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Some Motivating Questions and Areas of Relevance

◮ Business: Which locations to set-up business ventures.

◮ Banking: On which stocks to make investments?

◮ Biology and Medicine: Which genes to target for treating a
disease?

◮ Survival Analysis: Which of many predictor variables are
relevant for determining lifetime?

◮ Reliability: Which components in an engineering system are
relevant?

◮ Epidemiology: Spread of a disease in a geographical area.

◮ Oil (mineral) exploration: Where to dig?

◮ Sporting Events: Predicting outcomes of World Cup soccer
games.
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A Microarray Data: HeatMap of Gene Expression Levels

First 100 genes out of 41267 genes in a colon cancer study at USC
(M Peña’s Lab). Three groups (Control; 9 Days; 2 Weeks) with 6
replicates each.
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HeatMap of First 100 Genes
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A Typical Variable Selection Problem

◮ Model.

Y = β0 +
M

∑

j=1

βjXj + ǫ

◮ M is large, but many βjs are equal to zero.

◮ Observed Data: For j = 1, 2, . . . , n,

(Zj , δj ,X1j ,X2j , . . . ,XMj)

with
Zj = min(Yj ,Cj) and δj = I{Yj ≤ Cj}

◮ Goal: To select the relevant predictor variables.
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General Multiple Decision Problem

◮ Discover the value of a parameter

θ = (θ1, θ2, . . . , θM) ∈ Θ = {0, 1}M

◮ θm = 1 means mth component is relevant; θm = 0 means mth
component is not relevant.

◮ Choose an action

a = (a1, a2, . . . , aM) ∈ A = {0, 1}M

◮ am = 1 means declare that θm = 1, a discovery; am = 0
means declare θm = 0, a non-discovery.
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Assessing Actions via Losses

◮ Family-wise error indicator (FWEI):

L0(a, θ) = I

{

M
∑

m=1

am(1 − θm) > 0

}

◮ False Discovery Proportion (FDP):

L1(a, θ) =

∑M
m=1 am(1 − θm)

max{∑M
m=1 am, 1}

◮ Missed Discovery Proportion (MDP):

L2(a, θ) =

∑M
m=1(1 − am)θm

max{∑M
m=1 θm, 1}
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Illustration

◮ M = 10 Decisions to Make.

Truth or State of Reality: θ = (1, 1, 0, 1, 0, 0, 0, 0, 0, 1)

Action Taken: a = (0, 1, 0, 1, 1, 0, 0, 0, 0, 0)

◮ Agreements and Disagreements (in Tabular Form):

Action (a)
Truth (θ) 0 1 Total

0 5 1 6

1 2 2 4

Total 7 3 10

◮ Family wise error indicator (FWEI) = 1 (Type I)

◮ False discovery proportion (FDP) = 1/3 = .33 (Type I)

◮ Missed discovery proportion (MDP) = 2/4 = .50 (Type II)
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Nostalgia: Paul, the Oracle!
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Life is Tough: No Oracles, Just Statisticians!

◮ Obtain a BIG data (e.g., microarrays; Consumer Surveys):

X ∈ X

◮ Observable is Random:

X ∼ P = Unknown Probability Function

◮ Marginal Components:

Xm = zm(X ) ∈ Xm and Xm ∼ Pm = Pz−1
m

◮ Parameters of Interest:

θm = θm(Pm)

◮ Example:

θm = 1 ⇐⇒ Pm ∈ {N(µ, σ2) : µ > 0, σ2 > 0}
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Randomness, Observables, and Distributions

◮ Observing trait/characteristic, called a variable, from
experiment/study.

◮ Random and unpredictable outcomes.

◮ But, Order Out of the Chaos!

◮ Order quantified by probability distributions, P .

◮ P(A): limiting proportion of the outcome being in event A.

◮ Densities of P , denoted by f :

P(A) =

∫

A

f (x)dx or P(A) =
∑

x∈A

f (x)
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Example: Observing Weights of People
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Gaussian or Normal Density Function

f (x ;µ, σ2) ≡ n(x ;µ, σ2) =
1
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Multiple Decision Functions

◮ Multiple Decision Function:

δ : X → A = {0, 1}M Note : |A| = 2M

◮ Components:
δ = (δ1, δ2, . . . , δM)

δm : X → {0, 1}
◮ D: space or collection of multiple decision functions.

◮ M0 = {m : θm = 0} and M1 = {m : θm = 1}
◮ Structure: {δm(X ) : m ∈ M0} is an independent collection,

and is independent of {δm(X ) : m ∈ M1}.
◮ {δm(X ) : m ∈ M1} need NOT be an independent collection.
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Risk Functions: Averaged Losses over Possible Data

◮ Given a δ ∈ D:

◮ Family-Wise Error Rate (FWER):

R0(δ,P) = E [L0(δ(X ), θ(P))]

◮ False Discovery Rate (FDR):

R1(δ,P) = E [L1(δ(X ), θ(P))]

◮ Missed Discovery Rate (MDR):

R2(δ,P) = E [L2(δ(X ), θ(P))]

◮ Expectations are with respect to X ∼ P .

◮ Our Goal: Choose δ ∈ D with small risks, whatever P is.
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Special Case: A Pair of Choices (M = 1)

◮ θ ∈ Θ = {0, 1}
◮ a ∈ A = {0, 1}
◮ L0(a, θ) = L1(a, θ) = aI (θ = 0)

◮ L2(a, θ) = (1 − a)I (θ = 1)

◮ X ∼ P with P ∈ {P0,P1}.
◮ Assume P0 and P1 have respective densities:

f0(x) and f1(x)

◮ R0(δ, θ) = R1(δ, θ) = P0(δ(X ) = 1)I (θ = 0)

◮ R2(δ, θ) = [1 − P1(δ(X ) = 1)]I (θ = 1)
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Types I and II Errors, Power, and Optimality

◮ R0(δ, θ) : Type I error probability.

◮ R2(δ, θ) : Type II error probability.

◮ Note
R2(δ, θ = 1) = 1 − π(δ)

where
π(δ) = P1(δ(X ) = 1) = POWER of δ.

◮ Desired Goal: Given Type I level α ∈ [0, 1], find δ∗(·;α) with

R0(δ
∗, θ) ≤ α, for all θ,

and
R1(δ

∗, θ) ≤ R1(δ, θ), for all θ,

for any other δ with R1(δ, θ) ≤ α,∀θ.
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Neyman-Pearson MP Test δ∗α

◮ Neyman and Pearson (1933): optimal [most powerful]
decision function of form

δ∗α(x) =







1 if f1(x) > c(α)f0(x)
γ(α) if f1(x) = c(α)f0(x)

0 if f1(x) < c(α)f0(x)

where c(α) and γ(α) satisfy

R0(δ
∗
α, θ = 0) = α.

◮ Remark: Depends on α, hence power depends on α.

◮ Leads to the notion of a decision process.
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Concrete Example of a Decision Process

◮ Model: X = (X1,X2, . . . ,Xn)
IID∼ N(µ, σ2).

◮ Problem: Test H0 : µ ≤ µ0 [θ = 0] vs H1 : µ > µ0 [θ = 1]

◮ Decision Function: t-test of size α given by

δ(X ;α) = I

{√
n(X̄ − µ0)

S
≥ tn−1;α

}

◮ Decision function depends on the size index α.

◮ Decision Process:

∆ = (δ(α) ≡ δ(·;α) : α ∈ [0, 1])

◮ Size Condition:

sup{EP [δ(X ;α)] : θ(P) = 0} ≤ α
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Multiple Decision Process

◮ Multiple decision problem with M components.

◮ Multiple Decision Process:

∆ = (∆m : m ∈ M = {1, 2, . . . ,M})

◮ Decision Process for mth Component:

∆m = (δm(α) : α ∈ [0, 1])

◮ Example: t-test decision process for each component.

◮ Usual Approach: Pick a δm from ∆m using the same α.

◮ Common Choices for α: (weak) FWER Threshold of q use:

Bonferroni: α = q/M

Sidak: α = 1 − (1 − q)1/M
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Notion of Size Functions

◮ Size Function:
A : [0, 1] → [0, 1]

continuous, strictly increasing, A(0) = 0 and A(1) ≤ 1, and
possibly differentiable.

◮ Bonferroni size function: A(α) = α/M

◮ Sidak size function: A(α) = 1 − (1 − α)1/M

◮ S: collection of possible size functions.

◮ For decision process ∆ and size function A, choose decision
function from ∆ via

δ[A(α)].
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Multiple Decision Size Function

◮ For a multiple decision problem with M components, a
multiple decision size function is

A = (Am : m ∈ M) with Am ∈ S.

◮ Condition:
1 −

∏

m∈M

[1 − Am(α)] ≤ α

◮ Given a ∆ = (∆m : m ∈ M) and an A = (Am : m ∈ M),
multiple decision function is

δ(α) = (δm[Am(α)] : m ∈ M)

◮ Weak FWER of δ(α):

R0(δ(α),P) = 1 −
∏

[1 − Am(α)] ≤ α
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Neyman-Pearson Paradigm

◮ Control Type I error rate; minimize Type II error rate.

◮ Desired Type I error threshold: q ∈ (0, 1)

◮ Weak Control: For P with θm(P) = 0 for all m, want a δ with

R0(δ,P) ≤ q or R1(δ,P) ≤ q.

◮ Strong Control: Whatever P is, want a δ such that

R0(δ,P) ≤ q or R1(δ,P) ≤ q.

◮ And, if above Type I error control is achieved, we want to
have R2(δ,P) small, if not optimal.
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Towards Strong FWER Control

Given a MDP ∆ = (∆m) and MDS A = (Am), for the chosen δ at
α, its FWER is

R0(δ,P) = EP

{

I
(

∑

δm[Am(α)][1 − θm(P)] > 0
)}

= P







∑

M0

δm[Am(α)] > 0







= 1 −
∏

M0

[1 − Am(α)]

= 1 −
∏

[1 − Am(α)]1−θm(P)

Question: Given a threshold of q, what is the best α?
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‘Best’ Choice of α

◮ Oracle Paul’s Choice:

α†(q;P) = inf
{

α ∈ [0, 1] :
∏

[1 − Am(α)]1−θm(P) < 1 − q
}

◮ But, P is unknown, hence θm(P) is also unknown. But we
could estimate θm(P) by

δm[Am(α)−].

◮ The Oracle’s choice is then estimated by

α†(q) = inf
{

α ∈ [0, 1] :
∏

[1 − Am(α)]1−δm [Am(α)−] < 1 − q
}
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Strong FWER-Controlling MDF

◮ Chosen Multiple Decision Function:

δ†(q) =
(

δm[Am(α†(q))] : m ∈ M
)

◮ Theorem
Given a ∆ = (∆m) and an A = (Am), the δ†(q) defined above has

R0(δ
†(q),P) ≤ q

whatever P is. That is, δ†(q) is an MDF achieving strong FWER

control at level q.
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FDR-Controlling Procedure

◮ Let

α∗(q) = sup
{

α ∈ [0, 1] :
∑

Am(α) ≤ q
∑

δm[Am(α)]
}

◮ Multiple Decision Function:

δ∗(q) = (δm[Am(α∗(q))] : m ∈ M)

◮ Theorem
Given a pair (∆,A), the MDF δ∗(q) achieves FDR control at level

q in that

R1(δ
∗(q),P) ≤ q.
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Famous FDR-Controlling MDF

◮ Benjamini-Hochberg (JRSS B, ’95) paper. Most well-known
FDR-controlling procedure.

◮ Let P1,P2, . . . ,PM be the ordinary P-values from the M tests.

◮ Let P(1) < P(2) < . . . < P(M) be the ordered P-values.

◮ For FDR-threshold equal to q, define

K = max

{

k ∈ {0, 1, 2, . . . ,M} : P(k) ≤
qk

M

}

.

◮ BH MDF δBH(q) = (δBH
m : m ∈ M) has

δBH
m (X ) = I

{

Pm ≤ P(K)

}

, m ∈ M.

◮ Simple and easy-to-implement, but is it the BEST?
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Applying BH Procedure to a Two-Group Microarray Data

◮ Agilent Technology microarray data set from M. Peña’s lab.
Jim Ryan of NOAA did the microarray analysis.

◮ M = 41267 genes.

◮ 2 groups, each group with 5 replicates.

◮ Applied t-test for each gene, using logged expression values.
P-values obtained.

◮ Applied Benjamini-Hochberg Procedure with q = .15 to pick
out the significant genes from the M = 41267 genes.

◮ Procedure picked out 2599 significant genes.

◮ Further analyzed the top (wrt to their p-values) 200 genes
from these selected genes.

◮ Performed a cluster analysis on these 200 genes.
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Histogram of the P-Values from the t-Tests
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Scatterplot of the Pairwise Gene Means
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Obtaining a Better MDF than BH?

◮ IDEA: Given MDP ∆ = (∆m : m ∈ M), find optimal MDS
A∗ ≡ A∗(∆) ∈ S achieving smallest MDR

R2[(∆ ◦ A)(α),P1] =
1

M

∑

{1 − πm [Am(α)]} .

◮ πm(α) = POWER of δm(α)

◮ FWER-controlling MDF:

δ†(q) = δ†(q;∆,A∗(∆))

◮ FDR-controlling MDF:

δ∗(q) = δ∗(q;∆,A∗(∆))

◮ Use the best MDP ∆, e.g., MPs; UMPs; UMPUs; UMPIs.
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Case with Simple Nulls and Simple Alternatives

◮ Neyman-Pearson Most Powerful Decision Process for each m.

◮ ROC Functions:
α 7→ πm(α)

◮ ROC functions are concave, continuous, and increasing.

◮ Assume that they are also twice-differentiable.

Theorem
Multiple decision size function (α 7→ Am(α) : m ∈ M) is optimal

if it satisfies the M + 1 equilibrium conditions

∀m ∈ M : π′
m(Am)(1 − Am) = λ for some λ ∈ ℜ;

∑

M

log(1 − Am) = log(1 − α).
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Example: Optimal Multiple Decision Size Function

◮ M = 2000

◮ For each m: Xm ∼ N(µm, σ = 1)

◮ Multiple Decision Problem: To test

Hm0 : µm = 0 versus Hm1 : µm = γm.

◮ Effect Sizes: γm
IID∼ |N(0, 3)|

◮ For each m, Neyman-Pearson MP decision process.

∆m = (δm(α) : α ∈ [0, 1])

δm(xm;α) = I{xm ≥ Φ−1(1 − α)}
◮ Power or ROC Function for the mth NP MP Decision Process:

α 7→ πm(α) = 1 − Φ
[

Φ−1(1 − α) − γm

]
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Optimal Test Sizes vs Effect Sizes

Effect Size
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Economic Aspect: A Size-Investing Strategy

◮ Do not invest your size on those where you will not make
discoveries (small power) or those that you will certainly make
discoveries (high power)!

◮ Rather, concentrate on those where it is a bit uncertain, since
your differential gain in overall discovery rate would be
greater!

◮ Some Wicked Consequences
◮ Departmental Merit Systems.
◮ Graduate Student Advising.
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BH MDF versus δ∗(q): q∗ = .1; M = 20; 1000 Reps

ν p δ∗F -FDR δ∗F -MDR∗ δBH -FDR δBH -MDR∗

1 0.1 8.03 70.80 8.43 72.64
1 0.2 7.55 79.64 8.77 81.99
1 0.4 6.05 77.47 6.65 80.30

2 0.1 7.70 54.42 8.43 55.80
2 0.2 7.39 56.32 7.59 57.31
2 0.4 6.47 47.82 6.21 49.38

4 0.1 9.14 8.62 9.48 10.30
4 0.2 7.80 7.34 6.97 9.20
4 0.4 6.15 3.58 5.65 5.53
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BH MDF versus δ∗(q): q∗ = .1; M = 100; 1000 Reps

ν p δ∗F -FDR δ∗F -MDR∗ δBH -FDR δBH -MDR∗

1 0.1 9.14 87.10 9.02 90.02
1 0.2 8.21 84.05 8.78 87.38
1 0.4 5.92 80.12 5.88 83.73

2 0.1 9.79 66.10 9.24 67.93
2 0.2 7.68 58.25 7.94 59.93
2 0.4 5.74 49.29 6.10 50.90

4 0.1 8.37 10.44 8.62 12.36
4 0.2 7.72 5.93 7.81 8.22
4 0.4 5.69 3.80 6.14 5.72
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Potential Applications and Concluding Remarks

◮ Decision-making in business arena.

◮ Microarray data analysis: which genes are important?

◮ Systems analysis (Biological Pathways?): which components
(subsystems of genes) are relevant?

◮ Variable selection: which predictor variables are important?

◮ Issues of determining effect sizes to determine power or ROC
functions still need further studies.

◮ Comparison with other methods, such as those using
regularization?
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