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The Problem

• T1, T2, . . . , Tn are IID rvs from an unknown
discrete distribution F .

• F has support A = {a1, a2, . . .} with ai <
ai+1, i = 1, 2, . . ..

• Ti's are not completely observed, but only
the random vectors

(Z1, δ1), (Z2, δ2), . . . , (Zn, δn)

are observed with the interpretation:

δi = 1 ⇒ Ti = Zi;

δi = 0 ⇒ Ti > Zi.

• Let λj = λj(F ), j = 1, 2, . . . be the hazard
of T at aj, so

λj = P(T = aj|T ≥ aj) =
�F (aj)
�F (aj−)

.



• Assumption: Independent censoring condi-
tion:

P{T = aj|T ≥ aj} = λj

= P{T = aj|Z ≥ aj}, j = 1, 2, . . . .

• General problem: To decide if F ∈ F0, with
F0 = {F0(·; η) : η ∈ �} a class of discrete
distributions with � ⊆ <q.

• Let C0 be the class of hazard functions as-
sociated with F0 so

C0 = {�0(·|η) : η ∈ �};

the functional form of �0(·|η) being known.



• The speci�c composite GOF problem con-
sidered in this talk is to test the composite
hypotheses

H0 : �(·) ∈ C0
H1 : �(·) /∈ C0

on the basis of the right-censored data

(Zi, δi), i = 1, 2, . . . , n.

• Note that in the composite GOF problem,
the parameter vector η is a nuisance pa-
rameter.

• The simple GOF problem is a special case
since it deals with testing

H0 : �(·) = �0(·)
H1 : �(·) 6= �0(·)

with �0(·) a fully speci�ed discrete hazard
function.



Relevance and Importance

• Discrete failure times manifest in a variety
of �elds.

• Limitations in measurement proccess; na-
ture of failure time (e.g., in cycles); quan-
tum theory.

• To reminisce about D. Basu: `Everything
is discrete!'

• Right-censoring is prevalent in reliability and
engineering applications, medical and pub-
lic health situations, in economic settings,
and in other areas.

• Desirable to know the parametric family of
distributions or hazards to which F or �
belongs.



• Such knowledge enables the use of more
e�cient inferential methods such as in es-
timating important parameters or perform-
ing group comparisons.

• Somewhat a surprise that GOF problem
with right-censored discrete data have not
been fully dealt with; only Hyde's (1977)
paper seems to have tackled this problem.

• Pe~na (2002) provides a general approach
for generating a class of tests for the simple
null hypothesis case.



Hazard Embeddings
and Likelihoods

• Let λ0
j (η), j = 1, 2, . . . be the hazards asso-

ciated with �0(·|η).

• Following Pe~na (2002), for λj < 1 and
λj(η) < 1, let the hazard odds be

ρj =
λj

1− λj
and ρ0

j (η) =
λ0

j (η)

1− λ0
j (η)

.

• For a �xed smoothing order p ∈ Z+, and for
the p×1 vectors Ψj = Ψj(η), j = 1, 2, . . . , J,
we embed ρ0

j (η) into the hazard odds de-
termined by

ρj(θ, η) = ρ0
j (η) exp{θtΨj(η)}.



• This is equivalent to postulating that the
logarithm of the hazard odds ratio is linear
in Ψj(η), that is,

log

ρj(θ, η)
ρ0
j (η)

 = θtΨj(η), j = 1, 2, . . . .

• Within this embedding, the partial likeli-
hood of (θ, η) based on the observation pe-
riod (−∞, aJ] for some �xed J ∈ Z+ is

L(θ, η) =
J∏

j=1

ρj(θ, η)Oj

[1 + ρj(θ, η)]Rj

where

Oj =
n∑

i=1
I{Zi = aj, δi = 1};

Rj =
n∑

i=1
I{Zi ≥ aj}.



• Furthermore, within this hazard odds em-
bedding, the composite GOF problem sim-
pli�es to testing

H0 : θ = 0, η ∈ � vs. H1 : θ 6= 0, η ∈ �.

• Estimated score statistic:

Uθ(0, ^̂η) = ∇θ log L(θ, η)|θ=0,η=^̂η;

^̂η = η̂(θ = 0) is the restricted partial likeli-
hood MLE (RPLMLE).



Restricted Partial
Likelihood MLE

• ^̂η is the η that maximizes the restricted
partial likelihood function

L0(η) =
J∏

j=1
[λ0

j (η)]Oj[1− λ0
j (η)]Rj−Oj

∇ηl0(η) = ∇η log L0(η) =

=
J∑

j=1
Aj(η)[Oj − E0

j (η)];

with

E0
j (η) = Rjλ

0
j (η);

Aj(η) =
∇ηλ0

j (η)

λ0
j (η)[1− λ0

j (η)]

are the q × 1 `standardized' gradients of
λ0

j (η).



• Form the J × q matrix of standardized gra-
dients

A(η) = [A1(η),A2(η), . . . ,AJ(η)]t ,

and the J × 1 vectors

O = (O1, O2, . . . , OJ)t ;

E0(η) =
(
E0

1(η), E0
2(η), . . . , E0

J(η)
)t

.

• Matrix form: ∇ηl0(η) = A(η)t
[
O− E0(η)

]
.

• Estimating equation for the RPLMLE ^̂η:

A(η)t [O− E0(η)
]

= 0.

• Example: If C0 = {λ0(t; η) = η}, then

A(η) = 1J/[η(1− η)];

E0(η) = Rη,



so the estimating equation is

{η(1− η)}−11t
J(O−Rη) = 0.

This yields the RPLMLE

^̂η =
1t

JO

1t
JR

=
∑J

j=1 Oj∑J
j=1 Rj

.

• ^̂η will usually be obtained through numeri-
cal methods.



Asymptotics and Test

• With

Ψ(η) = [Ψ1(η),Ψ2(η), . . . ,ΨJ(η)] ,t

the score function for θ at θ = 0 is

Uθ(θ = 0, η) = Ψ(η)t[O− E0(η)].

• Estimated Score Function:

Ûθ = Uθ(θ = 0, ^̂η) = Ψ(^̂η)t[O− E0(^̂η)].

• Needed: Asymptotic distribution of Ûθ.

• Entails obtaining the asymptotic distribu-
tion of the (p + q)× 1 vector of scores:

U(η) =
[

Ψ(η)t

A(η)t

]
[O− E0(η)]



• Needed notations:

D(η) = Dg
(
λj(η)[1− λj(η)]

)
λ(η) = (λ1(η), λ2(η), . . . , λJ(η))t

A(η) = D(η)−1∇ηtλ(η)
V(η) = Dg(R)D(η);
B(η) = [Ψ(η),A(η)]

Ξ(η) = B(η)tV(η)B(η)

• Proposition 1 Spse H0 holds with η = η0
and p does not change with n. Under regu-

larity conditions, in particular if, as n →∞,

∃(p + q) × (p + q) pos def matrix Ξ(0)(η0)
with

1
n
Ξ(η0) pr−→ Ξ(0)(η0),

then

1
√

n
U(η0) =

1
√

n
B(η0)t[O− E0(η0)]

d−→ Np+q(0,Ξ(0)(η0)).



• Corollary 1
1
√

n
Ψ(η0)t[O− E0(η0)] d−→ Np(0,Ξ(0)

11 (η0));

1
n
Ψ(η0)tV(η0)Ψ(η0) pr−→ Ξ(0)

11 (η0).

• Result not directly useful since η0 is un-
known. This however leads to the desired
asymptotic result.

• Theorem 1 Under H0 and regularity con-

ditions,

1
√

n
Ψ(^̂η)t[O−E0(^̂η)] d−→ Np

(
0,Ξ(0)

11.2(η0)
)

,

where

Ξ(0)
11.2(η0) = Ξ(0)

11 (η0)−

Ξ(0)
12 (η0)

{
Ξ0)

22(η0)
}−1

Ξ(0)
21 (η0).



• E�ect of estimating the unknown parame-
ter η0 by the RPLMLE: A decrease of

Ξ(0)
12 (η0)

{
Ξ0)

22(η0)
}−1

Ξ(0)
21 (η0).

• `Adaptiveness:' Occurs if there is orthog-
onality between Ψ and A(η0).

• Test Statistic:

Ŝ2
p =

{
1
√

n
Ψ(^̂η)t[O− E0(^̂η)]

}t {
Ξ̂(0)

11.2

}−
×
{

1
√

n
Ψ(^̂η)t[O− E0(^̂η)]

}
.

• Test Procedure: An asymptotic α-level
test rejects H0 whenever

Ŝ2
p > χ2

p̂∗;α

with p̂∗ = r(Ξ̂(0)
11.2).



Representations via
Projections

• Let

A∗(η) =
√

V(η)A(η);

Ψ∗(η) =
√

V(η)Ψ(η).

• For a full rank J × q (with J > q) matrix X,
let

P (X) = X(XtX)−1Xt

be the projection operator on the linear
subspace L(X) generated by X in <J.

• Denote by

P⊥(X) = I− P (X)

the projection operator on the orthocom-
plement of L(X).



• Then

Ξ̂(0)
11.2 =

1
n
Ψ∗(^̂η)tP⊥(A∗(^̂η))Ψ∗(^̂η).

• De�ne the `standardized' observed and dy-
namic expected frequencies vectors to be

O∗ =
√

V(^̂η)O

E∗(^̂η) =
√

V(^̂η)E0(^̂η)

• The test statistic can be re-expressed via

Ŝ2
p =

[
Ψ∗(^̂η)t[O− E∗(^̂η)]

]t
×{

Ψ∗(^̂η)tP⊥(A∗(^̂η))Ψ∗(^̂η)
}−

×[
Ψ∗(^̂η)t[O− E∗(^̂η)]

]
.

• Corollary 2 If Ψ∗(^̂η) ∈ L(A∗(^̂η))⊥ (orthog-

onality), then

Ŝ2
p =‖ P (Ψ∗(^̂η))[O∗ − E∗(^̂η)] ‖2 .



Local Power

• Asymptotics under a contiguous sequence
of alternatives for local power analysis.

• Theorem 2 For local alternatives H
(n)
1 :

θ(n) = n−
1
2γ(1 + o(1)) for γ ∈ <p,

1
√

n
Ψ(^̂η)t[O− E0(^̂η)] d−→

Np

(
Ξ(0)

11.2(η0)γ,Ξ(0)
11.2(η0)

)
.

• Asymptotic local power:

ALP(γ) = P
{
χ2

p∗(δ2(γ)) > χ2
p∗;α

}
with noncentrality parameter

δ2(γ) = γtΞ(0)
11.2(η0)γ.

• Under orthogonality this becomes

δ2 = γtΞ11(η0)γ.



Two Choices of Ψ

• A1, A2, . . . , Ap a partition of {a1, a2, . . . , aJ}.
De�ne

Ψ1 =
[
1A1, 1A2, . . . , 1Ap

]′
where 1A = (I{aj ∈ A}, j = 1, 2, . . . , J)′.

• This choice leads to a generalization of
Pearson's chi-square test. The test statis-
tic for the simple null case is:

S2
p (Ψ1) =

p∑
i=1

[O•(Ai)− E0
• (Ai)]2

V 0• (Ai)
.



• Another choice, which has proven e�ective
in the simple null case, is provided by

Ψ2 =

(R

n

)0
,

(
R

n

)1
, . . . ,

(
R

n

)p−1′ .

• When p = 1 and in the simple null setting,
the test statistic is

S2(Ψ2) =
[
∑J

j=1(Oj − E0
j )]2∑J

j=1 Rjλ
0
j (1− λ0

j )
.

This coincides with Hyde's ('77, Bmka)
statistic.



Adaptive Choice
of Smoothing Order

• Test requires that the smoothing order p

be �xed.

{ Arbitrary.

{ Potential of choosing a p that is far from
optimal.

• Repeated testing with di�erent smoothing
orders? Unwise since Type I error rates will
become in
ated.

• Imperative and Important! A data-driven
or adaptive approach for determining p.

• Proposal: Use a modi�ed Schwarz infor-
mation criterion. Modi�ed to accommo-
date right-censoring.



• For a given p:

Lp(θ̂p, η̂) = sup
θp∈<p; η∈�

Lp(θp, η).

• Modi�ed Schwarz information criterion:

MSIC(p) = log Lp(θ̂p, η̂)−
p

2

[
log(n) + log(λ̂max)

]
with λ̂max being the largest eigenvalue of
Ip(θ̂p, η̂).

• Adaptively-chosen smoothing order:

p∗ = arg max
1≤p≤Pmax

{MSIC(p)} ,

Pmax a pre-speci�ed maximum order e.g.,
10.

• Adaptive Test Procedure: Rejects H0
whenever

S2
p∗ ≥ χ2

k̂∗;α, with k̂∗ = r(Ξ̂(0)
11.2).



Simulation Results:
Simple Null

• Simple Null Hypothesis: failure times are
geometrically distributed.

• Simulation studies to determine achieved
levels and powers of the tests with �xed
order (p = 1, 2, 3, 4) and the adaptive test
with Pmax = 10 associated with Ψ2.

• Table: presents performance of tests under
25% censoring for n = 100 and J = 100.
Hypothesized null mean was 30. Based on
1000 replications.



• Empirical levels and powers (in percents)
of the 5% asymptotic level �xed-order and
adaptive tests for testing the geometric dis-
tribution.

Test Geo. Geo. Neg. `Poly' `Trig'
Stat (Null) (Alt) Bin. Haz Haz
Ŝ2

1 4.6 52.5 2.0 11.7 8.8
Ŝ2

2 5.1 45.8 92.8 58.2 33.9
Ŝ2

3 5.9 41.5 90.6 53.7 83.6
Ŝ2

4 7.6 40.3 87.9 54.3 92.1
Ŝ2

p∗ 6.9 54.5 94.2 58.4 91.5

• Fixed-order tests good for some alterna-
tives; bad for others! Can qualify as an
omnibus test.

• considered an Akaike information criterion
based procedure, but this turned out to be
very anti-conservative.



Concluding Remarks

• An approach to constructing goodness-of-
�t tests in the presence of right-censored
discrete data.

• Approach can be described as `functional'
in nature.

• Adaptive approach uses Schwarz Bayesian
information criterion for determining the
smoothing order.

• Simulation studies for simple null case in-
dicates that the adaptive test serves as an
omnibus test.

• Many other issues! In progress.


