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On Science

v

Understanding Nature (including ourselves) and the Universe.

v

What do we mean by ‘Understanding’?

v

Analogy with a complicated Chess Game.
Does it Suffice to just KNOW the Rules of the Game?
Or, do we Require that we be able to PLAY the game well?

v

v
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Richard Feynman: American Genius
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Richard Feynman on ‘Understanding’

We can imagine that this complicated array of moving
things which constitutes “the world” is something like a
great chess game being played by the Gods, and we are
observers of the game. We do not know what the rules of
the game are; all we are allowed to do is to watch the
playing. Of course, if we watch long enough, we may
eventually catch on to a few of the rules. The rules of
the game are what we mean by fundamental physics ...
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Feynman on Understanding ... continued

Aside from not knowing all of the rules, what we really
can explain in terms of those rules is very limited,
because almost all situations are so enormously
complicated that we cannot follow the plays of the game
using the rules, much less tell what is going to happen
next. We must, therefore, limit ourselves to the more
basic question of the rules of the game. If we know the
rules, we consider that we “understand” the world.
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Fundamental Principles of Nature

The Meaning of Our Existence?

v

» Perhaps, our Unrelenting Search for the
Fundamental Principles (Rules of the Game)

of Nature or the Universe!?
> in Physics;
» in Chemistry;
> in Biology;
> in Medicine;

» even in the Social Sciences.
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Mathematics: Language of and Reasoning in Science

> Galileo Galilee:
“Philosophy is written in this grand book, the universe which
stands continually open to our gaze. But the book cannot be
understood unless one first learns to comprehend the language
and read the letters in which it is composed. It is written in
the language of mathematics, and its characters are triangles,
circles and other geometric figures without which it is
humanly impossible to understand a single word of it; without
these, one wanders about in a dark labyrinth.”

» Eugene Wigner (1960): “The Unreasonable Effectiveness of
Mathematics in the Natural Sciences.”

» Mario Livio (2009): “Is GOD a Mathematician?”

Professor Edsel A. Peiia (E-Mail: pena@stat.sc.edu) Science, Mathematics, and Statistics



Some of Nature's Deterministic Rules

> Newton's Laws.
F=ma
Gmim . o
F= #; G = universal gravitational constant
r
I o
s= —gt
58
» Maxwell's Electro-Magnetic Equations.
» Einstein's Special and General Relativity Theories.
E = mc?
» DNA Structure (four letters: A, G, C, T).
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Iconic Albert Einstein
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Randomness, Uncertainty, and Order

[llustration of “Order Out of Chaos”
Manifestation of Weak Law of Large Numbers

Histogram of LifeTime
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Probability Spaces and Densities

» Probability Space: (2,5, P)

Q) = space of possible values
§ = (measurable) subsets of Q
P = probability measure on (,F)

» Probability Densities, f: P(A) = [, f(x)v(dx), A€ 3.

» Example: Lifetime variable, L, described by gamma
distribution:

P{Lec A} = /A %Xalexp{)\x}dx

for some o and \.

» Statistician's Goal: Discover (a, A) based on data.
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A Most Beautiful Curve: Gaussian or Normal Density

f(x) = n(x;p,0%) = m}geXP {% <X;M>2}

Normal Density
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Carl Friedrich Gauss: Prince of Mathematics

CFGAUSS #1777 11855
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Ubiquity of Gaussian: Central Limit Theorem

Exponential Population Sample Means from Exponential Population
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Some of Nature's Probabilistic Rules

Randomness intrinsic from Quantum Mechanics.
> Einstein struggled with this notion!

» Subtle is the Lord, but Malicious He is Not.

» God Does Not Play Dice!

» Performance of Machines and Computers.

v

» Effectiveness of New Medical Drugs or Treatments.

» Occurrences of Events (earthquakes; accidents; insurance
claims; etc.)

» DNA Inheritance [from Parents to Offsprings].
» Stock Market.

» Behavior of People.
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Measurement Errors: Signal Discovery with Noisy Data

1
Unobserved Signal :  D(t) = S8t

Observed Noisy Data :  Y(t) = max(D(t) + E,0); E ~ N(0,5?)

Deterministic Signal, Noisy Data

Distance
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Science and Art of Statistics

» Statistics, still a relatively infant science!

» Branch of Mathematics?? Deductive versus Inductive
inference.

» Discovery of deterministic signals or rules from noisy data.
Indispensable in the physical and biological sciences.

» Modeling and discovery of probabilistic or stochastic rules,
again based on observed data.

» Multiple decision-making in the face of uncertainty.

» Proper design of experiments and studies: Garbage In,
Garbage Out!

» Statistics, a key to resolving our contemporary dilemma of

Drowning in Information but Starving for
Knowledge! Rutherford D. Rogers
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Two Concrete Research Areas: Personal Interests

» Modeling and Analysis of Lifetimes.

» In particular, when event of interest is recurrent (keeps
happening).

» Decision-Making (hypothesis testing).

» How to choose a decision among several competing decisions
based on data?

> Multiple Decision-Making.

» How to make several decisions simultaneously and to
efficiently use all the data in each of the decisions?
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Recurrent Events: Some Examples

» admission to hospital due to chronic disease

» tumor re-occurrence

» migraine attacks

» alcohol or drug (eg cocaine) addiction

» machine failure or discovery of a bug in a software
» commission of a criminal act by a delinquent minor!
» major disagreements between a couple

» non-life insurance claim

» drop of > 200 points in DJIA during trading day

» publication of a research paper by a professor
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Migratory Motor Complex (MMC) Data

Data set from Aalen and Husebye ('91) with n = 19 subjects.

Unit Number
10

Professor

MMC Data Set
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Data Accrual: One Subject

[ Intervention performed after an event ]

1Unobserved
Tevent
1
v
T- S4 ]
: :
i 0 .
Unobserved T
frailty End of study

Observed events

Covariate vector: X(s) = (X4(s), --- , X(s)) |
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Some Aspects in Recurrent Data

» random monitoring length (7).
» random # of events (K) and sum-quota constraint:

K+1

k
K = max<{ k: ZTng mchT <T<ZT
j=1
» Basic Observable: (K,7,T1,To,..., Tk, 7 — Sk)
» always a right-censored observation.
» dependent and informative censoring.

» effects of covariates, frailties, interventions after each event,
and accumulation of events.
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Simplest Model: One Subject

IID
T1, Ta,... ~ F: (renewal model)
‘perfect interventions' after each event
T~ G

F and G not related
no covariates (X)
no frailties (Z)
F could be parametric or nonparametric.
Relevant Functions:
F=1—-F, AN=—logF; \=N,; I:_:exp(—/\)
At)dt =~ P{T € (t,t+ dt]|T > t}

» Product-Integral Representation:

vV vV V. V. Y vV VY

F(t) =TIt — Adv)]
v=0
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Nonparametric Estimation of F

Some Results from Pefia, Strawderman and Hollander (JASA, 01):

n K;
N =D > HTy<t}

i=1 j=1

n

Y(t)=> ZI{TU>t}+I{T, Sik, > t}

i=1 | j=1

GNAE : /“\(t):/ot d\’/v((vt"))

GPLE: F(t)= 1§[ [1 - Y ]
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Main Asymptotic Result

k
kth Convolution: F*(k (t) =Pr {Z T; < t}

Jj=1

o0

Renewal Function: p(t) = ZF*(" (1)
k=1

| otw = 1)d6(w)

t dF (w)
o F(w)2G(w)[L + v(w)]

1
G(1)

o?(t) = F(t)?

v(t) =

Theorem (JASA, 01): /n(F(t) — F(t)) = GP(0,0%(t))
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Extending KG Model: Recurrent Setting

» Wanted: a tractable model with monitoring time informative
about F.

» Potential to refine analysis of efficiency gains/losses.
» Idea: Why not simply generalize the KG model for the RCM.
» Generalized KG Model (GKG) for Recurrent Events:

38 >0, G(t)=F(t)’

with S unknown, and F the common inter-event time
distribution function.

» Remark: 7 may also represent system failure/death, while the
recurrent event could be shocks to the system.

» Remark: Association (within unit) could be modeled through
a frailty.
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Estimation Issues and Some Questions

» How to semiparametrically estimate 3, A, and F?

» Parametric estimation in Adekpedjou, Pefia, and Quiton
(2010, JSPI).

» How much efficiency loss is incurred when the informative
monitoring model structure is ignored?

» How much penalty is incurred with Single-event analysis
relative to Recurrent-event analysis?

» In particular, what is the efficiency loss for estimating F when
using the nonparametric estimator in PSH (2001) relative to
the semiparametric estimator that exploits the informative
monitoring structure?
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Basic Processes

Jj

Si=>_ Tu
k=1
Ni(s) =D HSj<s)
j=1

Yi(s) = I{r; > s}

1

Ri(s)=s—-S = backward recurrence time

iNf(s—)

Ajs) = [ VI WMR(v)]dv

N,T(S) = I{T,‘ S S}
Y-T(S) = I{T,‘ Z S}

1
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Transformed Processes

Zi(s,t) = I{Ri(s) < t}

s N (s))
N,‘(S, t) = / Z,'(V, t)NIT(dV) = Z I{TU < t}
0 -
j=1
N (s-)
Yi(s,t) = > KTy =th+H{(sAm)- Sint(soy = t)
j=1 ’

Ais, t) = /0 " Zi(v. )Al(dv) = /0 Vs, w)A(w)dw

{Mij(v,t) = Nij(v,t) — Ai(v,t) : v > 0} are martingales.
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Aggregated Processes

N(s,t) = Z N;(s, t)
Y(s,t) =) Yi(s,t)
i=1

Als,t) =Y Ai(s1)
i=1

N (s) = 3 NP (s)
i=1

Y7(s) =3 ¥7(s)
i=1
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First, Assume 5 Known

Via Method-of-Moments Approach, ‘estimator’ of A:

ot = [ { M) (0]

Using product-integral representation of F in terms of A,
‘estimator’ of F:

R B N(s,dw) + N7 (dw)
F(s,t8) = H {1 CY(s,w)+BY"(w) }

w=0
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Estimating 3: Profile Likelihood MLE

Profile Likelihood:

Lp(s"; B) = BN

i { [H SGrEnzo }NF(M] "

i=1

s* 1 N;i(s*,Av)
[ )+ BYT(v)} ] }

Estimator of 3:

B = argmax Lp(s"; 5)

Computational Aspect: in R, we used optimize to get good seed
for the Newton-Raphson iteration.
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Estimators of A and F

Estimator of A:

o) ey [N+ W)
A(s™,t) = N\( ,t|/8)_/0 {y(5*7w)+BYT(W)}

Estimator of F:

F(s*,t) = F(s*,t|8) = I1 { N(s", dV‘;):ﬁN;T(EfW))}

w=0
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lllustrative Data (n = 30): GKG[Wei(2,.1), 5 = .2]

Recurrent Event Data
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Estimates of 5 and F

A

A= 2331

Estimates of SF for Illustrative Data (Blue=GKG; Red=PSH; Green=TRUE)
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Properties of Estimators

Gs(w) = G(w)l{w < s} + {w > s}
E{Yi(s,t)} = y(s,t) = F(t)Gs(t) + F(t) /too p(w — t)dGg(w)

E{Y{(t)} = y(t) = F(t)’

True Values = (Fo, Ao, o)

yo(s, t) = y(s, t; Mo, Bo)
¥ (s) = y"(s: Ao, Bo)
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Existence, Consistency, Normality

Theorem
There is a sequence of [3 that is consistent, and \(s*,-) and

F(s*,-) are both uniformly strongly consistent.

Theorem
As n — oo, we have

V(B = Bo) = N(0, [Zp(s"; Mo, Bo)] )

with

(V yo(s*, v)
Zp(s": Mo, o) = ﬁ/ yo(s*,v) + Boyg (v )AO(V)dV'
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Weak Convergence of /A\(s*, )

Theorem
As n — oo, {/n[A(s*,t) — No(t)] : t € [0, t*]} converges weakly to
a zero-mean Gaussian process with variance function

2/ % . ' Ao(dv)
oA _/0 Yo(sv) + Boyg ()

*

~1
s _)/0(5*’ V)yg(v) )
[/0 Bolols"v) + Goyg (V)] A°(dv)]

[/o e vy)givéoyg(w“(dv)] )

Remark: The last product term is the effect of estimating 5. It
inflates the asymptotic variance.
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Weak Convergence of li_(s*, -) and Iz-_(s*, )

Corollary
As n — oo, {\/n[F(s*,t) — Fo(t)] : t € [0, t*]} converges weakly
to a zero-mean Gaussian process whose variance function is

a%(s*, t) = IEO(t)Qa/g\(s*, t) = I:'o(t)2a/g\(s*, t).

Recall/Compare!

Theorem (PSH, 2001)
As n — oo, {\/n[F(s*,t) — Fo(t)] : t € [0, t*]} converges weakly
to a zero-mean Gaussian process whose variance function is

O',:_(S ,t) = Fo(t) /0 yo(s*,v)’
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Asymptotic Relative Efficiency: Sy Known

If we know fy:

ARE{F(s*,t) - ?(s*,t\lﬂo)} =
{/o yi\?s(jvg)}
t No(dw
{/o yo(s*,w())(Jr BiyJ(W)}

Clearly, this could not exceed unity, as is to be expected.
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Case of Exponential F: 5y Known

Theorem
If Fo(t) = exp{—bot} for t > 0 and s* — oo, then

ARE{F(c0,t) : F(o0,t|80)} =

1 -1
/ du "
{ Fo(t) (1 + Bo)u?tho }

/1 du
Fo(t) (14 Bo)u?tbo 4 g3ul+ho [

Also, VYt > 0,

~ a 1 +ﬂ
ARE{F (o0, t) : F(oo,t; Bo)} < Wfﬁ%
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ARE-Plots; fy € {.1,.3,.5,.7,.9,1.0,1.5} Known;

F = Exponential
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Case of Sy Unknown

» As to be expected, if By is known, then the estimator
exploiting the GKG structure is more efficient.

» Question: Does this dominance hold true still if 5q is now
estimated?

Theorem _ .
Under the GKG model, for all (Fo, Bo) with Bo > 0, F(s*,t) is

A

asymptotically dominated by F(s*,t) in the sense that

ARE(F(s*,t) : F(s*,t)) < 1.

Proof.
Neat application of Cauchy-Schwartz Inequality. O
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ARE-Plots; fy € {.1,.3,.5,.7,.9,1.0,1.5} Unknown;

F = Exponential
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Simulated RE(F : F) under a Weibull F with o = 2;

Bo €{.1,.3,.5,.7,.9,1.0, 1.5} but Unknown

Simulated Efficiencies of
PLEPSH relative to PLEGKG
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Multiple Decision-Making: Area of Relevance

» Microarray data analysis: Which genes are relevant?

» Variable selection: Which of many predictors are relevant?

» Survival analysis: Which predictors affect a lifetime variable?
» Reliability: Which components in a system are relevant?

» Epidemiology: Spread of a disease in a geographical area.

» Oil (mineral) exploration: Where to dig?

» Business: Locations of business ventures.

» US Presidential Election: Where to focus resources to
optimize electoral votes?

» Sporting Events: Predicting outcomes of World Cup soccer
games.
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A Microarray Data: HeatMap of Gene Expression Levels

First 100 genes out of 41267 genes in a colon cancer study at USC
(M Pefia’s Lab). Three groups (Control; 9 Days; 2 Weeks) with 6
replicates each.

HeatMap of First 100 Genes
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General Multiple Decision Problem

» Discover the value of a parameter
0= (61,6,...,00) €©={0,1}M

» 0, =1 means mth component is relevant; ,, = 0 means mth
component is not relevant.

» Choose an action
a= (a1, a,...,ay) €A= {0,1}M

» a,, = 1 means declare that 6,, = 1, a discovery; a,, =0
means declare 6, = 0, a non-discovery.
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Assessing Actions via Losses

» Family-wise error indicator (FWEI):
M
Lo(a,0) = I {Z am(1 —0p) > 0}
m=1
» False Discovery Proportion (FDP):
Zrl\rjzl am(1 — bm)
max{zrl\;’:l am, 1}

» Missed Discovery Proportion (MDP):

Ll(a, (9) =

_ Z:\nﬂzl(l —am)fm
) T e 1}
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[llustration

» M = 10 Decisions to Make.
Truth or State of Reality: | # = (1,1,0,1,0,0,0,0,0,1)

Action Taken: a=(0,1,0,1,1,0,0,0,0,0)
» Agreements and Disagreements (in Tabular Form):
Action (a)
Truth () 0 | 1 | Total
0 5 1 6
1 2 2 4
| Total || 7 | 3 [ 10 |

» Family wise error indicator (FWEI) = 1 (Type I)
» False discovery proportion (FDP) = 1/3 = .33 (Type I)
» Missed discovery proportion (MDP) = 2/4 = .50 (Type II)

Professor Edsel A. Peiia (E-Mail: pena@stat.sc.edu) Science, Mathematics, and Statistics



Nostalgia: Paul, the Oracle!
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Life is Tough: No Oracles, Just Statisticians!

» Obtain a BIG data (e.g., microarrays, Netflix):
Xex

Observable is Random:

v

X ~ P = Unknown Probability Function

v

Marginal Components:
Xm=zm(X) € X and Xy ~ Py = Pzt

Parameters of Interest:

v

Om = O0m(Pm)

v

Example:

O =1 Pp € {N(p,0%) : > 0,0% >0}
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Multiple Decision Functions

Multiple Decision Function:

v

§:X—-A={0,1}M  Note: |2A| =2V
» Components:
0 =(01,02,...,0Mm)
Oom: X —{0,1}
» 9: space or collection of multiple decision functions.
Mo={m: 0, =0} and My ={m: 6, =1}

Structure: {0m,(X) : m € My} is an independent collection,
and is independent of {0,(X) : m e My}

{dm(X) : m € Mi} need NOT be an independent collection.

v

v

v
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Risk Functions: Averaged Losses over Possible Data

> Given a § € D:
Family-Wise Error Rate (FWER):

v

Ro(6, P) = E[Lo(6(X),0(P))]

v

False Discovery Rate (FDR):

Ri(6, P) = E[L1(6(X), 0(P))]

v

Missed Discovery Rate (MDR):

Ra2(0, P) = E[L2(6(X),6(P))]

v

Expectations are with respect to X ~ P.

» Our Goal: Choose § € ® with small risks, whatever P is.
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Special Case: A Pair of Choices (M = 1)

» )€ ©={0,1}

» acA={01}

> Lo(a,0) = Li(a,0) = al(6 =0)
» Lr(a,0)=(1—-a)l(6=1)

» X ~ P with P € {Po,Pl}.

Assume Py and P; have respective densities:

v

fo(x) and f(x)

> Ro(6,0) = Ri(6,6) = Po(3(X)
Ra(6,0) = [1 — P1(6(X) = 1)]1(6

v
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Types | and Il Errors, Power, and Optimality

> Ro(6,0) : Type | error probability.
> R>(6,0) : Type Il error probability.

» Note
Rx(6,0 =1) =1 — 7w(0)

where
w(0) = P1(6(X) = 1) = POWER of 6.

» Desired Goal: Given Type | level a € [0, 1], find 6*(+; ) with
Ro(0*,0) < «, for all 0,

and
R1(0%,0) < Ry(0,6), for all 6,

for any other 0 with R1(4,0) < a, V6.
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Neyman-Pearson MP Test 4},

» Neyman and Pearson (1933): optimal [most powerful]
decision function of form

1 if A(x) > c(a)fo(x)
o (x) = ¢ (@) if fi(x) = c(a)fo(x)
0 if fA(x) < c(a)fh(x)

where c(a) and () satisfy
Ro(d%,0 =0) = .

» Remark: Depends on «, hence power depends on .

» Leads to the notion of a decision process.

Professor Edsel A. Peiia (E-Mail: pena@stat.sc.edu) Science, Mathematics, and Statistics



Concrete Example of a Decision Process

> Model: X = (X1, Xz, ..., Xn) © N(u,02).

Problem: Test Hp : < po [ = 0] vs Hy @ u > po [0 = 1]
Decision Function: t-test of size « given by

5(X:a)=1 {M > tnl;a}

v

v

v

Decision function depends on the size index a.

Decision Process:

v

A= (0(a)=0(;a):ae]0,1])

Size Condition:

v

sup{Ep[6(X; )] : 6(P) =0} < «

Professor Edsel A. Peiia (E-Mail: pena@stat.sc.edu) Science, Mathematics, and Statistics



Multiple Decision Process

» Multiple decision problem with M components.

v

Multiple Decision Process:

A=(Dpm:meM={12... M)

v

Decision Process for mth Component:

Ay = (0m(a) : a€]0,1])

v

Example: t-test decision process for each component.

v

Usual Approach: Pick a §,,, from A, using the same «.
Common Choices for a: (weak) FWER Threshold of g use:

v

Bonferroni: a = q/M

Sidak: a=1—(1—q)'/M
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Notion of Size Functions

» Size Function:
A:[0,1] — [0,1]

continuous, strictly increasing, A(0) =0 and A(1) <1, and
possibly differentiable.

» Bonferroni size function: A(a) = a/M
» Sidak size function: A(a) =1 — (1 — a)'/M

» &: collection of possible size functions.

» For decision process A and size function A, choose decision
function from A via

S[A()]-
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Multiple Decision Size Function

» For a multiple decision problem with M components, a
multiple decision size function is

A=(An:meM) with A,c6.

» Condition:

1= J] 11— An(a)] < a

meM

» Gvena A=(Ap:meM)andan A= (A,: me M),
multiple decision function is

() = (6m[Am(a)] : m € M)
> Weak FWER of §(c):

Ro(3(a),P) = 1-]J1 - An(®)] <«
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Neyman-Pearson Paradigm

Control Type | error rate; minimize Type Il error rate.
Desired Type | error threshold: g € (0,1)
Weak Control: For P with 8,,(P) = 0 for all m, want a § with

v

v

v

Ro(6,P) < q or Ri(6,P)<gq.

v

Strong Control: Whatever P is, want a § such that

Ro(0,P) < g or Ry(6,P)<gq.

v

And, if above Type | error control is achieved, we want to
have R>(d, P) small, if not optimal.
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Towards Strong FWER Control

Given a MDP A = (Ap,) and MDS A = (Ap,), for the chosen § at
«, its FWER is

Ro(0.P) = Ep {1 (D dmlAm(@)]L — Om(P)] > 0) }

= P {Zém[Am(O‘)] > 0}
Mo

= 1- ][t~ An(a)]
Mo

= 1-]J1 - An(x)]* ")

Question: Given a threshold of g, what is the best a?
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‘Best’ Choice of «

» Oracle Paul’s Choice:

al(q; P) = inf {a €1[0,1] : H[l — Am(a)]} (P <1 — q}

» But, P is unknown, hence 6,(P) is also unknown. But we
could estimate 6,,(P) by

Sm[Am(a)—].

» The Oracle’s choice is then estimated by

ol(q) =inf{a € [0,1]: ]I — Am(e)]rMnl)T <1 - g}
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Strong FWER-Controlling MDF

» Chosen Multiple Decision Function:
6'(a) = (SmlAm(al ()] : m € M)

» Theorem
Given a A = (Ap,) and an A = (A,,), the 61(q) defined above has

Ro(d'(q).P) < q

whatever P is. That is, §1(q) is an MDF achieving strong FWER
control at level q.
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FDR Control

> Let

a*(q) = sup {a €[0,1] : ZAm(a) < qz5m[Am(04)]}

» Chosen Multiple Decision Function:

5°(q) = (Om[Am(a™(q))] - m € M)

» Theorem
Given a pair (A, A), the MDF 6*(q) achieves FDR control at level

q in that
Ri(6*(q), P) < q.
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Famous FDR-Controlling MDF

» Benjamini-Hochberg (JRSS B, '95) paper. Most well-known
FDR-controlling procedure.

» Let P1, Py,..., Py be the ordinary P-values from the M tests.
> Let P1) < Py < ... < Py be the ordered P-values.
» For FDR-threshold equal to g, define

k
K:max{kE{O,l,Q,...,M}: P(k)gq—}.

» BH MDF 68 (q) = (68" : m € M) has

SE(X) = 1{Pm < Pucy}, me M.

v

Simple and easy-to-implement, but is it the BEST?
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BH Procedure on Two-Group Microarray Data

» Agilent Technology microarray data set from M. Pefia’s lab.
Jim Ryan of NOAA did the microarray analysis.

> M = 41267 genes.
» 2 groups, each group with 5 replicates.

» Applied t-test for each gene, using logged expression values.
P-values obtained.

» Applied Benjamini-Hochberg Procedure with g = .15 to pick
out the significant genes from the M = 41267 genes.

» Procedure picked out 2599 significant genes.

» Further analyzed the top (wrt to their p-values) 200 genes
from these selected genes.

» Performed a cluster analysis on these 200 genes.
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Histogram of the P-Values from the t-Tests

Histogram of data$P.CTFL
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Scatterplot of the Pairwise Gene Means
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Obtaining a Better MDF than BH

>

IDEA: Given MDP A = (A, : m € M), find optimal MDS
A* = A*(A) € & achieving smallest MDR

Ral(A o A)(), Pa] = 22 3" {1~ T [Ana)]}.

mm(a) = POWER of §,,(«)
» FWER-controlling MDF:

v

5t(q) = 6"(q: &, A*(D))

v

FDR-controlling MDF:
5*(q) = 0"(q: A, A*(A))

» Use the best MDP A, e.g., MPs; UMPs; UMPUs; UMPIs.
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Simple Nulls and Simple Alternatives

» Neyman-Pearson Most Powerful Decision Process for each m.
» ROC Functions:
a = mTm(a)

» ROC functions are concave, continuous, and increasing.

» Assume that they are also twice-differentiable.

Theorem

Multiple decision size function (. — Am() : m € M) is optimal
if it satisfies the M + 1 equilibrium conditions

VvmeM: 7 (An)(1—Ayn) =X\ forsome ) € R;

Z log(1 — = log(1 — ).
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Example: Optimal Multiple Decision Size Function

» M = 2000
For each m: X, ~ N(um,o0 =1)

v

v

Multiple Decision Problem: To test
Hmo i tm =0 versus Hpi : ttm = Ym-

Effect Sizes: vnm 0 [N(0,3)]
For each m, Neyman-Pearson MP decision process.

v

v

Ay = (0m(a) : a€]0,1])

Om(xm; @) = {xm > ¢71(1 —a)}

Power or ROC Function for the mth NP MP Decision Process:

v

s () =1— & [071(1 — a) — 3]
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Optimal Test Sizes vs Effect Sizes
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Economic Aspect: A Size-Investing Strategy

» Do not invest your size on those where you will not make
discoveries (small power) or those that you will certainly make
discoveries (high power)!

» Rather, concentrate on those where it is a bit uncertain, since
your differential gain in overall discovery rate would be
greater!

» Some Wicked Consequences

» Departmental Merit Systems.
» Graduate Student Advising.

Professor Edsel A. Peiia (E-Mail: pena@stat.sc.edu) Science, Mathematics, and Statistics



; 1000 Reps

[v] p ] 65-FDR [ 5;-MDR* ]| 657-FDR | 6°7-MDR" |
1701 8.03 70.80 8.43 72.64
102 7.55 79.64 8.77 81.99
104 6.05 77.47 6.65 80.30
201 7.70 54.42 8.43 55.80
202 7.39 56.32 7.59 57.31
2|04 6.47 47.82 6.21 49.38
401 9.14 8.62 9.48 10.30
4102 7.80 7.34 6.97 9.20
4|04 6.15 3.58 5.65 5.53
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Concluding Remarks

v

Interplay among science, mathematics, and statistics.

v

Recurrent event modeling and analysis.

v

Multiple decision-making.

v

Statistics, a highly promising intellectual enterprise, especially
with current technology.
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