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Outline of Talk
Historical background.
Random censorship model; noninformative
censoring; informative censoring; KG Model.
Migratory motor complex data set.
Recurrent events.
First-event analysis and marginal models.
Full modeling and estimators in basic model.
Informative monitoring with recurrent event.
Efficiency issues with recurrent events under
generalized KG model.
Concluding remarks.
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Random Censorship Model (RCM)

T1, T2, . . . , Tn
IID∼ F

C1, C2, . . . , Cn
IID∼ G

F and G not related
{Ti} ⊥ {Ci}

Random Observables:

(Z1, δ1), (Z2, δ2), . . . , (Zn, δn)

Zi = Ti ∧ Ci and δi = I{Ti ≤ Ci}

Goal: To make inference on the distribution F or the
hazard Λ =

∫

dF/F−.
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Parametric Inference
F ∈ F = {F (·; θ) : θ ∈ Θ ⊂ <p}

F̄ = 1− F

L(θ) = L(θ|(Z, δ)) ∝
∏

i

f(zi; θ)
δiF̄ (zi; θ)

1−δi

θ̂ = argmin
θ

L(θ) (ML Estimator)

Properties of the MLE θ̂ well-known, e.g., consistency
(though is usually biased), asymptotic normality, etc.

θ̂ ∼ AN

(

θ,
1

n
[I1(θ,G)]−1

)
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Nonparametric Inference
F ∈ F = space of continuous distributions

N(s) =
∑

i

I{Zi ≤ s; δi = 1} and Y (s) =
∑

i

I{Zi ≥ s}

NAE: Λ̂ =

∫

dN

Y
and PLE: ˆ̄F =

∏

[

1− dN

Y

]

Properties of Λ̂ and F̂ well-known, e.g., biased;
consistent; and when normalized, weakly convergent to
Gaussian processes.

Avar( ˆ̄F (t)) =
1

n
F̄ (t)2

∫ t

0

dF (s)

F̄ (s)2Ḡ(s)
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An Informative RCM
Koziol-Green (KG) Model (1976):

∃β ≥ 0, Ḡ(t) = F̄ (t)β

Lehmann-type alternatives
Proportional hazards:

ΛG = βΛF

Zi ∼ F̄ β+1

δi ∼ BER(1/(β + 1))

Most importantly:
Zi ⊥ δi
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MMC Data: First Event Times and Tau’s

Migratory Motor Complex (MMC) data set from Aalen
and Husebye, Stat Med, 1991.
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MMC Data: Hazard Estimates
KG model holds if and only if Λτ ∝ ΛT1
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KG Model’s Utility
Chen, Hollander and Langberg (JASA, 1982):
exploited independence between Zi and δi to obtain
the exact bias, variance, and MSE functions of PLE.
Comparisons with asymptotic results.
Cheng and Lin (1987): exploited semiparametric
nature of KG model to obtain a more efficient
estimator of F compared to the PLE.
Hollander and Peña (1988): obtained better
confidence bands for F under KG model.
Csorgo & Faraway: KG model not practically viable,
but, just like yeast (!), it allows examination of exact
properties of procedures and assessment of
efficiency losses/gains.
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Recurrent Events

admission to hospital due to chronic disease
tumor re-occurrence
migraine attacks
alcohol or drug addiction
commission of a criminal act by a deliquent minor!
major disagreements between a couple
non-life insurance claim
drop of ≥ 200 points in DJIA during trading day
publication of a paper
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Full MMC Data: With Recurrences

n = 19 subjects; event = end of migratory motor complex
cycle; random length of monitoring period per subject.
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Another One: Bladder Data Set
A ‘famous’ data set used by Wei, Lin, and Weissfeld
(1989). 85 subjects; two treatments (control & thiotepa);
occurrence of bladder cancer; two covariates.
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Data Accrual: One Subject
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Some Aspects in Recurrent Data
random monitoring length (τ ).
random # of events (K) and sum-quota constraint:

K = max







k :
k
∑

j=1

Tj ≤ τ







with
K
∑

j=1

Tj ≤ τ <

K+1
∑

j=1

Tj

Basic Observable: (K, τ, T1, T2, . . . , TK , τ − SK)

always a right-censored observation.
dependent censoring.
informative censoring.
effects of covariates, frailties, interventions after each
event, and accumulation of events.
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Approaches: Recurrent Event Analysis

First-event analysis. Inefficient. How much do we
gain by utilizing the recurrences?
Full modeling approach: Andersen and Gill (82) and
in Peña and Hollander (04) and Peña, Slate and
Gonzalez (07).
Full modeling: harder to implement and requires
intensity process specification.
Marginal modeling approach: Wei, Lin, and
Weissfeld (89).
Conditional modeling approach: Prentice, Williams,
and Peterson (81).
Marginal and conditional approaches: quite popular,
but some foundational questions.
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Simplest Model: One Subject
T1, T2, . . .

IID∼ F

corresponds to ‘perfect interventions’ after each
event
τ ∼ G

F and G not related
no covariates (X)
no frailties (Z)
F could be parametrically or nonparametrically
specified.
Simple model dealt with in Peña, Strawderman and
Hollander (JASA, 01); nonparametric estimation of F .
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Nonparametric Estimation of F

N(t) =
n
∑

i=1

Ki
∑

j=1

I{Tij ≤ t}

Y (t) =
n
∑

i=1







Ki
∑

j=1

I{Tij ≥ t}+ I{τi − SiKi
≥ t}







GNAE : Λ̂(t) =

∫ t

0

dN(w)

Y (w)

GPLE : ˆ̄F (t) =
t
∏

0

[

1− dN(w)

Y (w)

]
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Main Asymptotic Result
kth Convolution: F ?(k)(t) = Pr{

k
∑

j=1

Tj ≤ t}

Renewal Function: ρ(t) =
∞
∑

k=1

F ?(k)(t)

ν(t) =
1

Ḡ(t)

∫

∞

t

ρ(w − t)dG(w)

σ2(t) = F̄ (t)2
∫ t

0

dF (w)

F̄ (w)2Ḡ(w)[1 + ν(w)]

Theorem (JASA, 01): √
n( ˆ̄F (t)− F (t))⇒ GP(0, σ2(t))
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Efficiency Gain: Recurrent vs Single Event

Asymptotic relative efficiency of the estimator of F
using recurrences relative to the estimator of F from
a first-event analysis:

ARE(RecuEst:SingEst) =
(
∫ t

0

dF

F̄ 2Ḡ

)(
∫ t

0

dF

F̄ 2Ḡ[1 + ν]

)−1

When F = EXP(θ) and G = EXP(λ), the ARE
expression reduces to:

ARE(RecuEst:SingEst) = 1 +
θ

λ
= 1 +

E(τ)

E(T )

Gain in efficiency is, in hindsight, somewhat intuitive!
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Extending KG Model: Recurrent Setting

Wanted a tractable model with monitoring time
informative about F .
Potential for a refined analysis of efficiency gains or
losses.
Idea: Why not simply build or generalize the KG
model for the RCM.
Generalized KG model for Recurrent Events:

∃β ≥ 0, Ḡ(t) = F̄ (t)β

with β unknown, and where F is the common
inter-event distribution.
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In light of this GKG model we ask ...

What is the degree of efficiency loss when the
informative monitoring model structure is ignored?
How much is the penalty when using a Single-event
analysis relative to Recurrent-event analysis.
In a study is it better to increase the number of
subjects with the monitoring time distribution
remaining the same, or is it better to lengthen the
monitoring times but fixing the number of subjects?
If one uses the nonparametric estimator in PSH (01),
how does it compare to the estimator that exploits
the informative monitoring structure?
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Ignoring Informative Monitoring
If GKG model holds, could only do better exploiting
informative monitoring.
When F = EXP(θ), no lose of efficiency by ignoring
the generalized KG structure!
In this case, estimators of θ concide:

θ̂ = θ̃ =

∑n
i=1 Ki

∑n
i=1 τi

the occurrence-exposure rate.
Other F leads to loss when informative monitoring is
ignored.
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Single versus Recurrent Analyses
θ̌: estimator based only on, possibly right-censored,
first event time. Single-Event Analysis
θ̂: estimator derived under GKG and uses the event
recurrences. Recurrent-Event Analysis
General result is θ̂ is never inefficient compared to θ̌.
When F = EXP(θ),

∆ARE(θ̂ : θ̌) =
1

β

Interpretations & Implications.
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Simulated Efficiencies: Two-Parameter Weibull

n θ1 θ2 β MeanEvs Eff(θ̂ : θ̃) Eff(θ̂ : θ̌)

20 0.9 1 0.3 3.89 1.26 37.62
20 0.9 1 0.5 2.25 1.47 17.12
20 0.9 1 0.7 1.57 1.72 9.88
20 1.0 1 0.3 3.34 1.25 30.24
20 1.0 1 0.5 2.01 1.51 12.62
20 1.0 1 0.7 1.43 1.82 8.69
20 1.5 1 0.3 1.98 1.54 11.11
20 1.5 1 0.5 1.34 1.90 6.83
20 1.5 1 0.7 1.02 2.12 4.38
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Nonparametric Estimator in PSH
Parametric Model:

F ∈ F = {F (·; θ) : θ ∈ Θ}

ˆ̄F (t) is the parametric-based estimator exploiting
informative monitoring.
˜̄F (t) is the nonparametric estimator from PSH (01). It
does not exploit informative monitoring.
When F̄ (t; θ) = exp(−θt), an exact expression of ARE
is obtained:

ARE(F̃ : F̂ ) =
[(1 + β)t]2

exp[(1 + β)t]− 1
=

p(t; β)

1− p(t; β)
[− log p(t; β))]2
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Efficiency Plot: Under F = EXP(θ)

Plot of ARE(F̃ : F̂ ) as function of p(t; β) = Pr(T1 ∧ τ > t).
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Simulation Results: Two-Parameter Weibull
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Concluding Remarks
Single-event and recurrent-event analysis reviewed,
together with informative censoring models.
KG model for the random censorship model revisited,
and then extended to the recurrent event setting.
Efficiency gains and losses examined when using
single-event analysis and when informative
monitoring structure is ignored.
Behooves to gather recurrent event data, if feasible.
Significant gain in efficiency could be achieved.
Gain in efficiency translates to better decision
making, especially in health-related matters.
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