{\max \left\{\sum_{m=1}^{M} a_{m}, 1\right\}}
$$

- Missed Discovery Proportion:

$$
L_{2}(a, \theta)=\frac{\sum_{m=1}^{M}\left(1-a_{m}\right) \theta_{m}}{\max \left\{\sum_{m=1}^{M} \theta_{m}, 1\right\}}
$$

If Only We Still Have Paul, the Oracle!

Sadly (or, Gladly), Revert to Being Statisticians!

- Obtain a BIG data (e.g., microarrays, Netflix):

$$
X \in \mathfrak{X}
$$

- Probabilistic Structure:

$$
X \sim P
$$

- Marginal Components:

$$
X_{m}=z_{m}(X) \in \mathfrak{X}_{m} \quad \text { and } \quad X_{m} \sim P_{m}=P z_{m}^{-1}
$$

- Parameters of Interest:

$$
\theta_{m}=\theta_{m}\left(P_{m}\right)
$$

- Example:

$$
\theta_{m}=1 \Longleftrightarrow P_{m} \in\left\{N\left(\mu, \sigma^{2}\right): \mu \geq 0, \sigma^{2}>0\right\}
$$

Multiple Decision Functions

- Multiple Decision Function:

$$
\delta: \mathfrak{X} \rightarrow \mathfrak{A}
$$

- Components:

$$
\begin{gathered}
\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{M}\right) \\
\delta_{m}: \mathfrak{X} \rightarrow\{0,1\}
\end{gathered}
$$

- \mathfrak{D} : space of multiple decision functions.
- $\mathcal{M}_{0}=\left\{m: \theta_{m}=0\right\}$ and $\mathcal{M}_{1}=\left\{m: \theta_{m}=1\right\}$
- Structure: $\left\{\delta_{m}(X): m \in \mathcal{M}_{0}\right\}$ is an independent collection, and is independent of $\left\{\delta_{m}(X): m \in \mathcal{M}_{1}\right\}$.
- $\left\{\delta_{m}(X): m \in \mathcal{M}_{1}\right\}$ need NOT be an independent collection.

Risk Functions: Averaged Losses

- Given a $\delta \in \mathfrak{D}$:
- Family-Wise Error Rate (FWER):

$$
R_{0}(\delta, P)=E\left[L_{0}(\delta(X), \theta(P))\right]
$$

- False Discovery Rate (FDR):

$$
R_{1}(\delta, P)=E\left[L_{1}(\delta(X), \theta(P))\right]
$$

- Missed Discovery Rate (MDR):

$$
R_{2}(\delta, P)=E\left[L_{2}(\delta(X), \theta(P))\right]
$$

- Expectations are with respect to $X \sim P$.
- Goal: Choose $\delta \in \mathfrak{D}$ with small risks, whatever P is.

Special Case: A Pair of Choices $(M=1)$

- $\theta \in \Theta=\{0,1\}$
- $a \in \mathfrak{A}=\{0,1\}$
- $L_{0}(a, \theta)=L_{1}(a, \theta)=a l(\theta=0)$
- $L_{2}(a, \theta)=(1-a) I(\theta=1)$
- $X \sim P$ with $P \in\left\{P_{0}, P_{1}\right\}$
- $R_{0}(\delta, \theta)=R_{1}(\delta, \theta)=P_{0}(\delta(X)=1) /(\theta=0)$
- $R_{2}(\delta, \theta)=\left[1-P_{1}(\delta(X)=1)\right] /(\theta=1)$
- Assume P_{0} and P_{1} have respective densities:

$$
f_{0}(x) \text { and } f_{1}(x)
$$

Types I and II Errors, Power, and Optimality

- $R_{0}(\delta, \theta)$: Type I error probability.
- $R_{2}(\delta, \theta)$: Type II error probability.
- Note

$$
R_{2}(\delta, \theta=1)=1-\pi(\delta)
$$

where

$$
\pi(\delta)=P_{1}(\delta(X)=1)=\text { POWER of } \delta
$$

- Desired Goal: Given Type I level $\alpha \in[0,1]$, find $\delta^{*}(\cdot ; \alpha)$ with

$$
R_{0}\left(\delta^{*}, \theta\right) \leq \alpha, \quad \text { for all } \theta,
$$

and

$$
R_{1}\left(\delta^{*}, \theta\right) \leq R_{1}(\delta, \theta), \quad \text { for all } \theta
$$

for any other δ with $R_{1}(\delta, \theta) \leq \alpha, \forall \theta$.

Neyman-Pearson MP Test δ_{α}^{*}

- Neyman and Pearson (1933) obtained the optimal [most powerful] decision function to be of form

$$
\delta_{\alpha}^{*}(x)=\left\{\begin{array}{ccc}
1 & \text { if } & f_{1}(x)>c(\alpha) f_{0}(x) \\
\gamma(x) & \text { if } & f_{1}(x)=c(\alpha) f_{0}(x) \\
0 & \text { if } & f_{1}(x)<c(\alpha) f_{0}(x)
\end{array}\right.
$$

where $c(\alpha)$ and $\gamma(\alpha)$ satisfy

$$
R_{0}\left(\delta_{\alpha}^{*}, \theta=0\right)=\alpha
$$

- Remark: Depends on α, hence power depends on α.
- Leads to the notion of a decision process.

Concrete Example of a Decision Process

- Model: $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right) \stackrel{\text { IID }}{\sim} N\left(\mu, \sigma^{2}\right)$.
- Problem: Test $H_{0}: \mu \leq \mu_{0}[\theta=0]$ vs $H_{1}: \mu>\mu_{0}[\theta=1]$
- Decision Function: t-test of size α given by

$$
\delta(X ; \alpha)=I\left\{\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{S} \geq t_{n-1 ; \alpha}\right\}
$$

- Decision function depends on the size index α.
- Decision Process:

$$
\Delta=(\delta(\alpha) \equiv \delta(\cdot ; \alpha): \alpha \in[0,1])
$$

- Size Condition:

$$
\sup \left\{E_{P}[\delta(X ; \alpha)]: \theta(P)=0\right\} \leq \alpha
$$

Multiple Decision Process

- Consider a multiple decision problem with M components.
- Multiple Decision Process:

$$
\boldsymbol{\Delta}=\left(\Delta_{m}: m \in \mathcal{M}=\{1,2, \ldots, M\}\right)
$$

- Decision Process for m th Component:

$$
\Delta_{m}=\left(\delta_{m}(\alpha): \alpha \in[0,1]\right)
$$

- Example: t-test decision process for each component.
- Usual Approach: Pick a δ_{m} from Δ_{m} using the same α.
- Common Choices for α : (weak) FWER Threshold of q use:

$$
\text { Bonferroni: } \quad \alpha=q / M
$$

Sidak: $\quad \alpha=1-(1-q)^{1 / M}$

Notion of Size Functions

- A size function is a function

$$
A:[0,1] \rightarrow[0,1]
$$

which is continuous, strictly increasing, $A(0)=0$ and $A(1) \leq 1$, and possibly differentiable.

- Bonferroni size function: $\boldsymbol{A}(\alpha)=\alpha / M$
- Sidak size function: $A(\alpha)=1-(1-\alpha)^{1 / M}$
- S: collection of possible size functions.
- Given a decision process Δ and a size function A, we choose the decision function from Δ according to

$$
\delta[A(\alpha)]
$$

Multiple Decision Size Function

- For a multiple decision problem with M components, a multiple decision size function is

$$
\mathbf{A}=\left(A_{m}: m \in \mathcal{M}\right) \quad \text { with } \quad A_{m} \in \mathfrak{S} .
$$

- Condition:

$$
1-\prod_{m \in \mathcal{M}}\left[1-A_{m}(\alpha)\right] \leq \alpha
$$

- Given a $\Delta=\left(\Delta_{m}: m \in \mathcal{M}\right)$ and an $\mathbf{A}=\left(A_{m}: m \in \mathcal{M}\right)$, multiple decision function is chosen according to

$$
\delta(\alpha)=\left(\delta_{m}\left[A_{m}(\alpha)\right]: m \in \mathcal{M}\right)
$$

- Weak FWER of $\delta(\alpha)$:

$$
R_{0}(\delta(\alpha), P)=1-\prod\left[1-A_{m}(\alpha)\right] \leq \alpha
$$

Neyman-Pearson Paradigm

- Control Type I error rate; minimize Type II error rate.
- Desired Type I error threshold: $q \in(0,1)$
- Weak Control: For P with $\theta_{m}(P)=0$ for all m, want a δ with

$$
R_{0}(\delta, P) \leq q \quad \text { or } \quad R_{1}(\delta, P) \leq q
$$

- Strong Control: Whatever P is, want a δ such that

$$
R_{0}(\delta, P) \leq q \quad \text { or } \quad R_{1}(\delta, P) \leq q
$$

- And, if above Type I error control is achieved, we want to have $R_{2}(\delta, P)$ small, if not optimal.

Towards Strong FWER Control

Given a MDP $\Delta=\left(\Delta_{m}\right)$ and MDS $\mathbf{A}=\left(A_{m}\right)$, for the chosen δ at α, its FWER is

$$
\begin{aligned}
R_{0}(\delta, P) & =E_{P}\left\{I\left(\sum \delta_{m}\left[A_{m}(\alpha)\right]\left[1-\theta_{m}(P)\right]>0\right)\right\} \\
& =P\left\{\sum_{\mathcal{M}_{0}} \delta_{m}\left[A_{m}(\alpha)\right]>0\right\} \\
& =1-\prod_{\mathcal{M}_{0}}\left[1-A_{m}(\alpha)\right] \\
& =1-\prod\left[1-A_{m}(\alpha)\right]^{1-\theta_{m}(P)}
\end{aligned}
$$

Question: Given a threshold of q, what is the best α ?

'Best' Choice of α

- Oracle Paul's Choice:

$$
\alpha^{\dagger}(q ; P)=\inf \left\{\alpha \in[0,1]: \prod\left[1-A_{m}(\alpha)\right]^{1-\theta_{m}(P)}<1-q\right\}
$$

- But, P is unknown, hence $\theta_{m}(P)$ is also unknown. But we could estimate $\theta_{m}(P)$ by

$$
\delta_{m}\left[A_{m}(\alpha)-\right] .
$$

- The Oracle's choice is then estimated by

$$
\alpha^{\dagger}(q)=\inf \left\{\alpha \in[0,1]: \prod\left[1-A_{m}(\alpha)\right]^{1-\delta_{m}\left[A_{m}(\alpha)-\right]}<1-q\right\}
$$

Strong FWER-Controlling MDF

- Chosen Multiple Decision Function:

$$
\delta^{\dagger}(q)=\left(\delta_{m}\left[A_{m}\left(\alpha^{\dagger}(q)\right)\right]: m \in \mathcal{M}\right)
$$

- Theorem

Given a $\Delta=\left(\Delta_{m}\right)$ and an $\mathbf{A}=\left(A_{m}\right)$, the $\delta^{\dagger}(q)$ defined above has

$$
R_{0}\left(\delta^{\dagger}(q), P\right) \leq q
$$

whatever P is. That is, it is an MDF achieving strong FWER control at level q.

Generalized P-Values

- Definition

The m th component of the vector of generalized P-value statistic associated with Δ and \mathbf{A} is

$$
\alpha_{m} \equiv \alpha_{m}(\Delta, \mathbf{A})=\inf \left\{\alpha \in[0,1]: \delta_{m}\left[A_{m}(\alpha)\right]=1\right\}
$$

- Smallest size to decide in favor of $\theta_{m}=1$ under (Δ, \mathbf{A}).
- Ordered Generalized P-Value Statistics:

$$
0 \equiv \alpha_{(0)}<\alpha_{(1)}<\alpha(2)<\ldots<\alpha_{(M)}<\alpha_{(M+1)} \equiv 1
$$

- Observe that for

$$
\alpha \in\left[\alpha_{(k)}, \alpha_{(k+1)}\right) \Longleftrightarrow \sum \delta_{m}\left[A_{m}(\alpha)\right]=k
$$

Towards FDR Control

- Given MDP $\Delta=\left(\Delta_{m}\right)$ and MDS $\mathbf{A}=\left(A_{m}\right)$, the MDF

$$
\delta(\alpha)=\left(\delta_{m}\left[A_{m}(\alpha)\right]: m \in \mathcal{M}\right)
$$

has FDR

$$
R_{1}(\delta(\alpha), P)=E_{P}\left\{\frac{\sum \delta_{m}\left[A_{m}(\alpha)\right]\left(1-\theta_{m}(P)\right)}{\sum \delta_{m}\left[A_{m}(\alpha)\right]}\right\}
$$

- Observe:

$$
E_{P}\left\{\sum \delta_{m}\left[A_{m}(\alpha)\right]\left(1-\theta_{m}(P)\right)\right\} \leq \sum A_{m}(\alpha)
$$

'Best' Choice of α

- Preceding considerations heuristically suggest the α :

$$
\alpha^{*}(q)=\sup \left\{\alpha \in[0,1]: \sum A_{m}(\alpha) \leq q \sum \delta_{m}\left[A_{m}(\alpha)\right]\right\}
$$

- Chosen Multiple Decision Function:

$$
\delta^{*}(q)=\left(\delta_{m}\left[A_{m}\left(\alpha^{*}(q)\right)\right]: m \in \mathcal{M}\right)
$$

- Theorem

Given a pair (Δ, \mathbf{A}), the $\operatorname{MDF} \delta^{*}(q)$ achieves FDR control at level q in that

$$
R_{1}\left(\delta^{*}(q), P\right) \leq q .
$$

Classes of MDFs Controlling FWER and FDR

- A class of strong FWER-controlling MDFs at threshold q is:

$$
\mathfrak{D}^{\dagger}=\left\{\delta^{\dagger}(q ; \Delta, \mathbf{A}): \Delta \in \mathfrak{D}, \mathbf{A} \in \mathfrak{S}\right\}
$$

- A class of FDR-controlling MDFs at threshold q is:

$$
\mathfrak{D}^{*}=\left\{\delta^{*}(q ; \Delta, \mathbf{A}): \Delta \in \mathfrak{D}, \mathbf{A} \in \mathfrak{S}\right\}
$$

- Remark: Sidak's sequential step-down strong FWER controlling MDF belongs to \mathfrak{D}^{\dagger}.
- Remark: Benjamini-Hochberg's step-up FDR controlling MDF belongs to \mathfrak{D}^{*}.
- Potential Utility: May choose best MDF in \mathfrak{D}^{\dagger} or \mathfrak{D}^{*} wrt the missed discovery rate.

Recalling BH FDR-Controlling MDF

- Benjamini-Hochberg (JRSS B, '95) paper. Most well-known FDR-controlling procedure.
- Let $P_{1}, P_{2}, \ldots, P_{M}$ be the ordinary P-values from the M tests.
- Let $P_{(1)}<P_{(2)}<\ldots<P_{(M)}$ be the ordered P-values.
- For FDR-threshold equal to q, define

$$
K=\max \left\{k \in\{0,1,2, \ldots, M\}: P_{(k)} \leq \frac{q k}{M}\right\} .
$$

- BH MDF $\delta^{B H}(q)=\left(\delta_{m}^{B H}: m \in \mathcal{M}\right)$ has

$$
\delta_{m}^{B H}(X)=I\left\{P_{m} \leq P_{(K)}\right\}, m \in \mathcal{M} .
$$

- Simple and easy-to-implement, but is it the BEST?

Applying BH Procedure to a Two-Group Microarray Data

- Agilent Technology microarray data set from M. Peña's lab. Jim Ryan of NOAA did the microarray analysis.
- $M=41267$ genes.
- 2 groups, each group with 5 replicates.
- Applied t-test for each gene, using logged expression values. P-values obtained.
- Applied Benjamini-Hochberg Procedure with $q=.15$ to pick out the significant genes from the $M=41267$ genes.
- Procedure picked out 2599 significant genes.
- Further analyzed the top (wrt to their p-values) 200 genes from these selected genes.
- Performed a cluster analysis on these 200 genes.

Histogram of the P-Values from the t-Tests

Histogram of data\$P.CTFL

Scatterplot of the Pairwise Gene Means

Significant and Chosen Genes

Heatmap of the 200 Top Genes

Pictorial Depiction of Gene Clusters of Top 200 Genes

Clusters in CT vs FL Space

Can We Obtain a Better MDF than BH?

- IDEA: Given MDP $\Delta=\left(\Delta_{m}: m \in \mathcal{M}\right)$, we find the optimal MDS $\mathbf{A}^{*} \equiv \mathbf{A}^{*}(\Delta) \in \mathfrak{S}$ achieving smallest MDR

$$
R_{2}\left[(\Delta \circ \mathbf{A})(\alpha), P_{1}\right]=\frac{1}{M} \sum\left\{1-\pi_{m}\left[A_{m}(\alpha)\right]\right\}
$$

- $\pi_{m}(\alpha)=$ POWER of $\delta_{m}(\alpha)$
- FWER-controlling MDF:

$$
\delta^{\dagger}(q)=\delta^{\dagger}\left(q ; \Delta, \mathbf{A}^{*}(\Delta)\right)
$$

- FDR-controlling MDF:

$$
\delta^{*}(q)=\delta^{*}\left(q ; \Delta, \mathbf{A}^{*}(\Delta)\right)
$$

- Use the best MDP Δ, e.g., MPs; UMPs; UMPUs; UMPIs.

Role of Power or ROC Functions

- P-value based procedures ignore differences in powers.
- Neyman and Pearson: power germane in search for optimality.
- Power of m th Test: $\pi_{m}(\alpha)=E_{P_{m 1}}\left\{\delta_{m}(X ; \alpha)\right\}$
- ROC Function for m th Decision Process Δ_{m} :

$$
\alpha \mapsto \pi_{m}(\alpha)
$$

- ROC functions in the missed discovery rate.
- Enables exploiting differences in the ROC functions.
- Why Power or ROC Differences? Different effect sizes, decision processes, or dispersion parameters.
- EXCHANGEABILITY: EXCEPTION rather than RULE!

Case with Simple Nulls and Simple Alternatives

- Neyman-Pearson Most Powerful Decision Process for each m.
- ROC Functions:

$$
\alpha \mapsto \pi_{m}(\alpha)
$$

- ROC functions are concave, continuous, and increasing.
- Assume that they are also twice-differentiable.

Theorem
Multiple decision size function $\left(\alpha \mapsto A_{m}(\alpha): m \in \mathcal{M}\right)$ is optimal if it satisfies the $M+1$ equilibrium conditions

$$
\begin{gathered}
\forall m \in \mathcal{M}: \quad \pi_{m}^{\prime}\left(A_{m}\right)\left(1-A_{m}\right)=\lambda \quad \text { for some } \lambda \in \Re ; \\
\sum_{\mathcal{M}} \log \left(1-A_{m}\right)=\log (1-\alpha) .
\end{gathered}
$$

Example: Optimal Multiple Decision Size Function

- $M=2000$
- For each $m: X_{m} \sim N\left(\mu_{m}, \sigma=1\right)$
- Multiple Decision Problem: To test

$$
H_{m 0}: \mu_{m}=0 \quad \text { versus } \quad H_{m 1}: \mu_{m}=\gamma_{m} .
$$

- Effect Sizes: $\gamma_{m} \stackrel{\text { IID }}{\sim}|N(0,3)|$
- For each m, Neyman-Pearson MP decision process.

$$
\begin{gathered}
\Delta_{m}=\left(\delta_{m}(\alpha): \alpha \in[0,1]\right) \\
\delta_{m}\left(x_{m} ; \alpha\right)=I\left\{x_{m} \geq \Phi^{-1}(1-\alpha)\right\}
\end{gathered}
$$

- Power or ROC Function for the m th NP MP Decision Process:

$$
\alpha \mapsto \pi_{m}(\alpha)=1-\Phi\left[\Phi^{-1}(1-\alpha)-\gamma_{m}\right]
$$

Optimal Test Sizes vs Effect Sizes

Economic Aspect: A Size-Investing Strategy

- Do not invest your size on those where you will not make discoveries (small power) or those that you will certainly make discoveries (high power)!
- Rather, concentrate on those where it is a bit uncertain, since your differential gain in overall discovery rate would be greater!
- Some Wicked Consequences
- Departmental Merit Systems.
- Graduate Student Advising.

BH MDF versus $\delta^{*}(q): q^{*}=.1 ; \quad ; 1000$ Reps

ν	p	δ_{F}^{*}-FDR	δ_{F}^{*}-MDR	$\delta^{B H}-$ FDR	$\delta^{B H_{-}-\text {MDR }^{*}}$
1	0.1	8.03	70.80	8.43	72.64
1	0.2	7.55	79.64	8.77	81.99
1	0.4	6.05	77.47	6.65	80.30
2	0.1	7.70	54.42	8.43	55.80
2	0.2	7.39	56.32	7.59	57.31
2	0.4	6.47	47.82	6.21	49.38
4	0.1	9.14	8.62	9.48	10.30
4	0.2	7.80	7.34	6.97	9.20
4	0.4	6.15	3.58	5.65	5.53

BH MDF versus $\delta^{*}(q): q^{*}=.1 ; \quad ; 1000$ Reps

ν	p	δ_{F}^{*}-FDR	δ_{F}^{*}-MDR	$\delta^{B H}-$ FDR	$\delta^{B H_{-}-\text {MDR }^{*}}$
1	0.1	9.14	87.10	9.02	90.02
1	0.2	8.21	84.05	8.78	87.38
1	0.4	5.92	80.12	5.88	83.73
2	0.1	9.79	66.10	9.24	67.93
2	0.2	7.68	58.25	7.94	59.93
2	0.4	5.74	49.29	6.10	50.90
4	0.1	8.37	10.44	8.62	12.36
4	0.2	7.72	5.93	7.81	8.22
4	0.4	5.69	3.80	6.14	5.72

Potential Applications and Concluding Remarks

- Microarray data analysis: which genes are important?
- Systems analysis (Biological Pathways?): which components (subsystems of genes) are relevant?
- Variable selection: which predictor variables are important?
- For each gene, component, or predictor variable, apply a decision function to decide whether, say, independence or dependence holds with respect to the response variable.
- Test for Independence: Kendall's procedure, for example.
- Use MDFs $\delta^{\dagger}(q)$ or $\delta^{*}(q)$.
- Issues of determining effect sizes to determine power or ROC functions still need further studies.
- Comparison with other methods, such as those using regularization?

Acknowledgements

- Co-author Wensong Wu, my PhD student at USC Stat; joining FIU as Asst Prof this August.
- Co-author Josh Habiger, former PhD student at USC Stat; now Asst Prof at Oklahoma State.
- Marge Peña (Biology), Yu Zhang (Biology), and James Ryan (NOAA).
- Thanks to NSF, NIH, and EPA Grants which partially supported this work.
- Paper just appeared in the Feb 2011 issue of the Annals of Statistics.

