Edsel A. Peña
University of South Carolina
Columbia, South Carolina
(E-Mail: pena@stat.sc.edu)

MUST Colloquium Talk
March 2012
Some Motivating Problems.

Multiple Decision Problems.

Mathematical Framework (Decision Functions, Losses, Risks).

Special Case: Optimal Choice Between Two Actions.

Multiple Decision Processes.

Multiple Decision Size Function.

Class of FWER-Controlling MDFs.

Class of FDR-Controlling MDFs.

An Application to a Microarray Data Set.

Towards Optimal MDFs.

Applicability and Some Comparisons.
Some Motivating Questions and Areas of Relevance

- **Microarray data analysis**: Which genes are relevant?
- **Variable selection**: Which of many predictors are relevant?
- **Survival analysis**: Which predictors affect a lifetime variable?
- **Reliability/Engineering**: Which components in a system are relevant?
- **Epidemiology**: Spread of a disease in a geographical area.
- **Oil (mineral) exploration**: Where to dig?
- **Business**: Locations of business ventures.
First 100 genes out of 41267 genes in a colon cancer study at USC (M Peña’s Lab). Three groups (Control; 9 Days; 2 Weeks) with 6 replicates each.

HeatMap of First 100 Genes
A Typical Variable Selection Problem

- **Model.**
 \[Y = \beta_0 + \sum_{j=1}^{M} \beta_j X_j + \epsilon \]

 - \(M \) is large, but many \(\beta_j \)s are equal to zero.

- **Observed Data:** For \(j = 1, 2, \ldots, n \),
 \((Z_j, \delta_j, X_{1j}, X_{2j}, \ldots, X_{Mj}) \)
 with
 \[Z_j = \min(Y_j, C_j) \quad \text{and} \quad \delta_j = I\{Y_j \leq C_j\} \]

- **Goal:** To select the relevant predictor variables.
A Reliability (or Biological Pathways) Problem

- System is composed of components.
- Structure function, ϕ, relates components to system: series, parallel, series-parallel, etc.
- M potential components that could constitute a system. We do not know which components are relevant nor do we know the structure function.
- **Question:** Given data regarding the states or lifetimes of the system and components, how could we determine which components are relevant for this system?
- Component lifetimes may be censored by system lifetime.
- Highly nonlinear types of relationships.
The General Decision Problem

- We would like to discover the value of a parameter
 \[\theta = (\theta_1, \theta_2, \ldots, \theta_M) \in \Theta = \{0, 1\}^M \]

- \(\theta_m = 1 \) means \(m \)th component is relevant; \(\theta_m = 0 \) means \(m \)th component is not relevant.

- Want to choose an action
 \[a = (a_1, a_2, \ldots, a_M) \in \mathcal{A} = \{0, 1\}^M \]

- \(a_m = 1 \) means we declare that \(\theta_m = 1 \), called a discovery; \(a_m = 0 \) means we declare that \(\theta_m = 0 \), a non-discovery.
Assessing our Actions: Losses

- Family-wise error indicator:

\[L_0(a, \theta) = I \left\{ \sum_{m=1}^{M} a_m (1 - \theta_m) > 0 \right\} \]

- False Discovery Proportion:

\[L_1(a, \theta) = \frac{\sum_{m=1}^{M} a_m (1 - \theta_m)}{\max\{ \sum_{m=1}^{M} a_m, 1 \}} \]

- Missed Discovery Proportion:

\[L_2(a, \theta) = \frac{\sum_{m=1}^{M} (1 - a_m) \theta_m}{\max\{ \sum_{m=1}^{M} \theta_m, 1 \}} \]
If Only We Still Have Paul, the Oracle!
Sadly (or, Gladly), Revert to Being Statisticians!

- Obtain a BIG data (e.g., microarrays, Netflix):
 \[X \in \mathcal{X} \]

- Probabilistic Structure:
 \[X \sim P, \quad P \text{ is a Probability Measure} \]

- Marginal Components:
 \[X_m = z_m(X) \in \mathcal{X}_m \quad \text{and} \quad X_m \sim P_m = P Z_m^{-1} \]

- Parameters of Interest:
 \[\theta_m = \theta_m(P_m) \]

- Example:
 \[\theta_m = 1 \iff P_m \in \{ N(\mu, \sigma^2) : \mu \geq 0, \sigma^2 > 0 \} \]
Multiple Decision Functions

- **Multiple Decision Function**: \(\delta : \mathcal{X} \rightarrow \mathcal{A} \)
- **Components**: \(\delta = (\delta_1, \delta_2, \ldots, \delta_M) \)

 \[\delta_m : \mathcal{X} \rightarrow \{0, 1\} \]

Remark: \(\delta_m \) may use the whole data, not just \(X_m \).

- \(\mathcal{D} \): space of multiple decision functions.
- \(\mathcal{M}_0 = \{ m : \theta_m = 0 \} \) and \(\mathcal{M}_1 = \{ m : \theta_m = 1 \} \)
- **Structure**: \(\{ \delta_m(X) : m \in \mathcal{M}_0 \} \) is an independent collection, and is independent of \(\{ \delta_m(X) : m \in \mathcal{M}_1 \} \).
- \(\{ \delta_m(X) : m \in \mathcal{M}_1 \} \) need **NOT** be an independent collection.
Given a $\delta \in \mathcal{D}$:

- **Family-Wise Error Rate (FWER):**
 \[
 R_0(\delta, P) = E[L_0(\delta(X), \theta(P))]
 \]

- **False Discovery Rate (FDR):**
 \[
 R_1(\delta, P) = E[L_1(\delta(X), \theta(P))]
 \]

- **Missed Discovery Rate (MDR):**
 \[
 R_2(\delta, P) = E[L_2(\delta(X), \theta(P))]
 \]

Expectations are with respect to $X \sim P$.

Goal: Choose $\delta \in \mathcal{D}$ with small risks, whatever P is.
Special Case: A Pair of Choices \((M = 1)\)

- \(\theta \in \Theta = \{0, 1\}\)
- \(a \in \mathcal{A} = \{0, 1\}\)
- \(L_0(a, \theta) = L_1(a, \theta) = aI(\theta = 0)\)
- \(L_2(a, \theta) = (1 - a)I(\theta = 1)\)
- \(X \sim P\) with \(P \in \{P_0, P_1\}\)

- \(R_0(\delta, \theta) = R_1(\delta, \theta) = P_0(\delta(X) = 1)I(\theta = 0)\)
- \(R_2(\delta, \theta) = [1 - P_1(\delta(X) = 1)]I(\theta = 1)\)

- Assume \(P_0\) and \(P_1\) have respective densities:

 \[
 f_0(x) \quad \text{and} \quad f_1(x)
 \]
Types I and II Errors, Power, and Optimality

- $R_0(\delta, \theta)$: Type I error probability.
- $R_2(\delta, \theta)$: Type II error probability.
- Note
 \[R_2(\delta, \theta = 1) = 1 - \pi(\delta) \]
 where
 \[\pi(\delta) = P_1(\delta(X) = 1) = \text{POWER of } \delta. \]
- Desired Goal: Given Type I level $\alpha \in [0, 1]$, find $\delta^*(\cdot; \alpha)$ with
 \[R_0(\delta^*, \theta) \leq \alpha, \quad \text{for all } \theta, \]
 and
 \[R_1(\delta^*, \theta) \leq R_1(\delta, \theta), \quad \text{for all } \theta, \]
 for any other δ with $R_1(\delta, \theta) \leq \alpha, \forall \theta$.
Neyman-Pearson MP Test δ^*_α

Neyman and Pearson (1933) obtained the optimal [most powerful] decision function to be of form

$$
\delta^*_\alpha(x) = \begin{cases}
1 & \text{if } f_1(x) > c(\alpha)f_0(x) \\
\gamma(x) & \text{if } f_1(x) = c(\alpha)f_0(x) \\
0 & \text{if } f_1(x) < c(\alpha)f_0(x)
\end{cases}
$$

where $c(\alpha)$ and $\gamma(\alpha)$ satisfy

$$R_0(\delta^*_\alpha, \theta = 0) = \alpha.$$

Remark: Depends on α, hence power depends on α.

Leads to the notion of a decision process.
Concrete Example of a Decision Process

- Model: \(X = (X_1, X_2, \ldots, X_n) \overset{iid}{\sim} N(\mu, \sigma^2). \)
- Problem: Test \(H_0 : \mu \leq \mu_0 [\theta = 0] \) vs \(H_1 : \mu > \mu_0 [\theta = 1] \)
- Decision Function: \(t \)-test of size \(\alpha \) given by

\[
\delta(X; \alpha) = I \left\{ \frac{\sqrt{n}(\bar{X} - \mu_0)}{S} \geq t_{n-1; \alpha} \right\}
\]

- Decision function depends on the size index \(\alpha \).
- Decision Process:

\[
\Delta = (\delta(\alpha) \equiv \delta(\cdot; \alpha) : \alpha \in [0, 1])
\]

- Size Condition:

\[
\sup \{ E_P[\delta(X; \alpha)] : \theta(P) = 0 \} \leq \alpha
\]
Consider a multiple decision problem with M components.

Multiple Decision Process:

$$\Delta = (\Delta_m : m \in \mathcal{M} = \{1, 2, \ldots, M\})$$

Decision Process for mth Component:

$$\Delta_m = (\delta_m(\alpha) : \alpha \in [0, 1])$$

Example: t-test decision process for each component.

Usual Approach: Pick a δ_m from Δ_m using the same α.

Common Choices for α: (weak) FWER Threshold of q use:

- **Bonferroni:** $\alpha = q/M$

- **Sidak:** $\alpha = 1 - (1 - q)^{1/M}$
A size function is a function

\[A : [0, 1] \rightarrow [0, 1] \]

which is continuous, strictly increasing, \(A(0) = 0 \) and \(A(1) \leq 1 \), and possibly differentiable.

- **Bonferroni size function:** \(A(\alpha) = \alpha / M \)
- **Sidak size function:** \(A(\alpha) = 1 - (1 - \alpha)^{1/M} \)

\(\mathcal{G} \): collection of possible size functions.

- Given a decision process \(\Delta \) and a size function \(A \), we choose the decision function from \(\Delta \) according to

\[\delta[A(\alpha)]. \]
Multiple Decision Size Function

- For a multiple decision problem with M components, a multiple decision size function is
 \[\mathbf{A} = (A_m : m \in \mathcal{M}) \text{ with } A_m \in \mathcal{G}. \]

- **Condition:**
 \[1 - \prod_{m \in \mathcal{M}} [1 - A_m(\alpha)] \leq \alpha \]

- Given a $\Delta = (\Delta_m : m \in \mathcal{M})$ and an $\mathbf{A} = (A_m : m \in \mathcal{M})$, multiple decision function is chosen according to
 \[\delta(\alpha) = (\delta_m[A_m(\alpha)] : m \in \mathcal{M}) \]

- Weak FWER of $\delta(\alpha)$:
 \[R_0(\delta(\alpha), P) = 1 - \prod [1 - A_m(\alpha)] \leq \alpha \]
Neyman-Pearson Paradigm

- Control Type I error rate; minimize Type II error rate.

- Desired Type I error threshold: \(q \in (0, 1) \)

- **Weak Control:** For \(P \) with \(\theta_m(P) = 0 \) for all \(m \), want a \(\delta \) with

 \[
 R_0(\delta, P) \leq q \quad \text{or} \quad R_1(\delta, P) \leq q.
 \]

- **Strong Control:** Whatever \(P \) is, want a \(\delta \) such that

 \[
 R_0(\delta, P) \leq q \quad \text{or} \quad R_1(\delta, P) \leq q.
 \]

- And, if above Type I error control is achieved, we want to have \(R_2(\delta, P) \) small, if not optimal.
Towards Strong FWER Control

Given a MDP $\Delta = (\Delta_m)$ and MDS $A = (A_m)$, for the chosen δ at α, its FWER is

$$R_0(\delta, P) = E_P \left\{ I \left(\sum \delta_m[A_m(\alpha)][1 - \theta_m(P)] > 0 \right) \right\}$$

$$= P \left\{ \sum_{\mathcal{M}_0} \delta_m[A_m(\alpha)] > 0 \right\}$$

$$= 1 - \prod_{\mathcal{M}_0} [1 - A_m(\alpha)]$$

$$= 1 - \prod [1 - A_m(\alpha)]^{1 - \theta_m(P)}$$

Question: Given a threshold of q, what is the best α?
‘Best’ Choice of \(\alpha \)

- **Oracle Paul**’s Choice:

\[\alpha^\dagger(q; P) = \inf \left\{ \alpha \in [0, 1] : \prod [1 - A_m(\alpha)]^{1 - \theta_m(P)} < 1 - q \right\} \]

- But, \(P \) is unknown, hence \(\theta_m(P) \) is also unknown.

- However, we could estimate \(\theta_m(P) \) by

\[\delta_m[A_m(\alpha) -] \]

- The Oracle’s choice is then estimated by

\[\alpha^\dagger(q) = \inf \left\{ \alpha \in [0, 1] : \prod [1 - A_m(\alpha)]^{1 - \delta_m[A_m(\alpha) -]} < 1 - q \right\} \]
Chosen Multiple Decision Function:

\[\delta^\dagger(q) = \left(\delta_m[A_m(\alpha^\dagger(q))] : m \in \mathcal{M} \right) \]

Given a \(\Delta = (\Delta_m) \) and an \(A = (A_m) \), the \(\delta^\dagger(q) \) defined above has

\[R_0(\delta^\dagger(q), P) \leq q, \]

whatever \(P \) is. Thus, it is an MDF achieving strong FWER control at level \(q \).
Towards FDR Control

Given MDP $\Delta = (\Delta_m)$ and MDS $A = (A_m)$, the MDF

$$\delta(\alpha) = (\delta_m[A_m(\alpha)]: m \in \mathcal{M})$$

has FDR

$$R_1(\delta(\alpha), P) = E_P \left\{ \frac{\sum \delta_m[A_m(\alpha)](1 - \theta_m(P))}{\sum \delta_m[A_m(\alpha)]} \right\}$$

Observe:

$$E_P \left\{ \sum \delta_m[A_m(\alpha)](1 - \theta_m(P)) \right\} \leq \sum A_m(\alpha)$$
‘Best’ Choice of α

- Preceding considerations heuristically suggest the α:

\[\alpha^*(q) = \sup \left\{ \alpha \in [0,1] : \sum A_m(\alpha) \leq q \sum \delta_m[A_m(\alpha)] \right\} \]

- Chosen Multiple Decision Function:

\[\delta^*(q) = (\delta_m[A_m(\alpha^*(q))] : m \in M) \]

Given a pair (Δ, A), the MDF $\delta^(q)$ achieves FDR control at level q in that

\[R_1(\delta^*(q), P) \leq q, \]

whatever P is.*
A class of strong FWER-controlling MDFs at threshold q is:

$$\mathcal{D}^\dagger = \left\{ \delta^\dagger(q; \Delta, A) : \Delta \in \mathcal{D}, A \in \mathcal{G} \right\}$$

A class of FDR-controlling MDFs at threshold q is:

$$\mathcal{D}^* = \left\{ \delta^*(q; \Delta, A) : \Delta \in \mathcal{D}, A \in \mathcal{G} \right\}$$

Remark: Sidak’s sequential step-down strong FWER controlling MDF belongs to \mathcal{D}^\dagger.

Remark: Benjamini-Hochberg’s step-up FDR controlling MDF belongs to \mathcal{D}^*.

Potential Utility: May choose best MDF in \mathcal{D}^\dagger or \mathcal{D}^* wrt the missed discovery rate.
Recalling BH FDR-Controlling MDF

- Let P_1, P_2, \ldots, P_M be the ordinary P-values from the M tests.
- Let $P_{(1)} < P_{(2)} < \ldots < P_{(M)}$ be the ordered P-values.
- For FDR-threshold equal to q, define

$$K = \max \left\{ k \in \{0, 1, 2, \ldots, M\} : P_{(k)} \leq \frac{qk}{M} \right\}.$$

- BH MDF $\delta^{BH}(q) = (\delta^M : m \in \mathcal{M})$ has

$$\delta^M(X) = 1 \left\{ P_m \leq P_{(K)} \right\}, \ m \in \mathcal{M}.$$

- Simple and easy-to-implement, but is it the BEST?
Applying BH Procedure to a Two-Group Microarray Data

- Agilent Technology microarray data set from M. Peña’s lab. Jim Ryan of NOAA did the microarray analysis.
- $M = 41267$ genes.
- 2 groups, each group with 5 replicates.
- Applied t-test for each gene, using logged expression values. P-values obtained.
- Applied Benjamini-Hochberg Procedure with $q = .15$ to pick out the significant genes from the $M = 41267$ genes.
- Procedure picked out 2599 significant genes.
- Further analyzed the top (wrt to their p-values) 200 genes from these selected genes.
- Performed a cluster analysis on these 200 genes.
Histogram of the P-Values from the t-Tests

Histogram of data $P.CTFL$

P-Values for CT versus FL
Scatterplot of the Pairwise Gene Means

Significant and Chosen Genes

A Gene
SigGene
Chosen

logCTmean
logFLmean

Edsel A. Peña
University of South Carolina
Columbia, South Carolina
(E-Mail: pena@stat.sc.edu)

Statistical Multiple Decision Making
Heatmap of the 200 Top Genes

Edsel A. Peña University of South Carolina Columbia, South Carolina (E-Mail: pena@stat.sc.edu)

Statistical Multiple Decision Making
Clusters in CT vs FL Space

Means of Log CT

Means of Log FL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
IDEA: Given MDP $\Delta = (\Delta_m : m \in \mathcal{M})$, we find the optimal MDS $A^* \equiv A^*(\Delta) \in \mathcal{G}$ achieving smallest MDR

$$R_2[(\Delta \circ A)(\alpha), P_1] = \frac{1}{M} \sum \{1 - \pi_m[A_m(\alpha)]\}.$$

- $\pi_m(\alpha) =$ POWER of $\delta_m(\alpha)$
- FWER-controlling MDF:
 $$\delta^\dagger(q) = \delta^\dagger(q; \Delta, A^*(\Delta))$$
- FDR-controlling MDF:
 $$\delta^*(q) = \delta^*(q; \Delta, A^*(\Delta))$$
- Use the best MDP Δ, e.g., MPs; UMPs; UMPUs; UMPIs.
Role of Power or ROC Functions

- *P*-value based procedures ignore differences in powers.
- Neyman and Pearson: power germane in search for optimality.
- Power of \(m \)th Test: \(\pi_m(\alpha) = E_{P_{m1}} \{ \delta_m(X; \alpha) \} \)
- ROC Function for \(m \)th Decision Process \(\Delta_m \):
 \[
 \alpha \mapsto \pi_m(\alpha)
 \]
- ROC functions in the missed discovery rate.
- Enables exploiting differences in the ROC functions.
- Why Power or ROC Differences? Different effect sizes, decision processes, or dispersion parameters.
- **EXCHANGEABILITY:** EXCEPTION rather than RULE!
Case with Simple Nulls and Simple Alternatives

- Neyman-Pearson Most Powerful Decision Process for each m.
- ROC Functions:
 \[\alpha \mapsto \pi_m(\alpha) \]
- ROC functions are concave, continuous, and increasing.
- Assume that they are also twice-differentiable.

Multiple decision size function $(\alpha \mapsto A_m(\alpha) : m \in \mathcal{M})$ is optimal if it satisfies the $M + 1$ equilibrium conditions

\[
\forall m \in \mathcal{M} : \quad \pi'_m(A_m)(1 - A_m) = \lambda \quad \text{for some } \lambda \in \mathbb{R};
\]

\[
\sum_{\mathcal{M}} \log(1 - A_m) = \log(1 - \alpha).
\]
Example: Optimal Multiple Decision Size Function

- $M = 2000$
- For each m: $X_m \sim N(\mu_m, \sigma = 1)$
- Multiple Decision Problem: To test

$$H_{m0} : \mu_m = 0 \text{ versus } H_{m1} : \mu_m = \gamma_m.$$

- Effect Sizes: $\gamma_m \overset{IID}{\sim} |N(0, 3)|$
- For each m, Neyman-Pearson MP decision process.

$$\Delta_m = (\delta_m(\alpha) : \alpha \in [0, 1])$$

$$\delta_m(x_m; \alpha) = I\{x_m \geq \Phi^{-1}(1 - \alpha)\}$$

- Power or ROC Function for the mth NP MP Decision Process:

$$\alpha \mapsto \pi_m(\alpha) = 1 - \Phi \left[\Phi^{-1}(1 - \alpha) - \gamma_m \right]$$
Optimal Test Sizes vs Effect Sizes

Density Histogram

Optimal Test Size

Optimal Test Power

Power (Blue=Optimal; Red=Sidak)
Economic Aspect: A Size-Investing Strategy

- **Do not invest** your size on those where you will not make discoveries (small power) or those that you will certainly make discoveries (high power)!

- Rather, **concentrate** on those where it is a bit uncertain, since your differential gain in overall discovery rate would be greater!

- **Some Wicked Consequences**
 - Departmental Merit Systems.
 - Graduate Student Advising.
BH MDF versus $\delta^*(q)$: $q^* = .1; \ M = 20; 1000$ Reps

<table>
<thead>
<tr>
<th>ν</th>
<th>p</th>
<th>δ^*_F-FDR</th>
<th>$\delta^_F$-MDR</th>
<th>δ^{BH}_F-FDR</th>
<th>δ^{BH}_F-MDR*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>8.03</td>
<td>70.80</td>
<td>8.43</td>
<td>72.64</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>7.55</td>
<td>79.64</td>
<td>8.77</td>
<td>81.99</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>6.05</td>
<td>77.47</td>
<td>6.65</td>
<td>80.30</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>7.70</td>
<td>54.42</td>
<td>8.43</td>
<td>55.80</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>7.39</td>
<td>56.32</td>
<td>7.59</td>
<td>57.31</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>6.47</td>
<td>47.82</td>
<td>6.21</td>
<td>49.38</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>9.14</td>
<td>8.62</td>
<td>9.48</td>
<td>10.30</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>7.80</td>
<td>7.34</td>
<td>6.97</td>
<td>9.20</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>6.15</td>
<td>3.58</td>
<td>5.65</td>
<td>5.53</td>
</tr>
</tbody>
</table>
BH MDF versus $\delta^*(q)$: $q^* = .1; M = 100; 1000$ Reps

<table>
<thead>
<tr>
<th>ν</th>
<th>p</th>
<th>δ^*_F-FDR</th>
<th>$\delta^_F$-MDR</th>
<th>δ^{BH}_F-FDR</th>
<th>δ^{BH}_F-MDR*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>9.14</td>
<td>87.10</td>
<td>9.02</td>
<td>90.02</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>8.21</td>
<td>84.05</td>
<td>8.78</td>
<td>87.38</td>
</tr>
<tr>
<td>1</td>
<td>0.4</td>
<td>5.92</td>
<td>80.12</td>
<td>5.88</td>
<td>83.73</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>9.79</td>
<td>66.10</td>
<td>9.24</td>
<td>67.93</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>7.68</td>
<td>58.25</td>
<td>7.94</td>
<td>59.93</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>5.74</td>
<td>49.29</td>
<td>6.10</td>
<td>50.90</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>8.37</td>
<td>10.44</td>
<td>8.62</td>
<td>12.36</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>7.72</td>
<td>5.93</td>
<td>7.81</td>
<td>8.22</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>5.69</td>
<td>3.80</td>
<td>6.14</td>
<td>5.72</td>
</tr>
</tbody>
</table>
Potential Applications and Concluding Remarks

- Microarray data analysis: which genes are important?
- Systems analysis (Biological Pathways?): which components (subsystems of genes) are relevant?
- Variable selection: which predictor variables are important?
- For each gene, component, or predictor variable, apply a decision function to decide whether, say, independence or dependence holds with respect to the response variable.
- Test for Independence: Kendall’s procedure, for example.
- Use MDFs $\delta^\dagger(q)$ or $\delta^*(q)$.
- Issues of determining effect sizes to determine power or ROC functions still need further studies.
- Comparison with other methods, such as those using regularization?
Acknowledgements

- Wensong Wu, my PhD student at USC Stat; Asst Prof at FIU.
- Josh Habiger, my PhD student at USC Stat; Asst Prof at Oklahoma State.
- Marge Peña (Biology), Yu Zhang (Biology), and James Ryan (NOAA).
- NSF and NIH for research support.