Modeling and Non- and Semi-Parametric Inference with Recurrent Event Data

Edsel A. Peña

Department of Statistics University of South Carolina Columbia, SC 29208 Talk at Columbia University November 19, 2007

Some (Recurrent) Events

- Submission of a manuscript for publication.
- Occurrence of tumor.
- Onset of depression.
- Patient hospitalization.
- Machine/system failure.
- Occurrence of a natural disaster.
- Non-life insurance claim.
- Change in job.
- Onset of economic recession.
- At least a 200 points decrease in the DJIA.
- Marital disagreement.

Event Times and Distributions

T : the time to the occurrence of an event of interest.

- $F(t) = \Pr\{T \le t\}$: the distribution function of *T*.
- $S(t) = \overline{F}(t) = 1 F(t)$: survivor/reliability function.
- Hazard rate/ probability and Cumulative Hazards:

Cont:
$$\lambda(t)dt \approx \Pr\{T \le t + dt | T \ge t\} = \frac{f(t)}{S(t-)}dt$$

Disc:
$$\lambda(t_j) = \Pr\{T = t_j | T \ge t_j\} = \frac{f(t_j)}{S(t_j)}$$

Cumulative:
$$\Lambda(t) = \int_0^t \lambda(w) dw$$
 or $\Lambda(t) = \sum_{t_i \le t} \lambda(t_j)$

Representation/Relationships

• $0 < t_1 < \ldots < t_M = t, \mathcal{M}(t) = \max |t_i - t_{i-1}| = o(1),$

$$S(t) = \Pr\{T > t\} = \prod_{i=1}^{M} \Pr\{T > t_i | T \ge t_{i-1}\}$$

$$\approx \prod_{i=1}^{M} \left[1 - \{\Lambda(t_i) - \Lambda(t_{i-1})\}\right].$$

• S as a product-integral of Λ : When $\mathcal{M}(t) \to 0$,

$$S(t) = \prod_{w \le t} \left[1 - \Lambda(dw) \right]$$

• In general, Λ in terms of $F: \Lambda(t) = \int_0^t \frac{dF(w)}{1-F(w-)}$.

Estimation of F and Why?

- Most Basic Problem: Given a sample T_1, T_2, \ldots, T_n from an unknown distribution F, to obtain an estimator \hat{F} of F.
- Why is it important to know how to estimate F?
 - Functionals/parameters $\theta(F)$ of F (e.g., mean, median, variance) can be estimated via $\hat{\theta} = \theta(\hat{F})$.
 - Prediction of time-to-event for new units.
 - Knowledge of population of units or event times.
 - For comparing groups, e.g., thru a statistic

$$Q = \int W(t)d\left[\hat{F}_1(t) - \hat{F}_2(t)\right]$$

where W(t) is some weight function.

Gastroenterology Data: Aalen and Husebye ('91)

Migratory Motor Complex (MMC) Times for 19 Subjects

Question: How to estimate the MMC period dist, F?

Modeling and Non- and Semi-Parametric Inference with Recurrent Event Data – p

Parametric Approach

 Unknown df F is assumed to belong to some parametric family (e.g., exponential, gamma, Weibull)

 $\mathcal{F} = \{ F(t;\theta) : \theta \in \Theta \subset \Re^p \}$

with functional form of $F(\cdot; \cdot)$ known; θ is unknown.

• Based on data t_1, t_2, \ldots, t_n , θ is estimated by $\hat{\theta}$, say, via maximum likelihood (ML). $\hat{\theta}$ maximizes likelihood

$$L(\theta) = \prod_{i=1}^{n} f(t_i; \theta) = \prod_{i=1}^{n} \lambda(t_i; \theta) \exp\{-\Lambda(t_i; \theta)\}.$$

• DF *F* estimated by: $\hat{F}_{pa}(t) = F(t; \hat{\theta})$.

Parametric Estimation: Asymptotics

• When \mathcal{F} holds, MLE of θ satisfies

$$\hat{\theta} \sim \mathsf{AN}\left(\theta, \frac{1}{n}\mathcal{I}(\theta)^{-1}\right);$$

 $\mathcal{I}(\theta) = \operatorname{Var}\left\{\frac{\partial}{\partial \theta} \log f(T_1; \theta)\right\} = \operatorname{Fisher}$ information.

• Therefore, when \mathcal{F} holds, by δ -method, with

$$\overset{\bullet}{F}(t;\theta) = \frac{\partial}{\partial\theta}F(t;\theta)$$

then

$$\hat{F}_{pa}(t) \sim \mathsf{AN}\left(F(t;\theta), \frac{1}{n} \stackrel{\bullet}{F}(t;\theta)'\mathcal{I}(\theta)^{-1} \stackrel{\bullet}{F}(t;\theta)\right).$$

Nonparametric Approach

- No assumptions are made regarding the family of distributions to which the unknown df *F* belongs.
- Empirical Distribution Function (EDF):

$$\hat{F}_{np}(t) = \frac{1}{n} \sum_{i=1}^{n} I\{T_i \le t\}$$

- $\hat{F}_{np}(\cdot)$ is a *nonparametric* MLE of *F*.
- Since $I\{T_i \leq t\}, i = 1, 2, ..., n$, are IID Ber(F(t)), by Central Limit Theorem,

$$\hat{F}_{np}(t) \sim AN\left(F(t), \frac{1}{n}F(t)[1-F(t)]\right).$$

An Efficiency Comparison

- Assume that family $\mathcal{F} = \{F(t; \theta) : \theta \in \Theta\}$ holds. Both \hat{F}_{pa} and \hat{F}_{np} are asymptotically unbiased.
- To compare under *F*, we take ratio of asymptotic variances to give the efficiency of parametric estimator over nonparametric estimator.

$$\mathsf{Eff}(\hat{F}_{pa}(t):\hat{F}_{np}(t)) = \frac{F(t;\theta)[1-F(t;\theta)]}{\overset{\bullet}{F}(t;\theta)'\mathcal{I}(\theta)^{-1}\overset{\bullet}{F}(t;\theta)}.$$

• When $\mathcal{F} = \{F(t; \theta) = 1 - \exp\{-\theta t\} : \theta > 0\}$, then

$$\mathsf{Eff}(\hat{F}_{pa}(t):\hat{F}_{np}(t)) = \frac{\exp\{\theta t\} - 1}{(\theta t)^2}$$

Efficiency: Parametric/Nonparametric

Asymptotic efficiency of parametric versus nonparametric estimators under a *correct* negative exponential family model.

Effi of Para Relative to NonPara in Expo Case

Value of (Theta)(t)

Modeling and Non- and Semi-Parametric Inference with Recurrent Event Data - p.1

Whither Nonparametrics?

- Consider however the case where the negative exponential family is fitted, but it is actually not the correct model. Let us suppose that the gamma family of distributions is the *correct* model.
- Under wrong model, with $\overline{T} = \frac{1}{n} \sum_{i=1}^{n} T_i$ the sample mean, the parametric estimator of *F* is

$$\hat{F}_{pa}(t) = 1 - \exp\{-t/\bar{T}\}.$$

• Under gamma with shape α and scale θ , and since $\overline{T} \sim AN(\alpha/\theta, \alpha/(n\theta^2))$, by δ -method

$$\hat{F}_{pa}(t) \sim \mathsf{AN}\left(1 - \exp\left\{-\frac{\theta t}{\alpha}\right\}, \frac{1}{n}\frac{(\theta t)^2}{\alpha^3}\exp\left\{-\frac{2(\theta t)}{\alpha}\right\}\right).$$

Efficiency: Under a Mis-specified Model Simulated Effi: MSE(Non-Parametric)/MSE(Parametric) under a *mis-specified* exponential family model. *True* Family of Model: Gamma Family

Effi of Para vs NonPara under Misspecified Model

Value of t

MMC Data: Censoring Aspect

For each unit, red mark is the potential termination time.

Remark: All 19 MMC times completely observed.

Estimation of F: With Censoring

- For *i*th unit, a right-censoring variable C_i with C_1, C_2, \ldots, C_n IID df G.
- Observables are $(Z_i, \delta_i), i = 1, 2, ..., n$ with $Z_i = \min\{T_i, C_i\}$ and $\delta_i = I\{T_i \leq C_i\}$.
- Problem: For observed (Z_i, δ_i) s, to estimate df F or hazard function Λ of the T_i s.
- Nonparametric Approaches:
 - Nonparametric MLE (Kaplan-Meier).
 - Martingale and method-of-moments.
- Pioneers: Kaplan & Meier; Efron; Nelson; Breslow; Breslow & Crowley; Aalen; Gill.

Product-Limit Estimator

• Counting and At-Risk Processes:

$$N(t) = \sum_{i=1}^{n} I\{Z_i \le t; \delta_i = 1\};$$

$$Y(t) = \sum_{i=1}^{n} I\{Z_i \ge t\}$$

• Hazard probability estimate at t:

$$\hat{\Lambda}(dt) = \frac{\Delta N(t)}{Y(t)} = \frac{\text{\# of Observed Failures at } t}{\text{\# at-risk at } t}$$

Product-Limit Estimator (PLE):

$$1 - \hat{F}(t) = \hat{S}(t) = \prod_{w \le t} \left[1 - \frac{\Delta N(t)}{Y(t)} \right]$$

Some Properties of PLE

- Nonparametric MLE of *F* (Kaplan-Meier, '58).
- PLE is a step-function which jumps only at observed failure times.
- With censored data, unequal jumps.
- Efron ('67): Possesses self-consistency property.
- Biased for finite *n*.
- When no censoring and no tied values: $\Delta N(t_{(i)}) = 1$ and $Y(t_{(i)}) = n - i + 1$, so

$$\hat{S}(t_{(i)}) = \prod_{j=1}^{i} \left[1 - \frac{1}{n-j+1} \right] = 1 - \frac{i}{n}.$$

Stochastic Process Approach

• A martingale M is a zero-mean process which models a fair game. With \mathcal{H}_t = history up to t:

 $E\{M(s+t)|\mathcal{H}_t\} = M(t).$

• $M(t) = N(t) - \int_0^t Y(w) \Lambda(dw)$ is a martingale, so with $J(t) = I\{Y(t) > 0\}$ and stochastic integration,

$$E\left\{\int_0^t \frac{J(w)}{Y(w)} dN(w)\right\} = E\left\{\int_0^t J(w)\Lambda(dw)\right\}.$$

• Nelson-Aalen estimator of Λ , and PLE:

$$\hat{\Lambda}(t) = \int_0^t \frac{dN(w)}{Y(w)}, \quad \text{so} \quad \hat{S}(t) = \prod_{w \le t} [1 - \hat{\Lambda}(dw)].$$

Likelihood Process: Hazard-Based

J. Jacod's likelihood:

$$L_t(\Lambda(\cdot)) = \prod_{w \le t} \left[Y(w)\Lambda(dw) \right]^{N(dw)} \left[1 - Y(w)\Lambda(dw) \right]^{1-N(dw)}$$

 \bullet When $\Lambda(\cdot)$ is continuous,

$$L_t(\Lambda(\cdot)) = \left\{ \prod_{w \le t} \left[Y(w)\Lambda(dw) \right]^{N(dw)} \right\} e^{-\int_0^t Y(w)\Lambda(dw)}.$$

• With $\mathcal{T}(t) = \int_0^t Y(w) dw = \mathsf{TTOT}(t)$, for $\lambda(t) = \theta$,

$$L_t(\theta) = \theta^{N(t)} \exp\{-\theta \mathcal{T}(t)\}.$$

Asymptotic Properties

• NAE: $\sqrt{n}[\hat{\Lambda}(t) - \Lambda(t)] \Rightarrow Z_1(t)$ with $\{Z_1(t) : t \ge 0\}$ a zero-mean *Gaussian process* with

$$d_1(t) = \operatorname{Var}(Z_1(t)) = \int_0^t \frac{\Lambda(dw)}{S(w)\overline{G}(w-)}.$$

• PLE:
$$\sqrt{n}[\hat{F}(t) - F(t)] \Rightarrow Z_2(t) \stackrel{st}{=} S(t)Z_1(t)$$
 so

$$d_2(t) = \operatorname{Var}(Z_2(t)) = S(t)^2 \int_0^t \frac{\Lambda(dw)}{S(w)\bar{G}(w-)}.$$

• If $\overline{G}(w) \equiv 1$ (no censoring), $d_2(t) = F(t)S(t)!$

Regression Models

- Covariates: temperature, degree of usage, stress level, age, blood pressure, race, etc.
- How to account of covariates to improve knowledge of time-to-event.
- Modelling approaches:
 - Log-linear models:

 $\log(T) = \beta' \mathbf{x} + \sigma \epsilon.$

The accelerated failure-time model. Error distribution to use? Normal errors not appropriate.

 Hazard-based models: Cox proportional hazards (PH) model; Aalen's additive hazards model.

Cox ('72) PH Model: Single Event

• Conditional on \mathbf{x} , hazard rate of T is:

 $\lambda(t|\mathbf{x}) = \lambda_0(t) \exp\{\beta'\mathbf{x}\}.$

• $\hat{\beta}$ maximizes partial likelihood function of β :

$$L_P(\beta) \equiv \prod_{i=1}^n \prod_{t < \infty} \left[\frac{\exp(\beta' \mathbf{x}_i)}{\sum_{j=1}^n Y_j(t) \exp(\beta' \mathbf{x}_j)} \right]^{\Delta N_i(t)}$$

• Aalen-Breslow semiparametric estimator of $\Lambda_0(\cdot)$:

$$\hat{\Lambda}_0(t) = \int_0^t \frac{\sum_{i=1}^n dN_i(w)}{\sum_{i=1}^n Y_i(w) \exp(\hat{\beta}' \mathbf{x}_i)}.$$

MMC Data: Recurrent Aspect

Aalen and Husebye ('91) Full Data

20 0-X 15 Jnit Number ----9 • - - -----ß - - - - • 0 100 200 300 0 400 500 600 700 Calendar Time

MMC Data Set

Problem: Estimate inter-event time distribution.

Recurrent Events: In Complex Systems

A Reliability Bridge Structure

 $\phi(x_1, x_2, x_3, x_4, x_5) = x_1 x_3 x_5 \lor x_2 x_3 x_4 \lor x_1 x_4 \lor x_2 x_5$

System's Dynamic Evolution

After Component 2 Has Failed: Series-Parallel

After Components 2 and 4 Have Failed: Series

Points to Ponder in Modeling

- System fails under certain component failure configurations (called cut sets).
- Recurrent event of interest are the successive component failure occurrences.
- Component failures dynamically change effective structure function. Originally a bridge system; then after #2 fails, it is a series-parallel system; then after #2 and #4 fail, it is a series system.
- Component failures change component loads (essence of load-sharing system).
- System failure time may right-censor some component failure times.

Representation: One Subject

Observables: One Subject

- $\mathbf{X}(s) =$ covariate vector, possibly time-dependent
- $T_1, T_2, T_3, \ldots =$ inter-event or gap times
- S_1, S_2, S_3, \ldots = calendar times of event occurrences
- $\tau = end of observation period: Assume <math>\tau \sim G$
- $K = \max\{k : S_k \le \tau\} =$ number of events in $[0, \tau]$
- Z = unobserved frailty variable
- $N^{\dagger}(s) =$ number of events in [0, s]
- $Y^{\dagger}(s) = I\{\tau \ge s\} =$ at-risk indicator at time s
- $\mathbf{F}^{\dagger} = \{\mathcal{F}_{s}^{\dagger} : s \ge 0\} = \text{filtration: information that includes interventions, covariates, etc.}$

Aspect of Sum-Quota Accrual

Remark: A unique feature of recurrent event modeling is the sum-quota constraint that arises due to a fixed or random observation window. Failure to recognize this in the statistical analysis leads to erroneous conclusions.

$$K = \max\left\{k: \sum_{j=1}^{k} T_j \le \tau\right\}$$

$$(T_1, T_2, \dots, T_K)$$
 satisfies $\sum_{j=1}^K T_j \le \tau < \sum_{j=1}^{K+1} T_j.$

Recurrent Event Models: IID Case

• Parametric Models:

• HPP: $T_{i1}, T_{i2}, T_{i3}, \dots$ IID EXP(λ). • IID Renewal Model: $T_{i1}, T_{i2}, T_{i3}, \dots$ IID F where

 $F \in \mathcal{F} = \{F(\cdot; \theta) : \theta \in \Theta \subset \Re^p\};$

e.g., Weibull family; gamma family; etc.

- Non-Parametric Model: $T_{i1}, T_{i2}, T_{i3}, \dots$ IID *F* which is some df.
- With Frailty: For each unit *i*, there is an *unobservable* Z_i from some distribution $H(\cdot; \xi)$ and $(T_{i1}, T_{i2}, T_{i3}, ...)$, given Z_i , are IID with survivor function

$$[1-F(t)]^{Z_i}.$$

A General Class of Full Models

• Peña and Hollander (2004) model.

 $N^{\dagger}(s) = A^{\dagger}(s|Z) + M^{\dagger}(s|Z)$ $M^{\dagger}(s|Z) \in \mathcal{M}_{0}^{2} = \text{sq-int martingales}$ $A^{\dagger}(s|Z) = \int_{0}^{s} Y^{\dagger}(w)\lambda(w|Z)dw$

Intensity Process:

 $\lambda(s|Z) = Z \,\lambda_0[\mathcal{E}(s)] \,\rho[N^{\dagger}(s-);\alpha] \,\psi[\beta^{t}X(s)]$

Effective Age Process: $\mathcal{E}(s)$

Modeling and Non- and Semi-Parametric Inference with Recurrent Event Data - p.3

Effective Age Process, $\mathcal{E}(s)$

- PERFECT Intervention: $\mathcal{E}(s) = s S_{N^{\dagger}(s-)}$.
- IMPERFECT Intervention: $\mathcal{E}(s) = s$.
- MINIMAL Intervention (BP '83; BBS '85):

$$\mathcal{E}(s) = s - S_{\Gamma_{\eta(s-1)}}$$

where, with I_1, I_2, \ldots IID BER(p),

$$\eta(s) = \sum_{i=1}^{N^{\dagger}(s)} I_i$$
 and $\Gamma_k = \min\{j > \Gamma_{k-1} : I_j = 1\}.$

Semi-Parametric Estimation: No Frailty

Observed Data for *n* Subjects:

$$\{(\mathbf{X}_{i}(s), N_{i}^{\dagger}(s), Y_{i}^{\dagger}(s), \mathcal{E}_{i}(s)): 0 \le s \le s^{*}\}, i = 1, \dots, n$$

 $N_i^{\dagger}(s) = \#$ of events in [0, s] for *i*th unit

 $Y_i^{\dagger}(s) =$ at-risk indicator at s for *i*th unit

with the model for the 'signal' being

$$A_i^{\dagger}(s) = \int_0^s Y_i^{\dagger}(v) \,\rho[N_i^{\dagger}(v-);\alpha] \,\psi[\beta^{t} \mathbf{X}_i(v)] \,\lambda_0[\mathcal{E}_i(v)] dv$$

where $\lambda_0(\cdot)$ is an unspecified baseline hazard rate function.

Processes and Notations

Calendar/Gap Time Processes:

$$N_i(s,t) = \int_0^s I\{\mathcal{E}_i(v) \le t\} N_i^{\dagger}(dv)$$

$$A_i(s,t) = \int_0^s I\{\mathcal{E}_i(v) \le t\} A_i^{\dagger}(dv)$$

Notational Reductions:

$$\mathcal{E}_{ij-1}(v) \equiv \mathcal{E}_i(v) I_{(S_{ij-1}, S_{ij}]}(v) I\{Y_i^{\dagger}(v) > 0\}$$
$$\varphi_{ij-1}(w|\alpha, \beta) \equiv \frac{\rho(j-1; \alpha) \psi\{\beta^{\dagger} \mathbf{X}_i[\mathcal{E}_{ij-1}^{-1}(w)]\}}{\mathcal{E}'_{ij-1}[\mathcal{E}_{ij-1}^{-1}(w)]}$$

Generalized At-Risk Process

$$Y_{i}(s, w | \alpha, \beta) \equiv \sum_{j=1}^{N_{i}^{\dagger}(s-)} I_{(\mathcal{E}_{ij-1}(S_{ij-1}), \mathcal{E}_{ij-1}(S_{ij})]}(w) \varphi_{ij-1}(w | \alpha, \beta) + I_{(\mathcal{E}_{iN_{i}^{\dagger}(s-)}(S_{iN_{i}^{\dagger}(s-)}), \mathcal{E}_{iN_{i}^{\dagger}(s-)}((s \wedge \tau_{i}))]}(w) \varphi_{iN_{i}^{\dagger}(s-)}(w | \alpha, \beta)$$

For IID Renewal Model (PSH, 01) this simplifies to:

$$Y_i(s,w) = \sum_{j=1}^{N_i^{\dagger}(s-)} I\{T_{ij} \ge w\} + I\{(s \land \tau_i) - S_{iN_i^{\dagger}(s-)} \ge w\}$$

Estimation of Λ_0

$$A_i(s,t|\alpha,\beta) = \int_0^t Y_i(s,w|\alpha,\beta)\Lambda_0(dw)$$

$$S_0(s,t|\alpha,\beta) = \sum_{i=1}^n Y_i(s,t|\alpha,\beta)$$

$$J(s,t|\alpha,\beta) = I\{S_0(s,t|\alpha,\beta) > 0\}$$

Generalized Nelson-Aalen 'Estimator':

$$\hat{\Lambda}_0(s,t|\alpha,\beta) = \int_0^t \left\{ \frac{J(s,w|\alpha,\beta)}{S_0(s,w|\alpha,\beta)} \right\} \left\{ \sum_{i=1}^n N_i(s,dw) \right\}$$

Estimation of α and β

Partial Likelihood (PL) Process:

$$L_P(s^*|\alpha,\beta) = \prod_{i=1}^n \prod_{j=1}^{N_i^{\dagger}(s^*)} \left[\frac{\rho(j-1;\alpha)\psi[\beta^{\mathsf{t}}\mathbf{X}_i(S_{ij})]}{S_0[s^*,\mathcal{E}_i(S_{ij})|\alpha,\beta]} \right]^{\Delta N_i^{\dagger}(S_{ij})}$$

• PL-MLE: $\hat{\alpha}$ and $\hat{\beta}$ are maximizers of the mapping

$$(\alpha,\beta) \mapsto L_P(s^*|\alpha,\beta)$$

Iterative procedures. Implemented in an R package called gcmrec (Gonzaléz, Slate, Peña '04).

Estimation of \overline{F}_0

• G-NAE of
$$\Lambda_0(\cdot)$$
: $\hat{\Lambda}_0(s^*,t)\equiv\hat{\Lambda}_0(s^*,t|\hat{lpha},\hat{eta})$

• G-PLE of $\overline{F}_0(t)$:

$$\hat{\bar{F}}_0(s^*, t) = \prod_{w=0}^t \left[1 - \frac{\sum_{i=1}^n N_i(s^*, dw)}{S_0(s^*, w | \hat{\alpha}, \hat{\beta})} \right]$$

• For IID renewal model with $\mathcal{E}_i(s) = s - S_{iN_i^{\dagger}(s-)}$, $\rho(k; \alpha) = 1$, and $\psi(w) = 1$, the estimator in PSH (2001) obtains.

Sum-Quota Effect: IID Renewal

• Generalized product-limit estimator \hat{F} of common gap-time df F presented in PSH (2001, JASA).

$$\sqrt{n}(\hat{\bar{F}}(\cdot) - \bar{F}(\cdot)) \Longrightarrow \mathsf{GP}(0, \sigma^2(\cdot))$$

$$\sigma^2(t) = \bar{F}(t)^2 \int_0^t \frac{d\Lambda(w)}{\bar{F}(w)\bar{G}(w-)\left[1+\nu(w)\right]}$$
$$\nu(w) = \frac{1}{\bar{G}(w-)} \int_w^\infty \rho^*(v-w) dG(v)$$

$$\rho^*(\cdot) = \sum_{j=1}^{\infty} F^{\star j}(\cdot) = \text{renewal function}$$

Semi-Parametric Estimation: With Frailty

• Recall the intensity rate:

 $\lambda_i(s|Z_i, \mathbf{X}_i) = Z_i \,\lambda_0[\mathcal{E}_i(s)] \,\rho[N_i^{\dagger}(s-); \alpha] \,\psi(\beta^{\mathsf{t}} \mathbf{X}_i(s))$

- Frailties Z_1, Z_2, \ldots, Z_n are unobserved and assumed to be IID Gamma(ξ, ξ)
- Unknown parameters: $(\xi, \alpha, \beta, \lambda_0(\cdot))$
- Use of the EM algorithm (Dempster, et al; Nielsen, et al), with frailties as missing observations.
- Estimator of baseline hazard function under no-frailty model plays an important role.
- Details in Peña, Slate & Gonzalez (JSPI, 2007).

First Application: MMC Data Set

Aalen and Husebye (1991) Data Estimates of distribution of MMC period

Migrating Moto Complex (MMC) Time, in minutes

Second Application: Bladder Data Set

Bladder cancer data pertaining to times to recurrence for n = 85 subjects studied in Wei, Lin and Weissfeld ('89).

Calendar Time

Results and Comparisons

Estimates from Different Methods for Bladder Data

Cova	Para	AG	WLW	PWP	General Model	
			Marginal	Cond*nal	Perfect ^a	Minimal ^b
$\log N(t-)$	α	-	-	-	.98 (.07)	.79
Frailty	ξ	-	-	-	∞	.97
rx	eta_1	47 (.20)	58 (.20)	33 (.21)	32 (.21)	57
Size	eta_2	04 (.07)	05 (.07)	01 (.07)	02 (.07)	03
Number	β_3	.18 (.05)	.21 (.05)	.12 (.05)	.14 (.05)	.22

^{*a*}Effective Age is backward recurrence time ($\mathcal{E}(s) = s - S_{N^{\dagger}(s-)}$). ^{*b*}Effective Age is calendar time ($\mathcal{E}(s) = s$).

On Asymptotic Properties

- Asymptotics under the no-frailty models.
- Difficulty: $\Lambda_0(\cdot)$ has $\mathcal{E}(s)$ as argument in the model; whereas, interest is usually on $\Lambda_0(t)$.
- No martingale structure in gap-time axis. MCLT not directly applicable.
- Under regularity conditions: consistency and joint weak convergence to Gaussian processes of standardized $(\hat{\alpha}, \hat{\beta})$ and $\hat{\Lambda}_0(s^*, \cdot)$.
- Results extend those in Andersen and Gill (AoS 82) regarding Cox PHM, though proofs different.
- Research on the asymptotics for the model with frailty in progress.

Asymptotics: Master Theorem

- $\{\mathbf{H}_i\}$ a sequence defined on $[0, s^*] \times [0, t^*]$.
- $M_i(s,t) = \int_0^s I\{\mathcal{E}_i(v) \le t\} M_i^{\dagger}(dv).$
- $Y_i(s,t)$ generalized at-risk process.
- Under some regularity conditions, and if

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{H}_{i}^{\otimes 2}(s^{*},\cdot)Y_{i}(s^{*},\cdot)\xrightarrow{upr}\mathbf{v}(s^{*},\cdot),$$

• then, with $\Sigma(s^*, t) = \int_0^t \mathbf{v}(s^*, w) \Lambda_0(dw)$,

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\int_{0}^{\cdot}\mathbf{H}_{i}(s^{*},w)M_{i}(s^{*},dw) \Longrightarrow \mathbf{GP}(0,\Sigma(s^{*},\cdot)).$$

Relevant Empirical Measures

Simplified model (one unit):

 $\Pr\{dN_i^{\dagger}(v) = 1 | \mathcal{F}_{s-}\} = Y_i^{\dagger}(v)\lambda_0[\mathcal{E}_i(v)]\Xi_i(v;\eta)dv.$

• Conditional PM $Q(s^*, w; \eta)$ on $\{1, 2, \dots, N^{\dagger}(s^*-) + 1\}$:

$$Q(\{j\}; s^*, w; \eta) = \frac{\varphi_{j-1}(w; \eta) I\{\mathcal{E}(S_{j-1}) < w \leq \mathcal{E}(S_j)\}}{Y(s^*, w)}$$

with $S_{N^{\dagger}(s^*-)+1} = \min(s^*, \tau)$.

• Conditional PM $P(s^*, w; \eta)$ on $\{1, 2, ..., n\}$:

$$P(\{i\}; s^*, w; \eta) = \frac{Y_i(s^*, w; \eta)}{n \mathbb{P}Y(s^*, w; \eta)}.$$

Empirical Means & Variances

$$\mathbb{P}f(\mathbf{D}) = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{D}_i)$$
$$\mathbb{E}_{Q(s^*,w;\eta)}g(J) = \sum_{j=1}^{N^{\dagger}(s^*-)+1} g(j)Q(\{j\};s^*,w;\eta)$$

$$\mathbb{V}_{Q(s^*,w;\eta)}g(J) = \mathbb{E}_{Q(s^*,w;\eta)}[g^2(J)] - (\mathbb{E}_{Q(s^*,w;\eta)}g(J))^2$$

$$\mathbb{E}_{P(s^*,w;\eta)}g(I) = \sum_{i=1}^{n} g(i)P(\{i\};s^*,w;\eta)$$

$$\mathbb{V}_{P(s^*,w;\eta)}g(I) = \mathbb{E}_{Q(s^*,w;\eta)}[g^2(I)] - (\mathbb{E}_{Q(s^*,w;\eta)}g(I))^2$$

Relevant Limit Functions

- $s_0(s^*, w; \eta, \Lambda_0) = \operatorname{plim} \mathbb{P}Y(s^*, w; \eta)$.
- Partial Likelihood Information Limit:

$$\mathcal{I}_{p}(s^{*},t;\eta,\Lambda_{0}) = \mathsf{plim}$$

$$\int_{0}^{t} \left\{ \left[\mathbb{E}_{P(s^{*},w;\eta)} \mathbb{V}_{Q(s^{*},w;\eta)} \left(\nabla_{\eta} \log \Xi_{I}(\mathcal{E}_{IJ-1}^{-1}(w);\eta) \right) + \mathbb{V}_{P(s^{*},w;\eta)} \mathbb{E}_{Q(s^{*},w;\eta)} \left(\nabla_{\eta} \log \Xi_{I}(\mathcal{E}_{IJ-1}^{-1}(w);\eta) \right) \right] \right\} \times s_{0}(s^{*},w;\eta,\Lambda_{0}) \Lambda_{0}(dw).$$

• With $\mathbf{e}(s^*, w; \eta, \Lambda_0) = \mathsf{plim} \ \frac{\mathbb{P} \nabla_{\eta} Y(s^*, w; \eta)}{\mathbb{P} Y(s^*, w; \eta)}$, let

$$A(s^*, t; \eta, \Lambda_0) = \int_0^t \mathbf{e}(s^*, w; \eta, \Lambda_0) \Lambda_0(dw).$$

Weak Convergence Results

As $n \to \infty$ and under certain regularity conditions:

$$\sqrt{n}(\hat{\eta}(s^*, t^*) - \eta) \Rightarrow N(0, \mathcal{I}_p(s^*, t^*; \eta, \Lambda_0)^{-1})$$

 $\sqrt{n}(\hat{\Lambda}_0(s^*,\cdot) - \Lambda_0(\cdot)) \Rightarrow GP(0,\Gamma(s^*,\cdot;\eta,\Lambda_0))$

where the limiting variance function is given by

 $\Gamma(s^*, t; \eta, \Lambda_0) = \int_0^t \frac{\Lambda_0(dw)}{s_0(s^*, w; \eta)} + A(s^*, t; \eta, \Lambda_0) \mathcal{I}_p(s^*, t^*; \eta, \Lambda_0)^{-1} A(s^*, t; \eta, \Lambda_0)^{t}.$

On Marginal Modeling: WLW and PWP

- k₀ specified (usually the maximum value of the observed Ks).
- Assume a Cox PH-type model for each S_k , $k = 1, \ldots, k_0$.
- Counting Processes $(k = 1, 2, ..., k_0)$:

$$N_k(s) = I\{S_k \le s; S_k \le \tau\}$$

• At-Risk Processes ($k = 1, 2, \ldots, k_0$):

$$Y_k^{WLW}(s) = I\{S_k \ge s; \tau \ge s\}$$

$$Y_k^{PWP}(s) = I\{S_{k-1} < s \le S_k; \tau \ge s\}$$

Working Model Specifications

WLW Model

$$\left\{N_k(s) - \int_0^s Y_k^{WLW}(v)\lambda_{0k}^{WLW}(v)\exp\{\beta_k^{WLW}X(v)\}dv\right\}$$

• PWP Model

$$\left\{N_k(s) - \int_0^s Y_k^{PWP}(v)\lambda_{0k}^{PWP}(v)\exp\{\beta_k^{PWP}X(v)\}dv\right\}$$

• are *assumed* to be zero-mean martingales (in s).

Parameter Estimation

- See Therneau & Grambsch's book Modeling Survival Data: Extending the Cox Model.
- $\hat{\beta}_{k}^{WLW}$ and $\hat{\beta}_{k}^{PWP}$ obtained via partial likelihood (Cox (72) and Andersen and Gill (82)).
- Overall β-estimate:

$$\hat{\beta}^{WLW} = \sum_{k=1}^{k_0} \hat{c}_k \hat{\beta}_k^{WLW};$$

 c_k s being 'optimal' weights. See WLW paper.

• $\hat{\Lambda}_{0k}^{WLW}(\cdot)$ and $\hat{\Lambda}_{0k}^{PWP}(\cdot)$: Aalen-Breslow-Nelson type estimators.

Two Relevant Questions

Question 1: When one assumes marginal models for S_ks that are of the Cox PH-type, does there exist a full model that actually induces such PH-type marginal models?

Answer: YES, by a very nice paper by Nang and Ying (Biometrika:2001). BUT, the joint model obtained is rather 'limited'.

Question 2: If one assumes Cox PH-type marginal models for the S_ks (or T_ks), but the true full model does not induce such PH-type marginal models [which may usually be the case in practice], what are the consequences?

Case of the HPP Model

• *True Full Model:* for a unit with covariate X = x, events occur according to an HPP model with rate:

 $\lambda(t|x) = \theta \exp(\beta x).$

- For this unit, inter-event times $T_k, k = 1, 2, ...$ are IID exponential with mean time $1/\lambda(t|x)$.
- Assume also that $X \sim BER(p)$ and $\mu_{\tau} = E(\tau)$.
- Main goal is to infer about the regression coefficient
 β which relates the covariate X to the event
 occurrences.

Full Model Analysis

• $\hat{\beta}$ solves

$$\frac{\sum X_i K_i}{\sum K_i} = \frac{\sum \tau_i X_i \exp(\beta X_i)}{\sum \tau_i \exp(\beta X_i)}.$$

- $\hat{\beta}$ does not directly depend on the S_{ij} s. Why?
- Sufficiency: (K_i, τ_i) s contain all information on (θ, β) .

 $(S_{i1}, S_{i2}, \ldots, S_{iK_i})|(K_i, \tau_i) \stackrel{d}{=} \tau_i(U_{(1)}, U_{(2)}, \ldots, U_{(K_i)}).$

• Asymptotics:

$$\hat{\beta} \sim AN\left(\beta, \frac{1}{n} \frac{(1-p) + pe^{\beta}}{\mu_{\tau} \theta[(1-p) + pe^{\beta}]}\right)$$

Some Questions

- Under WLW or the PWP: how are β_k^{WLW} and β_k^{PWP} related to θ and β ?
- Impact of event position k?
- Are we *ignoring* that K_i s are informative? Why not also a marginal model on the K_i s?
- Are we violating the *Sufficiency Principle*?
- Results simulation-based: Therneau & Grambsch book ('01) and Metcalfe & Thompson (SMMR, '07).
- Comment by D. Oakes that PWP estimates *less* biased than WLW estimates.

Properties of $\hat{\beta}_k^{WLW}$

- Let $\hat{\beta}_k^{WLW}$ be the partial likelihood MLE of β based on at-risk process $Y_k^{WLW}(v)$.
- Question: Does $\hat{\beta}_k^{WLW}$ converge to β ?
- $g_k(w) = w^{k-1}e^{-w}/\Gamma(k)$: standard gamma pdf.
- $\bar{\mathcal{G}}_k(v) = \int_v^\infty g_k(w) dw$: standard gamma survivor function.
- $\bar{G}(\cdot)$: survivor function of τ .
- $E(\cdot)$: denotes expectation wrt X.

Limit Value (LV) of $\hat{\beta}_k^{WLW}$

• Limit Value $\beta_k^* = \beta_k^*(\theta, \beta)$ of $\hat{\beta}_k^{WLW}$: solution in β^* of

$$\int_0^\infty E(X\theta e^{\beta X}g_k(v\theta e^{\beta X}))\bar{G}(v)dv =$$

$$\int_0^\infty e_k^{WLW}(v;\theta,\beta,\beta^*) E(\theta e^{\beta X} g_k(v\theta e^{\beta X})) \bar{G}(v) dv$$

where

$$e_k^{WLW}(v;\theta,\beta,\beta^*) = \frac{E(Xe^{\beta^*X}\bar{\mathcal{G}}_k(v\theta e^{\beta X}))}{E(e^{\beta^*X}\bar{\mathcal{G}}_k(v\theta e^{\beta X}))}$$

• Asymptotic Bias of $\hat{\beta}_k^{WLW} = \beta_k^* - \beta$

Bias Plots for WLW Estimator

Colors pertain to value of k, the Event Position k = 1: Black; k = 2: Red; k = 3: Green; k = 4: DarkBlue; k = 5: LightBlue

Theoretical

Simulated

On PWP Estimators

• Main Difference Between WLW and PWP:

$$E(Y_k^{WLW}(v)|X) = \bar{G}(v)\bar{\mathcal{G}}_k(v\theta\exp(\beta X));$$

$$E(Y_k^{PWP}(v)|X) = \bar{G}(v)\frac{g_k(v\theta\exp(\beta X))}{\theta\exp(\beta X)}$$

- Leads to: $u_k^{PWP}(s; \theta, \beta) = 0$ for k = 1, 2, ...
- $\hat{\beta}_k^{PWP}$ are asymptotically unbiased for β for each k (at least in this HPP model)!
- Theoretical result consistent with observed results from simulation studies and D. Oakes' observation.

Concluding Remarks

- Recurrent events prevalent in many scientific areas.
- Dynamic models: accommodate unique aspects of recurrent data.
- Inference for dynamic models need to be examined at a deeper level.
- Current limitation: keeping track of effective age. Current data schemes ignore this.
- GOF and residual analysis (Quiton's dissertation).
- General studies on marginal modeling approaches!
- Dynamic recurrent event modeling, a challenge and a fertile research area.

Acknowledgements

- Thanks to NIH grants that partially support research.
- Thanks to research collaborators: Myles Hollander, Rob Strawderman, Elizabeth Slate, Juan Gonzalez, Russ Stocker, Akim Adekpedjou, and Jonathan Quiton.
- Thanks to current students: Alex McLain, Laura Taylor, Josh Habiger, and Wensong Wu.
- Thanks to all of you!