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Some (Recurrent) Events
Submission of a manuscript for publication.
Occurrence of tumor.
Onset of depression.
Patient hospitalization.
Machine/system failure.
Occurrence of a natural disaster.
Non-life insurance claim.
Change in job.
Onset of economic recession.
At least a 200 points decrease in the DJIA.
Marital disagreement.
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Event Times and Distributions
T : the time to the occurrence of an event of interest.
F (t) = Pr{T ≤ t} : the distribution function of T .
S(t) = F̄ (t) = 1− F (t) : survivor/reliability function.
Hazard rate/ probability and Cumulative Hazards:

Cont: λ(t)dt ≈ Pr{T ≤ t+ dt|T ≥ t} = f(t)

S(t−)dt

Disc: λ(tj) = Pr{T = tj |T ≥ tj} =
f(tj)

S(tj−)

Cumulative: Λ(t) =

∫ t

0
λ(w)dw or Λ(t) =

∑

tj≤t

λ(tj)
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Representation/Relationships
0 < t1 < . . . < tM = t,M(t) = max |ti − ti−1| = o(1),

S(t) = Pr{T > t} =
M
∏

i=1

Pr{T > ti|T ≥ ti−1}

≈
M
∏

i=1

[1− {Λ(ti)− Λ(ti−1)}] .

Identities:
S(t) =

∏

w≤t

[1− Λ(dw)]

Λ(t) =

∫ t

0

dF (w)

1− F (w−)
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Estimating F

A Classic Problem: Given T1, T2, . . . , Tn IID F , obtain
an estimator F̂ of F .
Importance?

θ(F ) of F (e.g., mean, median, variance)
estimated via θ̂ = θ(F̂ ).
Prediction of time-to-event for new units.
Comparing groups, e.g., thru a statistic

Q =

∫

W (t)d
[

F̂1(t)− F̂2(t)
]

where W (t) is some weight function.
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Gastroenterology Data: Aalen and Husebye (’91)
Migratory Motor Complex (MMC) Times for 19 Subjects
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Question: How to estimate the MMC period dist, F?
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Parametric Approach
Assume a Model: F = {F (t; θ) : θ ∈ Θ ⊂ <p}
Given t1, t2, . . . , tn, θ estimated by θ̂ such as ML.
L(θ) =

∏n
i=1 f(ti; θ) =

∏n
i=1 λ(ti; θ) exp{−Λ(ti; θ)}

θ̂ = argmaxθ L(θ)

F̂pa(t) = F (t; θ̂)

I(θ) = Var{ ∂
∂θ log f(T1; θ)}

θ̂ ∼ AN
(

θ, 1nI(θ)−1
)

•

F (t; θ) = ∂
∂θF (t; θ)

F̂pa(t) ∼ AN
(

F (t; θ), 1n
•

F (t; θ)′I(θ)−1
•

F (t; θ)
)
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Nonparametric Approach
No assumptions are made regarding the family of
distributions to which the unknown df F belongs.
Empirical Distribution Function (EDF):

F̂np(t) =
1

n

n
∑

i=1

I{Ti ≤ t}

F̂np(·) is a nonparametric MLE of F .
Since I{Ti ≤ t}, i = 1, 2, . . . , n, are IID Ber(F (t)), by
Central Limit Theorem,

F̂np(t) ∼ AN

(

F (t),
1

n
F (t)[1− F (t)]

)

.
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MMC Data: Censoring Aspect
For each unit, red mark is the potential termination time.
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Remark: All 19 MMC times completely observed.
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Estimation of F : With Censoring
Right-censoring variables: C1, C2, . . . , Cn IID G.
Observables: (Zi, δi), i = 1, 2, . . . , n with
Zi = min{Ti, Ci} and δi = I{Ti ≤ Ci}.
Problem: Given (Zi, δi)s, estimate df F or hazard
function Λ of the Tis.
Nonparametric Approaches:

Nonparametric MLE (Kaplan-Meier).
Martingale and method-of-moments.

Pioneers: Kaplan & Meier; Efron; Nelson; Breslow;
Breslow & Crowley; Aalen; Gill.
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Product-Limit Estimator
Counting and At-Risk Processes:

N(t) =
∑n

i=1 I{Zi ≤ t; δi = 1};
Y (t) =

∑n
i=1 I{Zi ≥ t}

Hazard probability estimate at t:

Λ̂(dt) =
∆N(t)

Y (t)
=

# of Observed Failures at t
# at-risk at t

Product-Limit Estimator (PLE):

1− F̂ (t) = Ŝ(t) =
∏

w≤t

[

1− ∆N(t)

Y (t)

]
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Stochastic Process Approach
A martingale M is a zero-mean process which
models a fair game. With Ht = history up to t:

E{M(s+ t)|Ht} =M(t).

M(t) = N(t)−
∫ t

0 Y (w)Λ(dw) is a martingale, so with
J(t) = I{Y (t) > 0} and stochastic integration,

E

{
∫ t

0

J(w)

Y (w)
dN(w)

}

= E

{
∫ t

0
J(w)Λ(dw)

}

.

Nelson-Aalen estimator of Λ, and PLE:

Λ̂(t) =

∫ t

0

dN(w)

Y (w)
, so Ŝ(t) =

∏

w≤t

[1− Λ̂(dw)].
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Asymptotic Properties

NAE: √n[Λ̂(t)− Λ(t)]⇒ Z1(t) with {Z1(t) : t ≥ 0} a
zero-mean Gaussian process with

d1(t) = Var(Z1(t)) =
∫ t

0

Λ(dw)

S(w)Ḡ(w−) .

PLE: √n[F̂ (t)− F (t)]⇒ Z2(t)
st
= S(t)Z1(t) so

d2(t) = Var(Z2(t)) = S(t)2
∫ t

0

Λ(dw)

S(w)Ḡ(w−) .

If Ḡ(w) ≡ 1 (no censoring), d2(t) = F (t)S(t)!
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Regression Models
Covariates: temperature, degree of usage, stress
level, age, blood pressure, race, etc.
How to account of covariates to improve knowledge
of time-to-event.

Modelling approaches:
Log-linear models:

log(T ) = β′x + σε.

The accelerated failure-time model. Error
distribution to use? Normal errors not appropriate.
Hazard-based models: Cox proportional hazards
(PH) model; Aalen’s additive hazards model.
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Cox (’72) PH Model: Single Event

Conditional on x, hazard rate of T is:

λ(t|x) = λ0(t) exp{β′x}.

β̂ maximizes partial likelihood function of β:

LP (β) ≡
n
∏

i=1

∏

t<∞

[

exp(β′xi)
∑n

j=1 Yj(t) exp(β
′xj)

]∆Ni(t)

.

Aalen-Breslow semiparametric estimator of Λ0(·):

Λ̂0(t) =

∫ t

0

∑n
i=1 dNi(w)

∑n
i=1 Yi(w) exp(β̂

′xi)
.
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MMC Data: Recurrent Aspect
Aalen and Husebye (’91) Full Data
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Problem: Estimate inter-event time distribution.
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Representation: One Subject
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Observables: One Subject
X(s) = covariate vector, possibly time-dependent
T1, T2, T3, . . . = inter-event or gap times
S1, S2, S3, . . . = calendar times of event occurrences
τ = end of observation period: Assume τ ∼ G

K = max{k : Sk ≤ τ} = number of events in [0, τ ]

Z = unobserved frailty variable
N †(s) = number of events in [0, s]

Y †(s) = I{τ ≥ s} = at-risk indicator at time s
F
† = {F†s : s ≥ 0} = filtration: information that

includes interventions, covariates, etc.
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Aspect of Sum-Quota Accrual
Observed Number of Events:

K = max







k :
k
∑

j=1

Tj ≤ τ







Induced Constraint:

(T1, T2, . . . , TK) satisfies
K
∑

j=1

Tj ≤ τ <
K+1
∑

j=1

Tj .

(K,T1, T2, . . . , TK) are all random and dependent, and
K is informative about F .
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Recurrent Event Models: IID Case

Parametric Models:
HPP: Ti1, Ti2, Ti3, . . . IID EXP(λ).
IID Renewal Model: Ti1, Ti2, Ti3, . . . IID F where

F ∈ F = {F (·; θ) : θ ∈ Θ ⊂ <p};

e.g., Weibull family; gamma family; etc.
Non-Parametric Model: Ti1, Ti2, Ti3, . . . IID F which is
some df.
With Frailty: For each unit i, there is an unobservable
Zi from some distribution H(·; ξ) and (Ti1, Ti2, Ti3, . . .),
given Zi, are IID with survivor function

[1− F (t)]Zi .
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A General Class of Full Models

Peña and Hollander (2004) model.

N †(s) = A†(s|Z) +M †(s|Z)

M †(s|Z) ∈M2
0 = sq-int martingales

A†(s|Z) =
∫ s

0
Y †(w)λ(w|Z)dw

Intensity Process:

λ(s|Z) = Z λ0[E(s)] ρ[N †(s−);α]ψ[βtX(s)]
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Effective Age Process: E(s)
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Effective Age Process, E(s)

PERFECT Intervention: E(s) = s− SN†(s−).
IMPERFECT Intervention: E(s) = s.
MINIMAL Intervention (BP ’83; BBS ’85):

E(s) = s− SΓη(s−)

where, with I1, I2, . . . IID BER(p),

η(s) =

N†(s)
∑

i=1

Ii and Γk = min{j > Γk−1 : Ij = 1}.
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Semi-Parametric Estimation: No Frailty

Observed Data for n Subjects:

{(Xi(s), N
†
i (s), Y

†
i (s), Ei(s)) : 0 ≤ s ≤ s∗}, i = 1, . . . , n

N †i (s) = # of events in [0, s] for ith unit

Y †i (s) = at-risk indicator at s for ith unit
with the model for the ‘signal’ being

A†i (s) =

∫ s

0
Y †i (v) ρ[N

†
i (v−);α]ψ[βtXi(v)]λ0[Ei(v)]dv

where λ0(·) is an unspecified baseline hazard rate
function.
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Processes and Notations
Calendar/Gap Time Processes:

Ni(s, t) =

∫ s

0
I{Ei(v) ≤ t}N †i (dv)

Ai(s, t) =

∫ s

0
I{Ei(v) ≤ t}A†i (dv)

Notational Reductions:

Eij−1(v) ≡ Ei(v)I(Sij−1,Sij ](v)I{Y
†
i (v) > 0}

ϕij−1(w|α, β) ≡
ρ(j − 1;α)ψ{βtXi[E−1ij−1(w)]}

E ′ij−1[E−1ij−1(w)]
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Generalized At-Risk Process
Yi(s, w|α, β) ≡
∑N

†
i (s−)

j=1 I(Eij−1(Sij−1), Eij−1(Sij)](w) ϕij−1(w|α, β)+
I(E

iN
†
i
(s−)

(S
iN

†
i
(s−)

), E
iN

†
i
(s−)

((s∧τi))](w) ϕiN
†
i (s−)

(w|α, β)

For IID Renewal Model (PSH, 01) this simplifies to:

Yi(s, w) =

N
†
i (s−)
∑

j=1

I{Tij ≥ w}+ I{(s ∧ τi)− S
iN

†
i (s−)

≥ w}
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Estimation of Λ0

Ai(s, t|α, β) =
∫ t

0
Yi(s, w|α, β)Λ0(dw)

S0(s, t|α, β) =
n
∑

i=1

Yi(s, t|α, β)

J(s, t|α, β) = I{S0(s, t|α, β) > 0}

Generalized Nelson-Aalen ‘Estimator’:

Λ̂0(s, t|α, β) =
∫ t

0

{

J(s, w|α, β)
S0(s, w|α, β)

}

{

n
∑

i=1

Ni(s, dw)

}
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Estimation of α and β

Partial Likelihood (PL) Process:

LP (s
∗|α, β) =

n
∏

i=1

N
†
i (s

∗)
∏

j=1

[

ρ(j − 1;α)ψ[βtXi(Sij)]

S0[s∗, Ei(Sij)|α, β]

]∆N
†
i (Sij)

PL-MLE: α̂ and β̂ are maximizers of the mapping

(α, β) 7→ LP (s
∗|α, β)

Iterative procedures. Implemented in an R package
called gcmrec (Gonzaléz, Slate, Peña ’04).
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Estimation of F̄0

G-NAE of Λ0(·): Λ̂0(s
∗, t) ≡ Λ̂0(s

∗, t|α̂, β̂)
G-PLE of F̄0(t):

ˆ̄F 0(s
∗, t) =

t
∏

w=0

[

1−
∑n

i=1Ni(s
∗, dw)

S0(s∗, w|α̂, β̂)

]

For IID renewal model with Ei(s) = s− S
iN

†
i (s−)

,
ρ(k;α) = 1, and ψ(w) = 1, the generalized
product-limit estimator in PSH (2001, JASA) obtains.
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First Application: MMC Data Set

Aalen and Husebye (1991) Data
Estimates of distribution of MMC period

Migrating Moto Complex (MMC) Time, in minutes
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Second Application: Bladder Data Set
Bladder cancer data pertaining to times to recurrence for
n = 85 subjects studied in Wei, Lin and Weissfeld (’89).
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Results and Comparisons
Estimates from Different Methods for Bladder Data

Cova Para AG WLW PWP General Model
Marginal Cond*nal Perfecta Minimalb

logN(t−) α - - - .98 (.07) .79
Frailty ξ - - - ∞ .97

rx β1 -.47 (.20) -.58 (.20) -.33 (.21) -.32 (.21) -.57
Size β2 -.04 (.07) -.05 (.07) -.01 (.07) -.02 (.07) -.03

Number β3 .18 (.05) .21 (.05) .12 (.05) .14 (.05) .22

aEffective Age is backward recurrence time (E(s) = s− SN†(s−)).
bEffective Age is calendar time (E(s) = s).

Details: Peña, Slate, and Gonzalez (2007). JSPI.
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Sum-Quota Effect: IID Renewal

Generalized product-limit estimator F̂ of common
gap-time df F presented in PSH (2001, JASA).

√
n( ˆ̄F (·)− F̄ (·)) =⇒ GP(0, σ2(·))

σ2(t) = F̄ (t)2
∫ t

0

dΛ(w)

F̄ (w)Ḡ(w−) [1 + ν(w)]

ν(w) =
1

Ḡ(w−)

∫ ∞

w

ρ∗(v − w)dG(v)

ρ∗(·) =
∞
∑

j=1

F ?j(·) = renewal function
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Efficiency: Some Questions

Is it worth using the additional event recurrences in
the analysis? How much do we gain in efficiency?
Impact of G, the distribution of the τis, when G is
related to inter-event time distribution? Loss if this
informative monitoring structure is ignored?
(In)Efficiency of GPLE relative to estimator which
exploits informative monitoring structure?
What is a reasonable informative monitoring model
for examining these questions?
Could we extend similar studies that were performed
for the PLE using the so-called Koziol-Green Model?

Modeling and Analysis of Recurrent Events – p.33



Koziol-Green Model
Koziol & Green (1976); Chen Hollander & Langberg
(1982); Cheng & Lin (1989)
T ∼ F and C ∼ G with T failure time and C right
censoring time.
Assumption: 1−G = (1− F )β for some β ≥ 0.
Z = min(T,C) and δ = I{T ≤ C} are independent;
Z ∼ H̄ = F̄ β+1; δ ∼ Ber(1/(1 + β)); β = censoring
parameter.
CHL: Exact properties of the PLE: mean, variance,
mean-squared error.
CL: Efficiency of PLE relative to estimator that
exploits KG assumption.
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Generalized KG: Recurrent Events
For a unit or subject,
Inter-event times Tjs are IID F ;
End-of-monitoring time τ has distribution G.
Assumption: 1−G = (1− F )β for some β ≥ 0.
Remark: Independence property that allowed exact
derivations in right-censored single-event settings
does not play a role in this recurrent event setting.
Efficiency comparisons performed via asymptotic
analysis and through computer simulations.
Two Cases: (i) F is exponential, and (ii) F is
two-parameter Weibull.
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Ignoring Informative Structure
When F is exponential, so model is HPP.
θ̂n: estimator that exploits informative monitoring.
θ̃n: estimator that ignores informative monitoring.

Efficiency Result: ∆ARE(θ̂n : θ̃n) = 0.
Surprising result!? It turns out that in the exponential
setting, these two estimators are identical.
The estimators are:

θ̂n = θ̃n =

∑n
i=1Ki

∑n
i=1 τi
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Single-Event Analysis
Single-Event Analysis: Only the first, possibly
right-censored, observations are used in the
statistical analysis?
θ̌: depends only on the first event times.

When F is exponential, we have

∆ARE(θ̂n : θ̌n) =
1

β
.

1/β: (approximate) expected number of events per
unit.
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Inefficiency of GPLE

How inefficient is the generalized PLE of F compared
to the parametric estimator that exploits informative
monitoring structure?

F̂n: parametric estimator and exploits informative
structure.

F̃n: generalized PLE in PSH (JASA, 01).
When F is exponential,

ARE(F̃n(t) : F̂n(t)) =
[(1 + β)t]2

exp[(1 + β)t]− 1
, t ≥ 0.
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Efficiency Plot: Exponential F
GPLE (F̃ ) versus Parametric Estimator (F̂ )

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6

p = Prob(min(T,tau) > t)

AR
E(

p)

Modeling and Analysis of Recurrent Events – p.39



Efficiencies: Weibull F

n θ1 θ2 β MeanEvs Eff(θ̂ : θ̃) Eff(θ̂ : θ̌)
50 0.9 1 0.3 3.90 1.26 30.27
50 0.9 1 0.5 2.25 1.41 13.48
50 0.9 1 0.7 1.57 1.66 7.96
50 1.0 1 0.3 3.34 1.30 23.29
50 1.0 1 0.5 2.00 1.53 9.91
50 1.0 1 0.7 1.42 1.71 6.69
50 1.5 1 0.3 1.97 1.49 9.53
50 1.5 1 0.5 1.34 1.75 5.55
50 1.5 1 0.7 1.02 2.11 3.82
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Efficiency Plot: Weibull F
GPLE (F̃ ) versus Parametric Estimator (F̂ )
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On Marginal Modeling: WLW and PWP

k0 specified (usually the maximum value of the
observed Ks).
Assume a Cox PH-type model for each Sk,
k = 1, . . . , k0.
Counting Processes (k = 1, 2, . . . , k0):

Nk(s) = I{Sk ≤ s;Sk ≤ τ}
At-Risk Processes (k = 1, 2, . . . , k0):

YWLW
k (s) = I{Sk ≥ s; τ ≥ s}

Y PWP
k (s) = I{Sk−1 < s ≤ Sk; τ ≥ s}
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Working Model Specifications
WLW Model

{

Nk(s)−
∫ s

0
YWLW
k (v)λWLW

0k (v) exp{βWLW
k X(v)}dv

}

PWP Model

{

Nk(s)−
∫ s

0
Y PWP
k (v)λPWP

0k (v) exp{βPWP
k X(v)}dv

}

are assumed to be zero-mean martingales (in s).
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Parameter Estimation
See Therneau & Grambsch’s book Modeling Survival
Data: Extending the Cox Model.
β̂WLW
k and β̂PWP

k obtained via partial likelihood (Cox
(72) and Andersen and Gill (82)).
Overall β-estimate:

β̂WLW =
k0
∑

k=1

ĉkβ̂
WLW
k ;

cks being ‘optimal’ weights. See WLW paper.
Λ̂WLW
0k (·) and Λ̂PWP

0k (·): Aalen-Breslow-Nelson type
estimators.
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Two Relevant Questions
Question 1: When one assumes marginal models for
Sks that are of the Cox PH-type, does there exist a
full model that actually induces such PH-type
marginal models?
Answer: YES, by a very nice paper by Nang and Ying
(Biometrika:2001). BUT, the joint model obtained is
rather ‘limited’.
Question 2: If one assumes Cox PH-type marginal
models for the Sks (or Tks), but the true full model
does not induce such PH-type marginal models
[which may usually be the case in practice], what are
the consequences?
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Case of the HPP Model
True Full Model: for a unit with covariate X = x,
events occur according to an HPP model with rate:

λ(t|x) = θ exp(βx).

For this unit, inter-event times Tk, k = 1, 2, . . . are IID
exponential with mean time 1/λ(t|x).
Assume also that X ∼ BER(p) and µτ = E(τ).
Main goal is to infer about the regression coefficient
β which relates the covariate X to the event
occurrences.
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Full Model Analysis
β̂ solves

∑

XiKi
∑

Ki
=

∑

τiXi exp(βXi)
∑

τi exp(βXi)
.

β̂ does not directly depend on the Sijs. Why?
Sufficiency: (Ki, τi)s contain all information on (θ, β).

(Si1, Si2, . . . , SiKi
)|(Ki, τi)

d
= τi(U(1), U(2), . . . , U(Ki)).

Asymptotics:

β̂ ∼ AN

(

β,
1

n

(1− p) + peβ

µτθ[(1− p) + peβ]

)

.
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Some Questions

Under WLW or the PWP: how are βWLW
k and βPWP

k

related to θ and β?
Impact of event position k?
Are we ignoring that Kis are informative? Why not
also a marginal model on the Kis?
Are we violating the Sufficiency Principle?
Results simulation-based: Therneau & Grambsch
book (’01) and Metcalfe & Thompson (SMMR, ’07).
Comment by D. Oakes that PWP estimates less
biased than WLW estimates.
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Properties of β̂WLW
k

Let β̂WLW
k be the partial likelihood MLE of β based

on at-risk process Y WLW
k (v).

Question: Does β̂WLW
k converge to β?

gk(w) = wk−1e−w/Γ(k): standard gamma pdf.
Ḡk(v) =

∫∞

v
gk(w)dw: standard gamma survivor

function.
Ḡ(·): survivor function of τ .
E(·): denotes expectation wrt X.
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Limit Value (LV) of β̂WLW
k

Limit Value β∗k = β∗k(θ, β) of β̂WLW
k : solution in β∗ of

∫ ∞

0
E(XθeβXgk(vθe

βX))Ḡ(v)dv =

∫ ∞

0
eWLW
k (v; θ, β, β∗)E(θeβXgk(vθe

βX))Ḡ(v)dv

where

eWLW
k (v; θ, β, β∗) =

E(Xeβ
∗X Ḡk(vθeβX))

E(eβ
∗X Ḡk(vθeβX))

Asymptotic Bias of β̂WLW
k = β∗k − β
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Bias Plots for WLW Estimator
Colors pertain to value of k, the Event Position

k = 1: Black; k = 2: Red; k = 3: Green; k = 4: DarkBlue;
k = 5: LightBlue
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On PWP Estimators
Main Difference Between WLW and PWP:

E(Y WLW
k (v)|X) = Ḡ(v)Ḡk(vθ exp(βX));

E(Y PWP
k (v)|X) = Ḡ(v)

gk(vθ exp(βX))

θ exp(βX)
.

Leads to: uPWP
k (s; θ, β) = 0 for k = 1, 2, . . ..

β̂PWP
k are asymptotically unbiased for β for each k (at

least in this HPP model)!
Theoretical result consistent with observed results
from simulation studies and D. Oakes’ observation.
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Concluding Remarks
Recurrent events prevalent in many areas.
Dynamic models: accommodate unique aspects.
More research in inference for dynamic models.
Current limitation: tracking effective age.
Efficiency gains with recurrences.
Caution: informative aspects of model.
Caution: marginal modeling approaches.
Dynamic recurrent event modeling: challenging and
still fertile!
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