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T he Problem

e [1.,1n,..., Ty are IID rvs from an unknown
discrete distribution F.

e I’ has support A = {aq,an,...} with q; <
(l-i__l_]_,_?: — ]_ 2 c e

e [;'s are not completely observed, but only
the random vectors

(Z1,01),(Z2,02),...,(Zn,on)
are observed with the interpretation:

521 =1 = Tz'_ = Zi;

0, =0=1;, > 7.



o Let \; = \;(F),7 = 1,2,... be the hazard
of 1" at a;, sO

AF(aj)

\j=P(I'=aj|T > a) = — @y

e Assumption: Independent censoring condi-
tion:

P{T = a.j|T > a.j} =\
= P{T'=qaj|Z >a;},j=1,2,....



e General problem is to determine if F' € Fq,
a class of discrete distributions parameter-
ized by a g-dimensional vector n taking val-
ues in [ C RY.

e et Cy be the class of hazard functions as-
sociated with Fg so

Co={No(:In) ineTl};

the functional form of Ag(:|n) being known.



° The specuﬂc comp05|te GOF problem con-

SR IR Tarcis 1

hypotheses
) c Co Hp - /\(
) ¢ Co Hy : A(
Jjht-censored data on the basis of the ric
l,_ 2,_ e ee g TL. (Zi: 5@_),_ 1=

e Note that in the composite GOF problem,
the parameter vector »n IS a nuisance pa-
rameter.



- Relevance and mporz-ance

e Discrete failure times manifest in a variety
of fields.

e Limitations in measurement proccess; na-
ture of failure time (e.g., in cycles); quan-
tum theory.

e O reminisce about D. Basu: ‘Everything
IS discretel’



e Right-censoring is prevalent in reliability and
engineering applications, medical and pub-
lic health situations, in economic settings,
and in other areas.

e Desirable to know the parametric family of
distributions or hazards to which F or A

belongs.

e Such knowledge enables the use of more
efficient inferential methods such as in es-
timating important parameters or perform-
INg group comparisons.



Hazard Embeddings
and Likelihoods

o Let A\9(n),j =1,2,... be the hazards asso-
ciated with Ag(:n).

e Following Pefia (2002), for X\; < 1 and
Ai(n) < 1, let the hazard odds be

A9(n)
and  p%(n) = - .
1 — Aj / 1-— )\9(77)




e For a fixed smoothing order p € Z, and for
the px1lvectors W, =W, (n),j =1,2,....J,
we embed p?(r]) mto the hazard odds de-

termined by

pi(0.1) = p3 (1) exp {6 ;(n)}.

e [ his is equivalent to postulating that the
logarithm of the hazard odds ratio is linear

in w;(n), that is,

l0g {pjj?r]];)} = Qt\IJj(-r]),j =1,2,....




e Within this embedding, the partial likeli-
hood of (0.n) based on the observation pe-
riod (—oo,ay] for some fixed J e Z4 is

J p; (9 T]) o

L(0,n) = J_ll [1 4 p,;(0, DI

ZI{Z = aj, 6, =1}

n
— Z I{Z; > aj}.

=1



e Furthermore, within this hazard odds em-
bedding, the composite GOF problem sim-
plifies to testing

Hog:0=0,nel vs. H1:0%=0necl.

e Estimated score statistic:

Up(0,77) = Vg log L(0, )|y—q =7

n = 7(0 = 0) is the restricted partial likeli-
hood MLE (RPLMLE).
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Restricted Partial
Likelihood MLE

e 7 is the 7 that maximizes the restricted
partial likelihood function

J _ _
Lo() = T[] OmIOiNL - X0(m)] 0

Valo(n) = j—1 A;j(mI[0;—E9(n)]
V-'r] )\? ( Ui )
A9(m)[1 — A9(n)]

“dynamic expected freq.” “standardized gradients”

B9 = RAY(m);  Ay(n) =
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e Form the J x ¢ matrix of standardized gra-
dients

0O = (01,02,...,0_])1:;
EO() = (EQ(m). ESM).....E9(m))".

e Matrix form: V,lo(n) = A(n)t {O - EO(””

e Estimating equation for the RPLMLE 7j:
A(n)t {O — EO('T])} = 0.
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Asymptotics and Test

e With ¥(n) =[¥1(n),¥a(n),..., \I’J(n)]t, the

score function for 0 at 6 = 0 IS

Ug(0 =0,7) = ()0 —E°(n)].

e Estimated Score Function:

Uy =Uy(h =0,7) = TGO — E°(H)].

e Needed: Asymptotic distribution of Us,.
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e Entails obtaining the asymptotic distribu-
tion of the (p + ¢q) x 1 vector of scores:

W (n)t

A(T])t [O — EO(T])]

Un) =

e Needed notations:

D(n) =Dg (A (ML —\m]:i=1,....J)

A(n) = D(n)_IV.,]tA(n)
V(n) =Dg(R)D(n); B(n) =[¥(n), A(n)]

=(n) =Bm'V(n)B®)
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e Proposition 1 Spse Hgy holds with n = ng
and p does not change with n. Under regu,
larity conditions, in particular if, as n — oo,
A(p + q) x (p + q) pos def matrix E(O)(no)

[ i o ]

then
x/lWU(no) = \/lHB(Uo)t[O—EO(Uo)]

2 Ny, (0,29 (o).
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e Corollary 1
1

ﬁwo)t[o ~EOC0)] -% N,(0,29 (n0));

1
W (10)V (n0) T (o) P E1Y (o).

e Result not directly useful since ngy IS un-
known. This however leads to the desired
asymptotic result.
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e Theorem 1 Under Hy and regularity con,
ditions,

1 = = d —~(0
JYO ~ B % Ny (0.2(0m0) ).

where

=, (n0) =

-1
=@ (o) - =2 (o) {ER o)} = (no.
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e Effect of estimating the unknown parame-
ter ng by the RPLMLE 7 is to decrease the
covariance matrix by the term

~1
={200) {2500 | =500

e Substituting the estimator 7 for ng does
not have an effect on the limiting variance
provided Egg)(no) = 0O, which is an orthog-
onality condition between ¥ and A(7g).
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e [JTest Statistic:
> 1t 0/ | [2©0) 1~
2 = | vaio - e} (2]

WL;@@fw—E%%@.

e Test Procedure: An asymptotic a-level
test rejects Hp whenever

a2 2
LS‘.-_) > Xﬁ*;ﬂf

with p* = r(:g({)Q)
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Two Choices of ¥

where 14 = (I{a; € A}, =1,2,...,.J)".
e [T his choice leads to a generalization of

Pearson’s chi-square test. The test statis-
tic for the simple null case is:

P [0e(A;) — EQ(AN]?
% (@l)z-;[ | ‘«)’;O(Az-)( =
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e Another choice, which has proven effective
In the simple null case, is provided by

s ()G

LSRR,

[S7_1(0; — E9)]2

J )
1 RiAS(1 = X9)
This coincides with Hyde’s (77, Bmka)
statistic.

82 (“l r-'"f',? 1 ) =
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Adaptive Choice
of Smoothing Order

e Test requires that the smoothing order p
be fixed.

— Arbitrary.

— Potential of choosing a p that is far from
optimal.

e Repeated testing with different smoothing
orders? Unwise since Type I error rates will
become inflated.

e Imperative and Important! A data-driven
or adaptive approach for determining p.
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e Proposal: Use a modified Schwarz infor-
mation criterion. Modified tOo accommo-
date right-censoring.

e For a given p:

0,eRP; nel

e Modified Schwarz information criterion:

MSIC(p) = log Lyp(p, 1) —
- -
; {Iog(n) + |09(Amax)}

with Amax being the largest eigenvalue of
Ip(gpr ﬁ)
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e Adaptively-chosen smoothing order:

p* = ar max MSIC(p)}.
p'=arg,_max  {MSIC(p)}.

Pmax a pre-specified maximum order e.g.,
10.

e Adaptive Test Procedure: Rejects Hp
whenever
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Simulation Results:
Simple Null

e Simple Null Hypothesis: failure times are
geometrically distributed.

e Simulation studies to determine achieved
levels and powers of the tests with fixed
order (p = 1,2,3,4) and the adaptive test
with Pmax = 10 associated with W,

e Table: presents performance of tests under
25% censoring for n = 100 and .J = 100.
Hypothesized null mean was 30. Based on
1000 replications.
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e Empirical levels and powers (in percents)
of the 5% asymptotic level fixed-order and
adaptive tests for testing the geometric dis-

tribution.

Test | Geo. | Geo. | Neq. | ‘Poly’ | “Trig’

Stat | (Null) | (Alt) | Bin. | Haz Haz
S2 46 |525| 20 | 11.7 | 8.8
,5% 51 | 45.8 | 92.8 | 58.2 | 33.9
Sg 59 | 41.5 | 90.6 | 53.7 | 83.6
S7 7.6 | 40.3 |87.9| 54.3 | 92.1
9§ 6.9 | 54.5|94.2 | 58.4 | 91.5
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Concluding Remarks

A general approach to construct GOF tests
in the presence of right-censored discrete
data.

Approach can be described as ‘functional’
In nature.

Adaptive approach utilizing Schwarz Bayesian
information criterion for determining the
smoothing order.

Simulation studies for simple null case in-
dicates that the adaptive test serve as an

omnibus test.
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