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Reliability Systems
Series-Parallel: φ(x1, x2, x3) = x1 ∨ (x2 ∧ x3)
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A Bridge System
φ(x1, x2, x3, x4, x5) = (x1x4) ∨ (x1x3x5) ∨ (x2x5) ∨ (x2x3x4)
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Reliability Notation
Coherent system: p components

Component and System states: xi ∈ {0, 1}; φ ∈ {0, 1}
Structure function: φ = φ(x1, x2, . . . , xp)

Component lifetimes: (T1, T2, . . . , Tp)

System lifetime: S = hφ(T1, T2, . . . , Tp)

Note: I{S > s} = φ(I{T1 > s}, . . . , I{Tp > s})
Pr{S > s} = H̄φ(s) = E{φ(I{T1 > s}, . . . , I{Tp > s})}

Question: How should we specify the stochastic
properties of T1, . . . , Tp, and consequently of S?
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Recurrent Events
In reliability, engineering, biomedical, and other studies.

failure of a machine, then repairs (eg., Proschan’s
Boeing AC data; Bus Data; Klefsjo and Kumar’s LHD
Data; Aalen and Husebye’s MMC data)

discovery of a computer software bug

hospitalization due to a chronic disease

occurrence of migraine headaches

tumor occurrence

onset of depression

drop in the Dow Jones of 200 points

terrorist attacks (V. Bier’s talk)
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Some Talks and Books
H. Ascher’s talk and his book.

Z. Jin’s talk.

A. Basu’s talk and his book.

W. Nelson’s book.

T. Duchesne’s talk and some of the questions.

A. Jardine’s talk

B. Osborn’s talk.

M. Hollander’s talk.

E. Slate’s talk.
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Example: Bladder Cancer Data
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Recurrent Event Modeling
A probabilistic model for recurrent events specifies
the stochastic properties of the times of event
occurrences or the inter-event times.

Such models would be useful for purposes of
predicting future occurrences of the event, or for
performing interventions or maintenance to lessen
the chances of the event occurring.

Question: How should the modeling of recurrent
events be performed, especially in the presence of
interventions?
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Some Notation
T > 0: a continuous failure time variable

f(t): density function

S(t) and F (t): survivor and distribution functions

Λ(t) =
∫ t

0 dF (w)/S(w−) = − logS(t): hazard function

λ(t)dt ≈ Pr{t ≤ T < t+dt|T ≥ t}: hazard rate function

Equivalences:

S(t) = exp{−Λ(t)} =
t

∏

w=0

[1 − Λ(dw)] ;

f(t) = λ(t) exp{−Λ(t)}
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Static Modeling Approach
In most reliability settings, the stochastic properties
of T = (T1, T2, . . . , Tp) and of S, are done statically.

Case, for example, in Barlow and Proschan’s (1975)
classic book.

Example: In the series-parallel system, one specifies
that (T1, T2, T3) are IID EXP(λ). The system life
distribution becomes

Pr(S > s) = exp(−2λs)[2 − exp(−λs)].
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Limitations of Static Approach

Not able to account for dynamic changes.

Specification of the model is done at the time origin,
so modeling from a distance.
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Essence of Dynamic Approach

Pr{S > s} =

s
∏

t=0

[1 − λ(t)dt]
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Need for Dynamic Approach
Incorporates dynamic changes in the system or unit.

More realistic to utilize accruing information as time
evolves, and account for changing effective structure
function.

Modeling is conditional, which maybe more natural.

Dependencies among component lifetimes could be
automatically incorporated.

Hazard or intensity-based modeling. Modern
stochastic process approach as pioneered by Aalen,
Gill, ABGK, etc.

Relevant in repair/maintenance models, warranty
models, and in studies with dynamic interventions.
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Motivating Example
Consider the bridge system and the component loads
(usage? ) as components fail.
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Some Terminology
Coherent system: p components

Structure function: φ

Zp = {1, 2, . . . , p}; P =power set of Zp

Cut set: consists of indices such that failure of these
components lead to system failure.

Kφ = minimal cut sets of φ

J ⊆ Zp is an absorbing set if ∃K ∈ Kφ, K ⊆ J

Qφ = absorbing sets

Q0
φ = P \ Qφ = non-absorbing sets
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A Dynamic Reliability Model
N †(s) = be the number component failures for the
system in [0, s]

Y †(s) = an indicator that system is at-risk at s.

F†
s = all information that accrued in [0, s].

Intensity process:

α(s) = lim
h↓0

1

h
Pr{N †((s+ h)−) −N †(s−) ≥ 1|F†

s−}

Each J ∈ Q0
φ, let {αi[J ], i ∈ Jc} be positive reals.

F (s) = set of component indices failed at s−.
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Intensity Specification
For a hazard rate function λ0(·), the intensity process
of the system is

α(s) = Y †(s)





∑

J∈Q0
φ

I{F (s) = J}
∑

j∈Jc

αj [J ]



λ0(s)

Martingale property for
{

M †(s) = N †(s) −
∫ s

0
α(v)dv : s ≥ 0

}

.
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System Life Distribution (HP ’95)
Theorem: For the special case of a parallel system, if







α•[J ] =
∑

j∈Jc

αj [J ] : J ⊆ Zp







satisfies the condition that |J | = k ⇒ α•[J ] = αk with
αk 6= αl for k 6= l, and if Ck = {0, 1, . . . , k}, then

Pr{Sk > s} =
k−1
∑

i=0





∏

j∈Ck−1; j 6=i

(

αj

αj − αi

)



 exp{−αiΛ0(s)}.
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An Exercise and a Problem!

Let ζ1, ζ2, . . . , ζM be your M most esoteric and
favorite real numbers (e.g., c = speed of light; e,
Planck’s constant, π,

√
2, number of stars, Avogadro’s

number, golden number, etc.).

Prove:
∑M

i=1

∏M
j=1; j 6=i

[

ζj
ζj−ζi

]

= 1

Problem: Is there an analogous Block and Savits
IFRA Closure Theorem in this dynamically-specified
model?
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A Load-Sharing Model
Special case arises by taking a parallel system so

φ(x1, x2, . . . , xn) = max(x1, x2, . . . , xp)

and letting αj [J ] = γ|J | where

{γj = γ[j] : j = 0, 1, . . . , p− 1}

are non-negative reals with γ0 = 1.

Results in a load-sharing model with

α(s) = Y †(s)[p−N †(s−)]γ[N †(s−)]λ0(s).

Inference issues in Kvam and Peña (2004, to appear
in JASA).
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Recurrent Events Accrual

3

A Pictorial Representation: One Subject

An observable covariate vector: X(s) = (X1(s), X2(s), …, Xq(s))t

Z

Unobserved

Frailty

s

0
τ

End of observation period
Observed events

Unobserved

EventAn intervention is performed just after each event

T1 T2 T3 T4

S1 S2 S3 S4

τ-S4
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On Recurrent Event Modeling
Intervention effects after each event occurrence.

Effects of accumulating event occurrences. Could be
weakening or strengthening effect.

Effects of covariates.

Associations of event occurrences per subject.

Random observation monitoring period.

Number of events observed informative about
stochastic mechanism generating events.

Informative and dependent right-censoring
mechanism arising because of the sum-quota
accrual scheme.
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Random Entities: One Subject

X(s) = covariate vector, possibly time-dependent

T1, T2, T3, . . . = inter-event or gap times

S1, S2, S3, . . . = calendar times of event occurrences

τ = end of observation period

F
† = {F†

s : s ≥ 0} = filtration (information that
includes interventions, covariates, etc.)

Z = unobserved frailty variable

N †(s) = number of events in [0, s]

Y †(s) = at-risk indicator at time s
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Some Modeling Approaches
J. Lawless and co-workers; Pepe and co-workers:
modeled mean # of occurrences, µ(t) ≡ E{N †(s)}.

Time-to-first event: ignores information hence
inefficient.

Wei, Lin Weissfeld (WLW) marginal model: event
number is used as a stratification variable; separate
model per stratum.

Prentice, Williams and Peterson (PWP) conditional
method: ‘at-risk process’ for jth event only becomes
1 after the (j − 1)th event.

Andersen and Gill (AG) method: ‘at-risk process’
remains at 1 until unit is censored.
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General Class of Models
Class of models in Peña and Hollander (2004).

{A†(s|Z) : s ≥ 0} is a predictable, nondecreasing
process such that given Z and wrt F

†:

{M †(s|Z) = N †(s) − A†(s|Z) : s ≥ 0}

is a square-integrable zero-mean local martingale.

Multiplicative form:

A†(s|Z) =

∫ s

0
Y †(w)λ(w|Z)dw.
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Intensity Process
Specify, possibly dynamically, a predictable,
observable process {E(s) : 0 ≤ s ≤ τ} called the
effective age process, satisfying

E(0) = e0 ≥ 0;
E(s) ≥ 0 for every s;
On [Sk−1, Sk), E(s) is monotone and differentiable
with E ′(s) ≥ 0.

Intensity Specification:

λ(s|Z) = Z λ0[E(s)] ρ[N †(s−);α]ψ[βtX(s)]
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Model Components
λ0(·) = unknown baseline hazard rate function.

E(s) = effective age at calendar time s.

Rationale: intervention changes effective age acting
on baseline hazard.

ρ(·;α) = a positive function on Z+; known form;
ρ(0;α) = 1; unknown α. Encodes effect of
accumulating events.

ψ(·) = positive link function containing the effect of
subject covariates. β is unknown.

Z = unobservable frailty variable. (E.g., unobserved
environmental factors, genetic traits, or unknown
defects.)
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Effective Age Process

10

Illustration: Effective Age Process

“Possible Intervention Effects”

s

0
τCalendar Time

Effective

Age, E(s)
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Some Special Cases
IID renewal model with and without frailties:
E(s) = s− SN†(s−), ρ(k) = 1, ψ(x) = 1. In PSH (JASA,
2001); Wang and Chang (JASA, 1999).

Extended Cox (1972) PH model; Prentice, Williams
and Peterson (1981) model; Lawless (1987):

E(s) = s, ρ(k) = 1, ψ(x) = exp(x)

Gail, Santner and Brown (1980) carcinogenesis
model and Jelinski and Moranda (1972) software
reliability model.

ρ(k;α) = max(0, α− k + 1)
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Minimal Repair Models
Dorado, Hollander and Sethuraman (1997) general
repair model; Kijima (1989); load-share model in
Kvam and Peña (2004); others.

Brown and Proschan (1983) minimal repair model
and Block, Borges and Savits (1985):

Let I1, I2, . . . IID Ber(p), p be the ‘perfect repair or
intervention’ probability.

Γk = min{j > Γk−1 : Ij = 1} : index kth perfect
repair

η(s) =
∑N†(s)

i=1 Ii : # of perfect repairs till s
E(s) = s− SΓη(s−)

: length since last perfect repair
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A Simulated Data from Model
True Model Parameters: n = 15; α = 0.90; β = (1.0,−1.0);
X1 ∼ Ber(.5); X2 ∼ N(0, 1); τ ∼ U(0, 10); Minimal Repair
with 0.6 prob; Baseline λ0(·): Weibull(2,1); Frailty:
Gamma(2, 2)
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Statistical Inference
Dynamic models lead to complicated inference
procedures. Price paid for a more realistic modeling
scheme.

Inference methods usually rely on a stochastic
process formulation.

Use of counting processes, martingales, stochastic
integration, and empirical processes.

Reliability models: parametric; whereas, biomedical
models: semiparametric.

Peña, Slate and Gonzalez (2004): considered
estimation for the general model when λ0(·) is
non-parametric.
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For Model Without Frailties
Processes for n units or subjects:

{(Xi(s), N
†
i (s), Y †

i (s), Ei(s)) : 0 ≤ s ≤ s∗}, i = 1, . . . , n

N †
i (s) = # of events in [0, s]

Y †
i (s) = at-risk indicator at s

A†
i (s) =

∫ s

0
Y †

i (v)λ0[Ei(v)] ρ[N
†
i (v−);α]ψ[βtXi(v)] dv

M
† = N

† − A
† = (N †

1 − A†
1, . . . , N

†
n − A†

n)
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Calendar/Gap Time Processes
Idea: From Sellke (1988) and Gill (1981).

Zi(s, t) = I{Ei(s) ≤ t}, i = 1, . . . , n

Ni(s, t) =

∫ s

0
Zi(v, t)N

†
i (dv)

Ai(s, t) =

∫ s

0
Zi(v, t)A

†
i (dv)

Mi(s, t) = Ni(s, t) − Ai(s, t) =

∫ s

0
Zi(v, t)M

†
i (dv)

Remark: Mi(·, t) is a martingale, but not M(s, ·).
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Notational Reductions

Eij−1(v) ≡ Ei(v)I(Sij−1,Sij ](v)I{Y
†
i (v) > 0}

ϕij−1(w|α, β) ≡
ρ(j − 1;α)ψ{βtXi[E−1

ij−1(w)]}
E ′

ij−1[E−1
ij−1(w)]

Generalized At-Risk Process:

Yi(s, w|α, β) ≡
N

†
i (s−)
∑

j=1

I(Eij−1(Sij−1), Eij−1(Sij)](w)ϕij−1(w|α, β)

+ I(E
iN

†
i
(s−)

(S
iN

†
i
(s−)

), E
iN

†
i
(s−)

(min(s,τi))](w)ϕ
iN

†
i (s−)(w|α, β)
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G-Nelson-Aalen ‘Estimator’

Ai(s, t|α, β) =

∫ t

0
Yi(s, w|α, β)Λ0(dw)

S0(s, t|α, β) =
n

∑

i=1

Yi(s, t|α, β)

Λ̂0(s, t|α, β) =

∫ t

0

{

I{S0(s, w|α, β) > 0}
S0(s, w|α, β)

}

{

n
∑

i=1

Ni(s, dw)

}

Note: But, α and β need to be estimated.
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Estimating α and β
Partial Likelihood (PL) Process:

LP (s∗|α, β) =
n

∏

i=1

N
†
i (s∗)
∏

j=1

[

ρ(j − 1;α)ψ[βtXi(Sij)]

S0[s∗, Ei(Sij)|α, β]

]∆N
†
i (Sij)

PL-MLE: α̂ and β̂ are maximizers of

(α, β) 7→ LP (s∗|α, β)

Iterative procedures (Newton-Raphson, optim
routine in R) may be used.
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G-PLE of F̄0

G-NAE of Λ0(·): Λ̂0(s
∗, t) ≡ Λ̂0(s

∗, t|α̂, β̂)

G-PLE of F̄0(t):

ˆ̄F 0(s
∗, t) =

t
∏

w=0

[

1 − Λ̂0(s
∗, dw)

]

=
t

∏

w=0

[

1 −
∑n

i=1Ni(s
∗, dw)

S0(s∗, w|α̂, β̂)

]

Remark: When Ei(s) = s− S
iN

†
i (s−), ρ(k;α) = 1, and

ψ(w) = 1, estimator of F̄0 in PSH (2001, JASA) for the
IID renewal model obtains.
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For Model With Frailty
Recall the intensity process:

λi(s|Zi,Xi) = Zi λ0[Ei(s)] ρ[N
†
i (s−);α]ψ(βtXi(s))

Frailties Z1, Z2, . . . , Zn are unobserved and assumed
IID Gamma(ξ, ξ)

Unknown parameters: (ξ, α, β, λ0(·))
Use of EM algorithm (Dempster, et al; Nielsen, et al),
with frailties as missing observations.

Estimator of baseline hazard function under no-frailty
model plays an important role.
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Algorithm

Step 0: (Initialization) Seed values ξ̂, α̂, β̂; no-frailty
estimator Λ̂0.

Step 1: (E-step) Compute Ẑi = E(Zi|data, ξ̂, α̂, β̂, Λ̂0).

Step 2: (M-step 1) New estimate of Λ0(·). Form:
analogous to the no-frailty case with Ẑi’s.

Step 3: (M-step 2) New estimates of α and β.

Step 4: (M-step 3) New estimate of ξ; maximize
marginal likelihood for ξ.

Step 5: Check for convergence.

Implemented in an R package called ‘gcmrec’ (Gonzalez,
Slate, Peña).
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Estimates for Simulated Data

With Frailty Fit

102 iterations in
EM
α̂ = .8748

β̂ = (1.099,−1.3986)

ξ̂ = 2.1831

Without Frailty Fit

α̂ = .963

β̂ = (0.590,−0.571)
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Properties: Simulated
ρ(k;α) = αk; α ∈ {.9, 1.0, 1.05}
ψ(u) = exp(u); β = (1,−1); X1 ∼ Ber(.5); X2 ∼ N(0, 1)

Weibull baseline with shape γ = .9 (DFR) and γ = 2
(IFR)

Gamma frailty parameter ξ ∈ {2, 6,∞}
Effective Age: Minimal repair model with p = .6

Sample Size n ∈ {10, 30, 50}
Censoring τ ∼ Unif(0, B) (approx 10 events/unit)

1000 replications per simulation combination
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Finite-Dimensional Parameters

TableA α γ ξ η n µ̂Ev α̂ β̂1 β̂2 η̂

A2.me 0.9 0.9 2 0.67 30 4.1 0.898 1.01 -1.01 0.734

A2.sd 0.031 0.379 0.24 0.124

A3.me 0.9 0.9 2 0.67 50 5.2 0.899 1.02 -1 0.705

A3.sd 0.021 0.287 0.165 0.091

A5.me 0.9 0.9 6 0.86 30 4.3 0.9 0.988 -1.01 0.904

A5.sd 0.030 0.3 0.175 0.085

A6.me 0.9 0.9 6 0.86 50 5.3 0.899 0.998 -1 0.884

A6.sd 0.021 0.221 0.136 0.071

A8.me 0.9 0.9 ∞ 1 30 4.8 0.893 1.03 -1.03

A8.sd 0.0247 0.222 0.135

A9.me 0.9 0.9 ∞ 1 50 4.4 0.895 1.02 -1.02

A9.sd 0.018 0.158 0.104
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Baseline Survivor Function
ξ Bias RMSE
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On Mis-specified Models
Type Bias RMSE

Under

0 1 2 3 4 5

−0
.10

−0
.05

0.0
0

0.0
5

0.1
0

Time

Bi
as

0 1 2 3 4 5

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Time

Ro
ot−

Me
an

−S
qu

ar
e−

Er
ro

r

Over

0 1 2 3 4 5

−0
.10

−0
.05

0.0
0

0.0
5

0.1
0

Time

Bi
as

0 1 2 3 4 5

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Time

Ro
ot−

Me
an

−S
qu

ar
e−

Er
ro

r

Comb.

0 1 2 3 4 5

−0
.10

−0
.05

0.0
0

0.0
5

0.1
0

Time

Bi
as

0 1 2 3 4 5

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Time

Ro
ot−

Me
an

−S
qu

ar
e−

Er
ro

r

Peña — MMR 2004: Dynamic Models – p.46



Application: Bladder Data
Bladder cancer data pertaining to times to recurrence for
n = 85 subjects studied in Wei, Lin and Weissfeld (’89).
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Estimates of Parameters
X1: (1 = placebo; 2 = thiotepa)

X2: size (cm) of largest initial tumor

X3: # of initial tumors

Effective age: backward recurrence time (perfect
repair) [also fitted with ‘minimal’ repair].

Fitting model without frailties and ‘perfect’ repair:

α̂ = 0.98 (s.e. = 0.07);

(β̂1, β̂2, β̂3) = (−0.32,−0.02, 0.14);

s.e.s of β̂ = (0.21, 0.07, 0.05).

Fitting model with gamma frailties: 13 iterations in
EM led to ξ̂ = 5432999 indicating absence of frailties.
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Estimates of SFs for Two Groups
Blue: Thiotepa Group Red: Placebo Group
Solid: Perfect Repair Dashed: Minimal Repair
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Comparisons
Estimates from Different Methods for Bladder Data

Cova Para AG WLW PWP General Model

Marginal Cond*nal Perfecta Minimalb

log N(t−) α - - - .98 (.07) .79 (.13)

Frailty ξ - - - ∞ .97

rx β1 -.47 (.20) -.58 (.20) -.33 (.21) -.32 (.21) -.57 (.36)

Size β2 -.04 (.07) -.05 (.07) -.01 (.07) -.02 (.07) -.03 (.10)

Number β3 .18 (.05) .21 (.05) .12 (.05) .14 (.05) .22 (.10)

aEffective Age is backward recurrence time (E(s) = s − SN†(s−)).
bEffective Age is calendar time (E(s) = s).

Remark: Example demonstrates the crucial role of the
effective age process in reconciling methods!
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Asymptotics: IID Renewal Model

ˆ̄F 0(t) ∼ AN

(

F̄0(t),
1

n
σ2(t)

)

σ2(t) = F̄0(t)
2

∫ t

0

dΛ0(w)

y(w)

y(w) = F̄0(w)Ḡ(w−)

[

1 +
1

Ḡ(w−)

∫ ∞

w

ρ0(v − w)dG(v)

]

ρ0(v) =
∞

∑

k=1

F
(k)
0 (v) = renewal function
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Some Remarks
Note that the renewal function

ρ0(s) =
∞

∑

k=1

F
(k)
0 (s)

plays crucial role in the limiting variance function.
This is owing to the sum-quota accrual scheme, and
the effect of this is oftentimes not recognized.

Load-share model: asymptotic properties of
estimators for Λ0(·), S0(·) and the load-share
parameters γjs given in Kvam and Peña (2004).

R. Stocker: Case of λ0(·) parametric.
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Concluding Remarks
Dynamic models appropriate and realistic in reliability
and survival analysis.

Current deficiency: Need to incorporate in the
data-gathering the effective age. Calls for a
paradigm-shift, but perhaps within reach!

Open problems: Asymptotic properties of estimators
for model with frailties.

Testing hypotheses; goodness-of-fit; and model
validation procedures needed.

Use of dynamic models in issues of preventive
maintenance, and finally, more interaction among
those who deal with real data and academicians.
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