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Some (Recurrent) Events
Submission of a manuscript for publication.
Occurrence of tumor.
Onset of depression.
Patient hospitalization.
Machine/system failure.
Occurrence of a natural disaster.
Non-life insurance claim.
Change in job.
Onset of economic recession.
At least a 200 points decrease in the DJIA.
Marital disagreement.
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Event Times and Distributions
T : the time to the occurrence of an event of interest.
F (t) = Pr{T ≤ t} : the distribution function of T .
S(t) = F̄ (t) = 1− F (t) : survivor/reliability function.
Hazard rate/ probability and Cumulative Hazards:

Cont: λ(t)dt ≈ Pr{T ≤ t+ dt|T ≥ t} = f(t)

S(t−)dt

Disc: λ(tj) = Pr{T = tj |T ≥ tj} =
f(tj)

S(tj−)

Cumulative: Λ(t) =

∫ t

0
λ(w)dw or Λ(t) =

∑

tj≤t

λ(tj)
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Representation/Relationships
0 < t1 < . . . < tM = t,M(t) = max |ti − ti−1| = o(1),

S(t) = Pr{T > t} =
M
∏

i=1

Pr{T > ti|T ≥ ti−1}

≈
M
∏

i=1

[1− {Λ(ti)− Λ(ti−1)}] .

S as a product-integral of Λ: When M(t)→ 0,

S(t) =
∏

w≤t

[1− Λ(dw)]

In general, Λ in terms of F : Λ(t) =
∫ t

0
dF (w)

1−F (w−) .
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Estimation of F and Why?
Most Basic Problem: Given a sample T1, T2, . . . , Tn
from an unknown distribution F , to obtain an
estimator F̂ of F .
Why is it important to know how to estimate F?

Functionals/parameters θ(F ) of F (e.g., mean,
median, variance) can be estimated via θ̂ = θ(F̂ ).
Prediction of time-to-event for new units.
Knowledge of population of units or event times.
For comparing groups, e.g., thru a statistic

Q =

∫

W (t)d
[

F̂1(t)− F̂2(t)
]

where W (t) is some weight function.
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Gastroenterology Data: Aalen and Husebye (’91)
Migratory Motor Complex (MMC) Times for 19 Subjects
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Question: How to estimate the MMC period dist, F?
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Parametric Approach
Unknown df F is assumed to belong to some
parametric family (e.g., exponential, gamma, Weibull)

F = {F (t; θ) : θ ∈ Θ ⊂ <p}
with functional form of F (·; ·) known; θ is unknown.
Based on data t1, t2, . . . , tn, θ is estimated by θ̂, say,
via maximum likelihood (ML). θ̂ maximizes likelihood

L(θ) =
n
∏

i=1

f(ti; θ) =
n
∏

i=1

λ(ti; θ) exp{−Λ(ti; θ)}.

DF F estimated by: F̂pa(t) = F (t; θ̂).
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Parametric Estimation: Asymptotics

When F holds, MLE of θ satisfies

θ̂ ∼ AN
(

θ,
1

n
I(θ)−1

)

;

I(θ) = Var{ ∂
∂θ log f(T1; θ)} = Fisher information.

Therefore, when F holds, by δ-method, with
•

F (t; θ) =
∂

∂θ
F (t; θ)

then

F̂pa(t) ∼ AN
(

F (t; θ),
1

n

•

F (t; θ)′I(θ)−1
•

F (t; θ)

)

.
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Nonparametric Approach
No assumptions are made regarding the family of
distributions to which the unknown df F belongs.
Empirical Distribution Function (EDF):

F̂np(t) =
1

n

n
∑

i=1

I{Ti ≤ t}

F̂np(·) is a nonparametric MLE of F .
Since I{Ti ≤ t}, i = 1, 2, . . . , n, are IID Ber(F (t)), by
Central Limit Theorem,

F̂np(t) ∼ AN

(

F (t),
1

n
F (t)[1− F (t)]

)

.
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An Efficiency Comparison
Assume that family F = {F (t; θ) : θ ∈ Θ} holds. Both
F̂pa and F̂np are asymptotically unbiased.
To compare under F , we take ratio of asymptotic
variances to give the efficiency of parametric
estimator over nonparametric estimator.

Eff(F̂pa(t) : F̂np(t)) =
F (t; θ)[1− F (t; θ)]

•

F (t; θ)′I(θ)−1
•

F (t; θ)
.

When F = {F (t; θ) = 1− exp{−θt} : θ > 0}, then

Eff(F̂pa(t) : F̂np(t)) =
exp{θt} − 1

(θt)2
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Efficiency: Parametric/Nonparametric
Asymptotic efficiency of parametric

versus nonparametric estimators under a correct
negative exponential family model.
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Whither Nonparametrics?
Consider however the case where the negative
exponential family is fitted, but it is actually not the
correct model. Let us suppose that the gamma family
of distributions is the correct model.
Under wrong model, with T̄ = 1

n

∑n
i=1 Ti the sample

mean, the parametric estimator of F is

F̂pa(t) = 1− exp{−t/T̄}.

Under gamma with shape α and scale θ, and since
T̄ ∼ AN(α/θ, α/(nθ2)), by δ-method

F̂pa(t) ∼ AN
(

1− exp

{

−θt
α

}

,
1

n

(θt)2

α3
exp

{

−2(θt)

α

})

.
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Efficiency: Under a Mis-specified Model
Simulated Effi: MSE(Non-Parametric)/MSE(Parametric)

under a mis-specified exponential family model.
True Family of Model: Gamma Family
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MMC Data: Censoring Aspect
For each unit, red mark is the potential termination time.
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Remark: All 19 MMC times completely observed.
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Estimation of F : With Censoring
For ith unit, a right-censoring variable Ci with
C1, C2, . . . , Cn IID df G.
Observables are (Zi, δi), i = 1, 2, . . . , n with
Zi = min{Ti, Ci} and δi = I{Ti ≤ Ci}.
Problem: For observed (Zi, δi)s, to estimate df F or
hazard function Λ of the Tis.
Nonparametric Approaches:

Nonparametric MLE (Kaplan-Meier).
Martingale and method-of-moments.

Pioneers: Kaplan & Meier; Efron; Nelson; Breslow;
Breslow & Crowley; Aalen; Gill.
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Product-Limit Estimator
Counting and At-Risk Processes:

N(t) =
∑n

i=1 I{Zi ≤ t; δi = 1};
Y (t) =

∑n
i=1 I{Zi ≥ t}

Hazard probability estimate at t:

Λ̂(dt) =
∆N(t)

Y (t)
=

# of Observed Failures at t
# at-risk at t

Product-Limit Estimator (PLE):

1− F̂ (t) = Ŝ(t) =
∏

w≤t

[

1− ∆N(t)

Y (t)

]
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Some Properties of PLE
Nonparametric MLE of F (Kaplan-Meier, ’58).
PLE is a step-function which jumps only at observed
failure times.
With censored data, unequal jumps.
Efron (’67): Possesses self-consistency property.
Biased for finite n.
When no censoring and no tied values: ∆N(t(i)) = 1

and Y (t(i)) = n− i+ 1, so

Ŝ(t(i)) =
i
∏

j=1

[

1− 1

n− j + 1

]

= 1− i

n
.
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Stochastic Process Approach
A martingale M is a zero-mean process which
models a fair game. With Ht = history up to t:

E{M(s+ t)|Ht} =M(t).

M(t) = N(t)−
∫ t

0 Y (w)Λ(dw) is a martingale, so with
J(t) = I{Y (t) > 0} and stochastic integration,

E

{
∫ t

0

J(w)

Y (w)
dN(w)

}

= E

{
∫ t

0
J(w)Λ(dw)

}

.

Nelson-Aalen estimator of Λ, and PLE:

Λ̂(t) =

∫ t

0

dN(w)

Y (w)
, so Ŝ(t) =

∏

w≤t

[1− Λ̂(dw)].

Modeling and Non- and Semi-Parametric Inference with Recurrent Event Data – p.17



Likelihood Process: Hazard-Based

J. Jacod’s likelihood:

Lt(Λ(·)) =
∏

w≤t

[Y (w)Λ(dw)]N(dw) [1− Y (w)Λ(dw)]1−N(dw) .

When Λ(·) is continuous,

Lt(Λ(·)) =







∏

w≤t

[Y (w)Λ(dw)]N(dw)







e−
R t

0
Y (w)Λ(dw).

With T (t) =
∫ t

0 Y (w)dw = TTOT(t), for λ(t) = θ,

Lt(θ) = θN(t) exp{−θT (t)}.
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Asymptotic Properties

NAE: √n[Λ̂(t)− Λ(t)]⇒ Z1(t) with {Z1(t) : t ≥ 0} a
zero-mean Gaussian process with

d1(t) = Var(Z1(t)) =
∫ t

0

Λ(dw)

S(w)Ḡ(w−) .

PLE: √n[F̂ (t)− F (t)]⇒ Z2(t)
st
= S(t)Z1(t) so

d2(t) = Var(Z2(t)) = S(t)2
∫ t

0

Λ(dw)

S(w)Ḡ(w−) .

If Ḡ(w) ≡ 1 (no censoring), d2(t) = F (t)S(t)!
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Regression Models
Covariates: temperature, degree of usage, stress
level, age, blood pressure, race, etc.
How to account of covariates to improve knowledge
of time-to-event.

Modelling approaches:
Log-linear models:

log(T ) = β′x + σε.

The accelerated failure-time model. Error
distribution to use? Normal errors not appropriate.
Hazard-based models: Cox proportional hazards
(PH) model; Aalen’s additive hazards model.
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Cox (’72) PH Model: Single Event

Conditional on x, hazard rate of T is:

λ(t|x) = λ0(t) exp{β′x}.

β̂ maximizes partial likelihood function of β:

LP (β) ≡
n
∏

i=1

∏

t<∞

[

exp(β′xi)
∑n

j=1 Yj(t) exp(β
′xj)

]∆Ni(t)

.

Aalen-Breslow semiparametric estimator of Λ0(·):

Λ̂0(t) =

∫ t

0

∑n
i=1 dNi(w)

∑n
i=1 Yi(w) exp(β̂

′xi)
.
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MMC Data: Recurrent Aspect
Aalen and Husebye (’91) Full Data
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Problem: Estimate inter-event time distribution.
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Recurrent Events: In Complex Systems

A Reliability Bridge Structure
φ(x1, x2, x3, x4, x5) = x1x3x5 ∨ x2x3x4 ∨ x1x4 ∨ x2x5
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System’s Dynamic Evolution
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Points to Ponder in Modeling
System fails under certain component failure
configurations (called cut sets).
Recurrent event of interest are the successive
component failure occurrences.
Component failures dynamically change effective
structure function. Originally a bridge system; then
after #2 fails, it is a series-parallel system; then after
#2 and #4 fail, it is a series system.
Component failures change component loads
(essence of load-sharing system).
System failure time may right-censor some
component failure times.
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Representation: One Subject
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Observables: One Subject
X(s) = covariate vector, possibly time-dependent
T1, T2, T3, . . . = inter-event or gap times
S1, S2, S3, . . . = calendar times of event occurrences
τ = end of observation period: Assume τ ∼ G

K = max{k : Sk ≤ τ} = number of events in [0, τ ]

Z = unobserved frailty variable
N †(s) = number of events in [0, s]

Y †(s) = I{τ ≥ s} = at-risk indicator at time s
F
† = {F†s : s ≥ 0} = filtration: information that

includes interventions, covariates, etc.
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Aspect of Sum-Quota Accrual
Remark: A unique feature of recurrent event modeling is
the sum-quota constraint that arises due to a fixed or
random observation window. Failure to recognize this in
the statistical analysis leads to erroneous conclusions.

K = max







k :
k
∑

j=1

Tj ≤ τ







(T1, T2, . . . , TK) satisfies
K
∑

j=1

Tj ≤ τ <
K+1
∑

j=1

Tj .
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Recurrent Event Models: IID Case

Parametric Models:
HPP: Ti1, Ti2, Ti3, . . . IID EXP(λ).
IID Renewal Model: Ti1, Ti2, Ti3, . . . IID F where

F ∈ F = {F (·; θ) : θ ∈ Θ ⊂ <p};

e.g., Weibull family; gamma family; etc.
Non-Parametric Model: Ti1, Ti2, Ti3, . . . IID F which is
some df.
With Frailty: For each unit i, there is an unobservable
Zi from some distribution H(·; ξ) and (Ti1, Ti2, Ti3, . . .),
given Zi, are IID with survivor function

[1− F (t)]Zi .
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A General Class of Full Models

Peña and Hollander (2004) model.

N †(s) = A†(s|Z) +M †(s|Z)

M †(s|Z) ∈M2
0 = sq-int martingales

A†(s|Z) =
∫ s

0
Y †(w)λ(w|Z)dw

Intensity Process:

λ(s|Z) = Z λ0[E(s)] ρ[N †(s−);α]ψ[βtX(s)]
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Effective Age Process: E(s)
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Effective Age Process, E(s)

PERFECT Intervention: E(s) = s− SN†(s−).
IMPERFECT Intervention: E(s) = s.
MINIMAL Intervention (BP ’83; BBS ’85):

E(s) = s− SΓη(s−)

where, with I1, I2, . . . IID BER(p),

η(s) =

N†(s)
∑

i=1

Ii and Γk = min{j > Γk−1 : Ij = 1}.
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Semi-Parametric Estimation: No Frailty

Observed Data for n Subjects:

{(Xi(s), N
†
i (s), Y

†
i (s), Ei(s)) : 0 ≤ s ≤ s∗}, i = 1, . . . , n

N †i (s) = # of events in [0, s] for ith unit

Y †i (s) = at-risk indicator at s for ith unit
with the model for the ‘signal’ being

A†i (s) =

∫ s

0
Y †i (v) ρ[N

†
i (v−);α]ψ[βtXi(v)]λ0[Ei(v)]dv

where λ0(·) is an unspecified baseline hazard rate
function.
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Processes and Notations
Calendar/Gap Time Processes:

Ni(s, t) =

∫ s

0
I{Ei(v) ≤ t}N †i (dv)

Ai(s, t) =

∫ s

0
I{Ei(v) ≤ t}A†i (dv)

Notational Reductions:

Eij−1(v) ≡ Ei(v)I(Sij−1,Sij ](v)I{Y
†
i (v) > 0}

ϕij−1(w|α, β) ≡
ρ(j − 1;α)ψ{βtXi[E−1ij−1(w)]}

E ′ij−1[E−1ij−1(w)]

Modeling and Non- and Semi-Parametric Inference with Recurrent Event Data – p.34



Generalized At-Risk Process
Yi(s, w|α, β) ≡
∑N

†
i (s−)

j=1 I(Eij−1(Sij−1), Eij−1(Sij)](w) ϕij−1(w|α, β)+
I(E

iN
†
i
(s−)

(S
iN

†
i
(s−)

), E
iN

†
i
(s−)

((s∧τi))](w) ϕiN
†
i (s−)

(w|α, β)

For IID Renewal Model (PSH, 01) this simplifies to:

Yi(s, w) =

N
†
i (s−)
∑

j=1

I{Tij ≥ w}+ I{(s ∧ τi)− S
iN

†
i (s−)

≥ w}
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Estimation of Λ0

Ai(s, t|α, β) =
∫ t

0
Yi(s, w|α, β)Λ0(dw)

S0(s, t|α, β) =
n
∑

i=1

Yi(s, t|α, β)

J(s, t|α, β) = I{S0(s, t|α, β) > 0}

Generalized Nelson-Aalen ‘Estimator’:

Λ̂0(s, t|α, β) =
∫ t

0

{

J(s, w|α, β)
S0(s, w|α, β)

}

{

n
∑

i=1

Ni(s, dw)

}
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Estimation of α and β

Partial Likelihood (PL) Process:

LP (s
∗|α, β) =

n
∏

i=1

N
†
i (s

∗)
∏

j=1

[

ρ(j − 1;α)ψ[βtXi(Sij)]

S0[s∗, Ei(Sij)|α, β]

]∆N
†
i (Sij)

PL-MLE: α̂ and β̂ are maximizers of the mapping

(α, β) 7→ LP (s
∗|α, β)

Iterative procedures. Implemented in an R package
called gcmrec (Gonzaléz, Slate, Peña ’04).
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Estimation of F̄0

G-NAE of Λ0(·): Λ̂0(s
∗, t) ≡ Λ̂0(s

∗, t|α̂, β̂)
G-PLE of F̄0(t):

ˆ̄F 0(s
∗, t) =

t
∏

w=0

[

1−
∑n

i=1Ni(s
∗, dw)

S0(s∗, w|α̂, β̂)

]

For IID renewal model with Ei(s) = s− S
iN

†
i (s−)

,
ρ(k;α) = 1, and ψ(w) = 1, the estimator in PSH
(2001) obtains.

Modeling and Non- and Semi-Parametric Inference with Recurrent Event Data – p.38



Sum-Quota Effect: IID Renewal

Generalized product-limit estimator F̂ of common
gap-time df F presented in PSH (2001, JASA).

√
n( ˆ̄F (·)− F̄ (·)) =⇒ GP(0, σ2(·))

σ2(t) = F̄ (t)2
∫ t

0

dΛ(w)

F̄ (w)Ḡ(w−) [1 + ν(w)]

ν(w) =
1

Ḡ(w−)

∫ ∞

w

ρ∗(v − w)dG(v)

ρ∗(·) =
∞
∑

j=1

F ?j(·) = renewal function
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Semi-Parametric Estimation: With Frailty

Recall the intensity rate:

λi(s|Zi,Xi) = Zi λ0[Ei(s)] ρ[N †i (s−);α]ψ(βtXi(s))

Frailties Z1, Z2, . . . , Zn are unobserved and assumed
to be IID Gamma(ξ, ξ)
Unknown parameters: (ξ, α, β, λ0(·))
Use of the EM algorithm (Dempster, et al; Nielsen, et
al), with frailties as missing observations.
Estimator of baseline hazard function under no-frailty
model plays an important role.
Details in Peña, Slate & Gonzalez (JSPI, 2007).
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First Application: MMC Data Set

Aalen and Husebye (1991) Data
Estimates of distribution of MMC period

Migrating Moto Complex (MMC) Time, in minutes
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Second Application: Bladder Data Set
Bladder cancer data pertaining to times to recurrence for
n = 85 subjects studied in Wei, Lin and Weissfeld (’89).
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Results and Comparisons

Estimates from Different Methods for Bladder Data
Cova Para AG WLW PWP General Model

Marginal Cond*nal Perfecta Minimalb

logN(t−) α - - - .98 (.07) .79
Frailty ξ - - - ∞ .97

rx β1 -.47 (.20) -.58 (.20) -.33 (.21) -.32 (.21) -.57
Size β2 -.04 (.07) -.05 (.07) -.01 (.07) -.02 (.07) -.03

Number β3 .18 (.05) .21 (.05) .12 (.05) .14 (.05) .22

aEffective Age is backward recurrence time (E(s) = s− SN†(s−)).
bEffective Age is calendar time (E(s) = s).
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On Asymptotic Properties
Asymptotics under the no-frailty models.
Difficulty: Λ0(·) has E(s) as argument in the model;
whereas, interest is usually on Λ0(t).
No martingale structure in gap-time axis. MCLT not
directly applicable.
Under regularity conditions: consistency and joint
weak convergence to Gaussian processes of
standardized (α̂, β̂) and Λ̂0(s

∗, ·).
Results extend those in Andersen and Gill (AoS 82)
regarding Cox PHM, though proofs different.
Research on the asymptotics for the model with
frailty in progress.
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Asymptotics: Master Theorem
{Hi} a sequence defined on [0, s∗]× [0, t∗].
Mi(s, t) =

∫ s

0 I{Ei(v) ≤ t}M †
i (dv).

Yi(s, t) - generalized at-risk process.
Under some regularity conditions, and if

1

n

n
∑

i=1

H
⊗2
i (s∗, ·)Yi(s∗, ·)

upr−→ v(s∗, ·),

then, with Σ(s∗, t) =
∫ t

0 v(s∗, w)Λ0(dw),

1√
n

n
∑

i=1

∫ ·

0
Hi(s

∗, w)Mi(s
∗, dw) =⇒ GP(0,Σ(s∗, ·)).
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Relevant Empirical Measures
Simplified model (one unit):

Pr{dN †i (v) = 1|Fs−} = Y †i (v)λ0[Ei(v)]Ξi(v; η)dv.

Conditional PM Q(s∗, w; η) on {1, 2, . . . , N †(s∗−) + 1}:

Q({j}; s∗, w; η) = ϕj−1(w; η)I{E(Sj−1) < w ≤ E(Sj)}
Y (s∗, w)

with SN†(s∗−)+1 = min(s∗, τ).
Conditional PM P (s∗, w; η) on {1, 2, . . . , n}:

P ({i}; s∗, w; η) = Yi(s
∗, w; η)

nPY (s∗, w; η)
.
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Empirical Means & Variances

Pf(D) =
1

n

n
∑

i=1

f(Di)

EQ(s∗,w;η)g(J) =

N†(s∗−)+1
∑

j=1

g(j)Q({j}; s∗, w; η)

VQ(s∗,w;η)g(J) = EQ(s∗,w;η)[g
2(J)]− (EQ(s∗,w;η)g(J))

2

EP (s∗,w;η)g(I) =
n
∑

i=1

g(i)P ({i}; s∗, w; η)

VP (s∗,w;η)g(I) = EQ(s∗,w;η)[g
2(I)]− (EQ(s∗,w;η)g(I))

2
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Relevant Limit Functions
s0(s

∗, w; η,Λ0) = plim PY (s∗, w; η).
Partial Likelihood Information Limit:

Ip(s∗, t; η,Λ0) = plim
∫ t

0

{[

EP (s∗,w;η)VQ(s∗,w;η)

(

∇η log ΞI(E−1IJ−1(w); η)
)

+

VP (s∗,w;η)EQ(s∗,w;η)

(

∇η log ΞI(E−1IJ−1(w); η)
)]}

×
s0(s

∗, w; η,Λ0) Λ0(dw).

With e(s∗, w; η,Λ0) = plim P∇ηY (s
∗,w;η)

PY (s∗,w;η) , let

A(s∗, t; η,Λ0) =

∫ t

0
e(s∗, w; η,Λ0)Λ0(dw).
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Weak Convergence Results
As n→∞ and under certain regularity conditions:

√
n(η̂(s∗, t∗)− η)⇒ N(0, Ip(s∗, t∗; η,Λ0)−1)

√
n(Λ̂0(s

∗, ·)− Λ0(·))⇒ GP (0,Γ(s∗, ·; η,Λ0))

where the limiting variance function is given by

Γ(s∗, t; η,Λ0) =

∫ t

0

Λ0(dw)

s0(s∗, w; η)

+ A(s∗, t; η,Λ0)Ip(s∗, t∗; η,Λ0)−1A(s∗, t; η,Λ0)t.
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On Marginal Modeling: WLW and PWP

k0 specified (usually the maximum value of the
observed Ks).
Assume a Cox PH-type model for each Sk,
k = 1, . . . , k0.
Counting Processes (k = 1, 2, . . . , k0):

Nk(s) = I{Sk ≤ s;Sk ≤ τ}
At-Risk Processes (k = 1, 2, . . . , k0):

YWLW
k (s) = I{Sk ≥ s; τ ≥ s}

Y PWP
k (s) = I{Sk−1 < s ≤ Sk; τ ≥ s}
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Working Model Specifications

WLW Model

{

Nk(s)−
∫ s

0
YWLW
k (v)λWLW

0k (v) exp{βWLW
k X(v)}dv

}

PWP Model

{

Nk(s)−
∫ s

0
Y PWP
k (v)λPWP

0k (v) exp{βPWP
k X(v)}dv

}

are assumed to be zero-mean martingales (in s).
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Parameter Estimation

See Therneau & Grambsch’s book Modeling Survival
Data: Extending the Cox Model.
β̂WLW
k and β̂PWP

k obtained via partial likelihood (Cox
(72) and Andersen and Gill (82)).
Overall β-estimate:

β̂WLW =
k0
∑

k=1

ĉkβ̂
WLW
k ;

cks being ‘optimal’ weights. See WLW paper.
Λ̂WLW
0k (·) and Λ̂PWP

0k (·): Aalen-Breslow-Nelson type
estimators.
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Two Relevant Questions

Question 1: When one assumes marginal models for
Sks that are of the Cox PH-type, does there exist a
full model that actually induces such PH-type
marginal models?
Answer: YES, by a very nice paper by Nang and Ying
(Biometrika:2001). BUT, the joint model obtained is
rather ‘limited’.
Question 2: If one assumes Cox PH-type marginal
models for the Sks (or Tks), but the true full model
does not induce such PH-type marginal models
[which may usually be the case in practice], what are
the consequences?
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Case of the HPP Model

True Full Model: for a unit with covariate X = x,
events occur according to an HPP model with rate:

λ(t|x) = θ exp(βx).

For this unit, inter-event times Tk, k = 1, 2, . . . are IID
exponential with mean time 1/λ(t|x).
Assume also that X ∼ BER(p) and µτ = E(τ).
Main goal is to infer about the regression coefficient
β which relates the covariate X to the event
occurrences.
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Full Model Analysis
β̂ solves

∑

XiKi
∑

Ki
=

∑

τiXi exp(βXi)
∑

τi exp(βXi)
.

β̂ does not directly depend on the Sijs. Why?
Sufficiency: (Ki, τi)s contain all information on (θ, β).

(Si1, Si2, . . . , SiKi
)|(Ki, τi)

d
= τi(U(1), U(2), . . . , U(Ki)).

Asymptotics:

β̂ ∼ AN

(

β,
1

n

(1− p) + peβ

µτθ[(1− p) + peβ]

)

.
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Some Questions

Under WLW or the PWP: how are βWLW
k and βPWP

k

related to θ and β?
Impact of event position k?
Are we ignoring that Kis are informative? Why not
also a marginal model on the Kis?
Are we violating the Sufficiency Principle?
Results simulation-based: Therneau & Grambsch
book (’01) and Metcalfe & Thompson (SMMR, ’07).
Comment by D. Oakes that PWP estimates less
biased than WLW estimates.
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Properties of β̂WLW
k

Let β̂WLW
k be the partial likelihood MLE of β based

on at-risk process Y WLW
k (v).

Question: Does β̂WLW
k converge to β?

gk(w) = wk−1e−w/Γ(k): standard gamma pdf.
Ḡk(v) =

∫∞

v gk(w)dw: standard gamma survivor
function.
Ḡ(·): survivor function of τ .
E(·): denotes expectation wrt X.
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Limit Value (LV) of β̂WLW
k

Limit Value β∗k = β∗k(θ, β) of β̂WLW
k : solution in β∗ of

∫ ∞

0
E(XθeβXgk(vθe

βX))Ḡ(v)dv =

∫ ∞

0
eWLW
k (v; θ, β, β∗)E(θeβXgk(vθe

βX))Ḡ(v)dv

where

eWLW
k (v; θ, β, β∗) =

E(Xeβ
∗X Ḡk(vθeβX))

E(eβ
∗X Ḡk(vθeβX))

Asymptotic Bias of β̂WLW
k = β∗k − β
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Bias Plots for WLW Estimator
Colors pertain to value of k, the Event Position

k = 1: Black; k = 2: Red; k = 3: Green; k = 4: DarkBlue;
k = 5: LightBlue
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On PWP Estimators

Main Difference Between WLW and PWP:

E(Y WLW
k (v)|X) = Ḡ(v)Ḡk(vθ exp(βX));

E(Y PWP
k (v)|X) = Ḡ(v)

gk(vθ exp(βX))

θ exp(βX)
.

Leads to: uPWP
k (s; θ, β) = 0 for k = 1, 2, . . ..

β̂PWP
k are asymptotically unbiased for β for each k (at

least in this HPP model)!
Theoretical result consistent with observed results
from simulation studies and D. Oakes’ observation.
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Concluding Remarks
Recurrent events prevalent in many scientific areas.
Dynamic models: accommodate unique aspects of
recurrent data.
Inference for dynamic models need to be examined
at a deeper level.
Current limitation: keeping track of effective age.
Current data schemes ignore this.
GOF and residual analysis (Quiton’s dissertation).
General studies on marginal modeling approaches!
Dynamic recurrent event modeling, a challenge and
a fertile research area.
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