Dynamic Models in Reliability and Survival Analysis

Edsel A. Peña

Department of Statistics

University of South Carolina (USC)

Joint work with E. Slate (MUSC)

MMR 2004, June 21-24, 2004

pena@stat.sc.edu

Acknowledgements

- MMR 2004 Organizers:
 - S. Keller-McNulty
 - 🗨 A. Wilson
- Research Collaborators:

M. Hollander, E. Slate, P. Kvam, R. Strawderman, M. and Z. Agustin, J. Gonzalez, R. Stocker

 Research support from NIH, NSF, and a collaborative grant between MUSC and USC.

Outline of Talk

- Reliability and Recurrent Event Setting
- Static Modeling and its Limitations
- Need for Dynamic Models
- A Dynamic Model in Reliability
- A Dynamic Load-Sharing Model
- A General Model for Recurrent Events
- Inference Methods for Dynamic Models
- Properties; Applications; Some Asymptotics
- Concluding Remarks

Reliability Systems

Series-Parallel: $\phi(x_1, x_2, x_3) = x_1 \lor (x_2 \land x_3)$

A Bridge System

 $\phi(x_1, x_2, x_3, x_4, x_5) = (x_1 x_4) \lor (x_1 x_3 x_5) \lor (x_2 x_5) \lor (x_2 x_3 x_4)$

Reliability Notation

- Coherent system: *p* components
- Component and System states: $x_i \in \{0, 1\}; \phi \in \{0, 1\}$;
- Structure function: $\phi = \phi(x_1, x_2, \dots, x_p)$
- Component lifetimes: (T_1, T_2, \ldots, T_p)
- System lifetime: $S = h_{\phi}(T_1, T_2, \dots, T_p)$
- Note: $I\{S > s\} = \phi(I\{T_1 > s\}, \dots, I\{T_p > s\})$
- $\Pr\{S > s\} = \bar{H}_{\phi}(s) = E\{\phi(I\{T_1 > s\}, \dots, I\{T_p > s\})\}$

Question: How should we specify the stochastic properties of T_1, \ldots, T_p , and consequently of *S*?

Recurrent Events

In reliability, engineering, biomedical, and other studies.

- failure of a machine, then repairs (eg., Proschan's Boeing AC data; Bus Data; Klefsjo and Kumar's LHD Data; Aalen and Husebye's MMC data)
- discovery of a computer software bug
- hospitalization due to a chronic disease
- occurrence of migraine headaches
- tumor occurrence
- onset of depression
- drop in the Dow Jones of 200 points
- terrorist attacks (V. Bier's talk)

Some Talks and Books

- H. Ascher's talk and his book.
- Z. Jin's talk.
- A. Basu's talk and his book.
- W. Nelson's book.
- T. Duchesne's talk and some of the questions.
- A. Jardine's talk
- B. Osborn's talk.
- M. Hollander's talk.
- E. Slate's talk.

Example: Bladder Cancer Data

Recurrent Event Modeling

- A probabilistic model for recurrent events specifies the stochastic properties of the times of event occurrences or the inter-event times.
- Such models would be useful for purposes of predicting future occurrences of the event, or for performing interventions or maintenance to lessen the chances of the event occurring.
- Question: How should the modeling of recurrent events be performed, especially in the presence of interventions?

Some Notation

- T > 0: a continuous failure time variable
- f(t): density function
- S(t) and F(t): survivor and distribution functions
- $\Lambda(t) = \int_0^t dF(w)/S(w-) = -\log S(t)$: hazard function
- $\lambda(t)dt \approx \Pr\{t \leq T < t + dt | T \geq t\}$: hazard rate function
- Equivalences:

$$S(t) = \exp\{-\Lambda(t)\} = \prod_{w=0}^{t} \left[1 - \Lambda(dw)\right];$$
$$f(t) = \lambda(t) \exp\{-\Lambda(t)\}$$

Static Modeling Approach

- In most reliability settings, the stochastic properties of $\mathbf{T} = (T_1, T_2, \dots, T_p)$ and of *S*, are done statically.
- Case, for example, in Barlow and Proschan's (1975) classic book.
- Example: In the series-parallel system, one specifies that (T_1, T_2, T_3) are IID EXP (λ) . The system life distribution becomes

$$\Pr(S > s) = \exp(-2\lambda s)[2 - \exp(-\lambda s)].$$

Limitations of Static Approach

- Not able to account for dynamic changes.
- Specification of the model is done at the time origin, so modeling from a distance.

Essence of Dynamic Approach

$$\Pr\{S > s\} = \prod_{t=0}^{s} \left[1 - \lambda(t)dt\right]$$

Need for Dynamic Approach

- Incorporates dynamic changes in the system or unit.
- More realistic to utilize accruing information as time evolves, and account for changing effective structure function.
- Modeling is conditional, which maybe more natural.
- Dependencies among component lifetimes could be automatically incorporated.
- Hazard or intensity-based modeling. Modern stochastic process approach as pioneered by Aalen, Gill, ABGK, etc.
- Relevant in repair/maintenance models, warranty models, and in studies with dynamic interventions.

Motivating Example

Consider the bridge system and the component loads (usage?) as components fail.

After Component 2 Has Failed: Series-Parallel

After Components 2 and 4 Have Failed: Series

Some Terminology

- Coherent system: *p* components
- Structure function: ϕ
- $\mathcal{Z}_p = \{1, 2, \dots, p\}; \quad \mathcal{P} = \text{power set of } \mathcal{Z}_p$
- Cut set: consists of indices such that failure of these components lead to system failure.
- $\mathcal{K}_{\phi} =$ minimal cut sets of ϕ
- $J \subseteq \mathcal{Z}_p$ is an absorbing set if $\exists K \in \mathcal{K}_{\phi}, K \subseteq J$
- $\mathcal{Q}_{\phi} = absorbing sets$

•
$$\mathcal{Q}^0_\phi = \mathcal{P} \setminus \mathcal{Q}_\phi =$$
 non-absorbing sets

A Dynamic Reliability Model

- $N^{\dagger}(s)$ = be the number component failures for the system in [0, s]
- $Y^{\dagger}(s) =$ an indicator that system is at-risk at s.
- $\mathcal{F}_{s}^{\dagger} = \text{all information that accrued in } [0, s].$
- Intensity process:

$$\alpha(s) = \lim_{h \downarrow 0} \frac{1}{h} \Pr\{N^{\dagger}((s+h)-) - N^{\dagger}(s-) \ge 1 | \mathcal{F}_{s-}^{\dagger}\}$$

• Each $J \in \mathcal{Q}_{\phi}^{0}$, let $\{\alpha_{i}[J], i \in J^{c}\}$ be positive reals.

• F(s) = set of component indices failed at s-.

Intensity Specification

• For a hazard rate function $\lambda_0(\cdot)$, the intensity process of the system is

$$\alpha(s) = Y^{\dagger}(s) \left[\sum_{J \in \mathcal{Q}_{\phi}^{0}} I\{F(s) = J\} \sum_{j \in J^{c}} \alpha_{j}[J] \right] \lambda_{0}(s)$$

Martingale property for

$$\left\{ M^{\dagger}(s) = N^{\dagger}(s) - \int_{0}^{s} \alpha(v) dv : \quad s \ge 0 \right\}.$$

System Life Distribution (HP '95)

• Theorem: For the special case of a parallel system, if

$$\left\{ \alpha_{\bullet}[J] = \sum_{j \in J^c} \alpha_j[J] : J \subseteq \mathcal{Z}_p \right\}$$

satisfies the condition that $|J| = k \Rightarrow \alpha_{\bullet}[J] = \alpha_k$ with $\alpha_k \neq \alpha_l$ for $k \neq l$, and if $C_k = \{0, 1, \dots, k\}$, then

$$\Pr\{S_k > s\} = \sum_{i=0}^{k-1} \left[\prod_{j \in \mathcal{C}_{k-1}; \ j \neq i} \left(\frac{\alpha_j}{\alpha_j - \alpha_i} \right) \right] \exp\{-\alpha_i \Lambda_0(s)\}.$$

An Exercise and a Problem!

• Let $\zeta_1, \zeta_2, \ldots, \zeta_M$ be your *M* most esoteric and favorite real numbers (e.g., c = speed of light; e, Planck's constant, π , $\sqrt{2}$, number of stars, Avogadro's number, golden number, etc.).

• Prove:
$$\sum_{i=1}^{M} \prod_{j=1; j \neq i}^{M} \left[\frac{\zeta_j}{\zeta_j - \zeta_i} \right] = 1$$

 Problem: Is there an analogous Block and Savits IFRA Closure Theorem in this dynamically-specified model?

A Load-Sharing Model

• Special case arises by taking a parallel system so

$$\phi(x_1, x_2, \dots, x_n) = \max(x_1, x_2, \dots, x_p)$$

and letting $\alpha_j[J] = \gamma_{|J|}$ where

$$\{\gamma_j = \gamma[j] : j = 0, 1, \dots, p-1\}$$

are non-negative reals with $\gamma_0 = 1$.

Results in a load-sharing model with

$$\alpha(s) = Y^{\dagger}(s)[p - N^{\dagger}(s -)]\gamma[N^{\dagger}(s -)]\lambda_0(s).$$

 Inference issues in Kvam and Peña (2004, to appear in JASA).

Recurrent Events Accrual

An observable covariate vector: $\mathbf{X}(s) = (X_1(s), X_2(s), ..., X_q(s))^t$

On Recurrent Event Modeling

- Intervention effects after each event occurrence.
- Effects of accumulating event occurrences. Could be weakening or strengthening effect.
- Effects of covariates.
- Associations of event occurrences per subject.
- Random observation monitoring period.
- Number of events observed informative about stochastic mechanism generating events.
- Informative and dependent right-censoring mechanism arising because of the sum-quota accrual scheme.

Random Entities: One Subject

- $\mathbf{X}(s) =$ covariate vector, possibly time-dependent
- T_1, T_2, T_3, \ldots = inter-event or gap times
- S_1, S_2, S_3, \ldots = calendar times of event occurrences
- $\tau =$ end of observation period
- $\mathbf{F}^{\dagger} = \{\mathcal{F}_{s}^{\dagger} : s \ge 0\} = \text{filtration (information that includes interventions, covariates, etc.)}$
- Z = unobserved frailty variable
- $N^{\dagger}(s) =$ number of events in [0, s]
- $Y^{\dagger}(s) =$ at-risk indicator at time s

Some Modeling Approaches

- J. Lawless and co-workers; Pepe and co-workers: modeled mean # of occurrences, $\mu(t) \equiv E\{N^{\dagger}(s)\}$.
- Time-to-first event: ignores information hence inefficient.
- Wei, Lin Weissfeld (WLW) marginal model: event number is used as a stratification variable; separate model per stratum.
- Prentice, Williams and Peterson (PWP) conditional method: 'at-risk process' for *j*th event only becomes 1 after the (j 1)th event.
- Andersen and Gill (AG) method: 'at-risk process' remains at 1 until unit is censored.

General Class of Models

- Class of models in Peña and Hollander (2004).
- $\{A^{\dagger}(s|Z) : s \ge 0\}$ is a predictable, nondecreasing process such that given Z and wrt \mathbf{F}^{\dagger} :

$$\{M^{\dagger}(s|Z) = N^{\dagger}(s) - A^{\dagger}(s|Z) : s \ge 0\}$$

is a square-integrable zero-mean local martingale.Multiplicative form:

$$A^{\dagger}(s|Z) = \int_0^s Y^{\dagger}(w)\lambda(w|Z)dw.$$

Intensity Process

 Specify, possibly dynamically, a predictable, observable process {*E*(*s*) : 0 ≤ *s* ≤ *τ*} called the *effective age process*, satisfying

•
$$\mathcal{E}(0) = e_0 \ge 0;$$

•
$$\mathcal{E}(s) \ge 0$$
 for every s ;

• On $[S_{k-1}, S_k)$, $\mathcal{E}(s)$ is monotone and differentiable with $\mathcal{E}'(s) \ge 0$.

Intensity Specification:

$$\lambda(s|Z) = Z \,\lambda_0[\mathcal{E}(s)] \,\rho[N^{\dagger}(s-);\alpha] \,\psi[\beta^{t}X(s)]$$

Model Components

- $\lambda_0(\cdot) =$ unknown baseline hazard rate function.
- $\mathcal{E}(s) =$ effective age at calendar time s.
- Rationale: intervention changes effective age acting on baseline hazard.
- $\rho(\cdot; \alpha) = a$ positive function on \mathcal{Z}_+ ; known form; $\rho(0; \alpha) = 1$; unknown α . Encodes effect of accumulating events.
- $\psi(\cdot) = \text{positive link function containing the effect of subject covariates. } \beta$ is unknown.
- Z = unobservable frailty variable. (E.g., unobserved environmental factors, genetic traits, or unknown defects.)

Effective Age Process

Some Special Cases

- IID renewal model with and without frailties: $\mathcal{E}(s) = s - S_{N^{\dagger}(s-)}, \ \rho(k) = 1, \ \psi(x) = 1.$ In PSH (JASA, 2001); Wang and Chang (JASA, 1999).
- Extended Cox (1972) PH model; Prentice, Williams and Peterson (1981) model; Lawless (1987):

$$\mathcal{E}(s) = s, \rho(k) = 1, \psi(x) = \exp(x)$$

 Gail, Santner and Brown (1980) carcinogenesis model and Jelinski and Moranda (1972) software reliability model.

$$\rho(k;\alpha) = \max(0,\alpha - k + 1)$$

Minimal Repair Models

- Dorado, Hollander and Sethuraman (1997) general repair model; Kijima (1989); load-share model in Kvam and Peña (2004); others.
- Brown and Proschan (1983) minimal repair model and Block, Borges and Savits (1985):
- Let I_1, I_2, \ldots IID Ber(p), p be the 'perfect repair or intervention' probability.
 - $\Gamma_k = \min\{j > \Gamma_{k-1} : I_j = 1\}$: index kth perfect repair

•
$$\eta(s) = \sum_{i=1}^{N^{\intercal}(s)} I_i$$

: # of perfect repairs till s

• $\mathcal{E}(s) = s - S_{\Gamma_{n(s-1)}}$: length since last perfect repair

A Simulated Data from Model

True Model Parameters: n = 15; $\alpha = 0.90$; $\beta = (1.0, -1.0)$; $X_1 \sim Ber(.5)$; $X_2 \sim N(0, 1)$; $\tau \sim U(0, 10)$; Minimal Repair with 0.6 prob; Baseline $\lambda_0(\cdot)$: Weibull(2,1); Frailty: Gamma(2, 2)

Calendar Time

Statistical Inference

- Dynamic models lead to complicated inference procedures. Price paid for a more realistic modeling scheme.
- Inference methods usually rely on a stochastic process formulation.
- Use of counting processes, martingales, stochastic integration, and empirical processes.
- Reliability models: parametric; whereas, biomedical models: semiparametric.
- Peña, Slate and Gonzalez (2004): considered estimation for the general model when $\lambda_0(\cdot)$ is non-parametric.

For Model Without Frailties

Processes for n units or subjects:

 $\begin{aligned} \{ (\mathbf{X}_{i}(s), N_{i}^{\dagger}(s), Y_{i}^{\dagger}(s), \mathcal{E}_{i}(s)) : 0 \leq s \leq s^{*} \}, i = 1, \dots, n \\ N_{i}^{\dagger}(s) = \text{\# of events in } [0, s] \\ Y_{i}^{\dagger}(s) = \text{at-risk indicator at } s \\ A_{i}^{\dagger}(s) = \int_{0}^{s} Y_{i}^{\dagger}(v) \lambda_{0}[\mathcal{E}_{i}(v)] \rho[N_{i}^{\dagger}(v-); \alpha] \psi[\beta^{t}\mathbf{X}_{i}(v)] dv \\ \mathbf{M}^{\dagger} = \mathbf{N}^{\dagger} - \mathbf{A}^{\dagger} = (N_{1}^{\dagger} - A_{1}^{\dagger}, \dots, N_{n}^{\dagger} - A_{n}^{\dagger}) \end{aligned}$

Calendar/Gap Time Processes

Idea: From Sellke (1988) and Gill (1981).

$$Z_i(s,t) = I\{\mathcal{E}_i(s) \le t\}, \ i = 1, \dots, n$$

$$N_i(s,t) = \int_0^s Z_i(v,t) N_i^{\dagger}(dv)$$

$$A_i(s,t) = \int_0^s Z_i(v,t) A_i^{\dagger}(dv)$$

$$M_{i}(s,t) = N_{i}(s,t) - A_{i}(s,t) = \int_{0}^{s} Z_{i}(v,t) M_{i}^{\dagger}(dv)$$

Remark: $M_i(\cdot, t)$ is a martingale, but not $M(s, \cdot)$.

Notational Reductions

$$\mathcal{E}_{ij-1}(v) \equiv \mathcal{E}_i(v) I_{(S_{ij-1},S_{ij}]}(v) I\{Y_i^{\dagger}(v) > 0\}$$

$$\varphi_{ij-1}(w|\alpha,\beta) \equiv \frac{\rho(j-1;\alpha)\psi\{\beta^{\mathsf{t}}\mathbf{X}_{i}[\mathcal{E}_{ij-1}^{-1}(w)]\}}{\mathcal{E}_{ij-1}'[\mathcal{E}_{ij-1}^{-1}(w)]}$$

Generalized At-Risk Process:

$$Y_{i}(s, w | \alpha, \beta) \equiv \sum_{j=1}^{N_{i}^{\dagger}(s-)} I_{(\mathcal{E}_{ij-1}(S_{ij-1}), \mathcal{E}_{ij-1}(S_{ij})]}(w) \varphi_{ij-1}(w | \alpha, \beta)$$

+ $I_{(\mathcal{E}_{iN_{i}^{\dagger}(s-)}(S_{iN_{i}^{\dagger}(s-)}), \mathcal{E}_{iN_{i}^{\dagger}(s-)}(\min(s,\tau_{i}))]}(w) \varphi_{iN_{i}^{\dagger}(s-)}(w | \alpha, \beta)$

G-Nelson-Aalen 'Estimator'

$$A_i(s,t|\alpha,\beta) = \int_0^t Y_i(s,w|\alpha,\beta)\Lambda_0(dw)$$

$$S_0(s,t|\alpha,\beta) = \sum_{i=1}^n Y_i(s,t|\alpha,\beta)$$

$$\hat{\Lambda}_0(s,t|\alpha,\beta) = \int_0^t \left\{ \frac{I\{S_0(s,w|\alpha,\beta) > 0\}}{S_0(s,w|\alpha,\beta)} \right\} \left\{ \sum_{i=1}^n N_i(s,dw) \right\}$$

Note: But, α and β need to be estimated.

Estimating α and β

Partial Likelihood (PL) Process:

$$L_P(s^*|\alpha,\beta) = \prod_{i=1}^n \prod_{j=1}^{N_i^{\dagger}(s^*)} \left[\frac{\rho(j-1;\alpha)\psi[\beta^{\mathsf{t}}\mathbf{X}_i(S_{ij})]}{S_0[s^*,\mathcal{E}_i(S_{ij})|\alpha,\beta]} \right]^{\Delta N_i^{\dagger}(S_{ij})}$$

• **PL-MLE:** $\hat{\alpha}$ and $\hat{\beta}$ are maximizers of

$$(\alpha,\beta) \mapsto L_P(s^*|\alpha,\beta)$$

Iterative procedures (Newton-Raphson, optim routine in R) may be used.

G-PLE of \overline{F}_0

- G-NAE of $\Lambda_0(\cdot)$: $\hat{\Lambda}_0(s^*, t) \equiv \hat{\Lambda}_0(s^*, t | \hat{\alpha}, \hat{\beta})$
- G-PLE of $\overline{F}_0(t)$:

$$\hat{\bar{F}}_{0}(s^{*},t) = \prod_{w=0}^{t} \left[1 - \hat{\Lambda}_{0}(s^{*},dw) \right]$$
$$= \prod_{w=0}^{t} \left[1 - \frac{\sum_{i=1}^{n} N_{i}(s^{*},dw)}{S_{0}(s^{*},w|\hat{\alpha},\hat{\beta})} \right]$$

• Remark: When $\mathcal{E}_i(s) = s - S_{iN_i^{\dagger}(s-)}$, $\rho(k; \alpha) = 1$, and $\psi(w) = 1$, estimator of \overline{F}_0 in PSH (2001, JASA) for the IID renewal model obtains.

For Model With Frailty

• Recall the intensity process:

 $\lambda_i(s|Z_i, \mathbf{X}_i) = Z_i \,\lambda_0[\mathcal{E}_i(s)] \,\rho[N_i^{\dagger}(s-); \alpha] \,\psi(\beta^{\mathsf{t}} \mathbf{X}_i(s))$

- Frailties Z_1, Z_2, \ldots, Z_n are unobserved and assumed IID Gamma(ξ, ξ)
- Unknown parameters: $(\xi, \alpha, \beta, \lambda_0(\cdot))$
- Use of EM algorithm (Dempster, et al; Nielsen, et al), with frailties as missing observations.
- Estimator of baseline hazard function under no-frailty model plays an important role.

Algorithm

- Step 0: (Initialization) Seed values $\hat{\xi}, \hat{\alpha}, \hat{\beta}$; no-frailty estimator $\hat{\Lambda}_0$.
- Step 1: (E-step) Compute $\hat{Z}_i = E(Z_i | \text{data}, \hat{\xi}, \hat{\alpha}, \hat{\beta}, \hat{\Lambda}_0)$.
- Step 2: (M-step 1) New estimate of $\Lambda_0(\cdot)$. Form: analogous to the no-frailty case with \hat{Z}_i 's.
- Step 3: (M-step 2) New estimates of α and β .
- Step 4: (M-step 3) New estimate of ξ ; maximize marginal likelihood for ξ .
- Step 5: Check for convergence.

Implemented in an R package called 'gcmrec' (Gonzalez, Slate, Peña).

Estimates for Simulated Data

• Without Frailty Fit

•
$$\hat{\alpha} = .963$$

• $\hat{\beta} = (0.590, -0.571)$

Properties: Simulated

- $\rho(k; \alpha) = \alpha^k; \alpha \in \{.9, 1.0, 1.05\}$
- $\psi(u) = \exp(u); \beta = (1, -1); X_1 \sim \text{Ber}(.5); X_2 \sim N(0, 1)$
- Weibull baseline with shape $\gamma = .9$ (DFR) and $\gamma = 2$ (IFR)
- Gamma frailty parameter $\xi \in \{2, 6, \infty\}$
- Effective Age: Minimal repair model with p = .6
- Sample Size $n \in \{10, 30, 50\}$
- Censoring $\tau \sim \text{Unif}(0, B)$ (approx 10 events/unit)
- 1000 replications per simulation combination

Finite-Dimensional Parameters

TableA	lpha	γ	ξ	η	n	$\hat{\mu}_{Ev}$	\hat{lpha}	\hat{eta}_1	\hat{eta}_2	$\hat{\eta}$
A2.me	0.9	0.9	2	0.67	30	4.1	0.898	1.01	-1.01	0.734
A2.sd							0.031	0.379	0.24	0.124
A3.me	0.9	0.9	2	0.67	50	5.2	0.899	1.02	-1	0.705
A3.sd							0.021	0.287	0.165	0.091
A5.me	0.9	0.9	6	0.86	30	4.3	0.9	0.988	-1.01	0.904
A5.sd							0.030	0.3	0.175	0.085
A6.me	0.9	0.9	6	0.86	50	5.3	0.899	0.998	-1	0.884
A6.sd							0.021	0.221	0.136	0.071
A8.me	0.9	0.9	∞	1	30	4.8	0.893	1.03	-1.03	
A8.sd							0.0247	0.222	0.135	
A9.me	0.9	0.9	∞	1	50	4.4	0.895	1.02	-1.02	
A9.sd							0.018	0.158	0.104	

Baseline Survivor Function

On Mis-specified Models

Application: Bladder Data

Bladder cancer data pertaining to times to recurrence for n = 85 subjects studied in Wei, Lin and Weissfeld ('89).

Calendar Time

Estimates of Parameters

- X_1 : (1 = placebo; 2 = thiotepa)
- X_2 : size (cm) of largest initial tumor
- X_3 : # of initial tumors
- Effective age: backward recurrence time (perfect repair) [also fitted with 'minimal' repair].
- Fitting model *without* frailties and 'perfect' repair:

•
$$\hat{\alpha} = 0.98 \ (s.e. = 0.07);$$

- $(\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3) = (-0.32, -0.02, 0.14);$
- s.e.s of $\hat{\beta} = (0.21, 0.07, 0.05)$.
- Fitting model with gamma frailties: 13 iterations in EM led to $\hat{\xi} = 5432999$ indicating absence of frailties.

Estimates of SFs for Two Groups

Blue: Thiotepa Group	Red: Placebo Group
Solid: Perfect Repair	Dashed: Minimal Repair

Time

Comparisons

Estimates from Different Methods for Bladder Data

Cova	Para	AG	WLW	PWP	General Model	
			Marginal	Cond*nal	Perfect ^a	Minimal ^b
$\log N(t-)$	lpha	-	-	-	.98 (.07)	.79 (.13)
Frailty	ξ	-	-	-	∞	.97
rx	eta_1	47 (.20)	58 (.20)	33 (.21)	32 (.21)	57 (.36)
Size	eta_2	04 (.07)	05 (.07)	01 (.07)	02 (.07)	03 (.10)
Number	eta_3	.18 (.05)	.21 (.05)	.12 (.05)	.14 (.05)	.22 (.10)

^aEffective Age is backward recurrence time ($\mathcal{E}(s) = s - S_{N^{\dagger}(s-)}$). ^bEffective Age is calendar time ($\mathcal{E}(s) = s$).

Remark: Example demonstrates the crucial role of the effective age process in reconciling methods!

Asymptotics: IID Renewal Model

$$\hat{\bar{F}}_0(t) \sim AN\left(\bar{F}_0(t), \frac{1}{n}\sigma^2(t)\right)$$

$$\int_0^t d\Lambda_0(w)$$

$$\sigma^2(t) = \bar{F}_0(t)^2 \int_0^t \frac{d\Lambda_0(w)}{y(w)}$$

$$y(w) = \bar{F}_0(w)\bar{G}(w-)\left[1 + \frac{1}{\bar{G}(w-)}\int_w^\infty \rho_0(v-w)dG(v)\right]$$

$$\rho_0(v) = \sum_{k=1}^{\infty} F_0^{(k)}(v) = \text{renewal function}$$

Some Remarks

Note that the renewal function

$$\rho_0(s) = \sum_{k=1}^{\infty} F_0^{(k)}(s)$$

plays crucial role in the limiting variance function. This is owing to the sum-quota accrual scheme, and the effect of this is oftentimes not recognized.

- Load-share model: asymptotic properties of estimators for $\Lambda_0(\cdot)$, $S_0(\cdot)$ and the load-share parameters γ_j s given in Kvam and Peña (2004).
- R. Stocker: Case of $\lambda_0(\cdot)$ parametric.

Concluding Remarks

- Dynamic models appropriate and realistic in reliability and survival analysis.
- Current deficiency: Need to incorporate in the data-gathering the effective age. Calls for a paradigm-shift, but perhaps within reach!
- Open problems: Asymptotic properties of estimators for model with frailties.
- Testing hypotheses; goodness-of-fit; and model validation procedures needed.
- Use of dynamic models in issues of preventive maintenance, and finally, more interaction among those who deal with real data and academicians.