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T he Problem

T11,T5,...,1Ty are IID rvs from an unknown
discrete distribution F'.

F has support A = {aq,an,...} with a; <
aj11,i=1,2,....

T;'s are not completely observed, but only
the random vectors

(Z17 51)7 (Z27 52)7 SRR (Zna 571)
are observed with the interpretation:

0, =1=1T, = Z;

0, =0=1T;, > Z,.

Let \; = X\;(F),j = 1,2,... be the hazard
of T" at a;, soO

[ F(CL])
F(a;—)

)\] —_ P(T —_ a]|T Z CL]) —



e Assumption: Independent censoring condi-
tion:
— P{Tza]|Z2a]},j — 1,2,....

e General problem: To decide if F' € Fp, with
Fo = {Fpo(-;m) : n € '} a class of discrete
distributions with Ir C RY.

e Let Cy be the class of hazard functions as-
sociated with Fg so

Co =1{No(In) ineTl};

the functional form of Ag(:|n) being known.



e [ he specific composite GOF problem con-
sidered in this talk is to test the composite
hypotheses

Hgy : N\(+) € Cg
Hy :NA(+) € Co
on the basis of the right-censored data

(Zi75i)77;: 1,2,...,7?,.

e Note that in the composite GOF problem,
the parameter vector n is a nuisance pa-
rameter.

e T he simple GOF problem is a special case
since it deals with testing

Ho : A(-) = Ao ()
Hy : A() 7 No()

with Ag(-) a fully specified discrete hazard
function.



Relevance and Importance

e Discrete failure times manifest in a variety
of fields.

e Limitations in measurement proccess; na-
ture of failure time (e.g., in cycles); quan-
tum theory.

e TO reminisce about D. Basu: ‘Everything
IS discrete!’

e Right-censoring is prevalent in reliability and
engineering applications, medical and pub-
lic health situations, in economic settings,
and in other areas.

e Desirable to know the parametric family of
distributions or hazards to which F or A
belongs.



e Such knowledge enables the use of more
efficient inferential methods such as in es-
timating important parameters or perform-
iNng group comparisons.

e Somewhat a surprise that GOF problem
with right-censored discrete data have not
been fully dealt with; only Hyde's (1977)
paper seems to have tackled this problem.

e Pefia (2002) provides a general approach
for generating a class of tests for the simple
null hypothesis case.



Hazard Embeddings
and Likelihoods

o Let A?(n),j = 1,2,... be the hazards asso-
ciated with Ag(:|n).

e Following Pefia (2002), for A; < 1 and
Aj(n) <1, let the hazard odds be

A\ AP (n)
I and  p(n) = —2

pj = :
71— 1 —A2(n)

e For a fixed smoothing order p € Z, and for
the px1 vectors ¥; = W,(n),j =1,2,...,J,
we embed p?(n) into the hazard odds de-
termined by

p;(0,m) = p9(n) exp{0*T;(n)}.



This is equivalent to postulating that the
logarithm of the hazard odds ratio is linear
in W;(n), that is,

IOg{ ,09(77) } im),ij=12,....

Within this embedding, the partial likeli-
hood of (8,n) based on the observation pe-
riod (—oo,ay] for some fixed J € Z4 is

J p](6777)0‘7

L(0,n) =
() jl;ll [1 4 p;(0,m)]"

where



e Furthermore, within this hazard odds em-
bedding, the composite GOF problem sim-
plifies to testing

Hy:0=0,nel vs. Hy:0#0,nel.

e Estimated score statistic:

Uy (O, n) = Vg log L(0, 77)|9:o,77:;7;

n = 1(0 = 0) is the restricted partial likeli-
hood MLE (RPLMLE).



Restricted Partial
Likelihood MLE

e 7 iS the n that maximizes the restricted
partial likelihood function

Lo(n) = jlf[l[A?(n)]Oj [1 = A(m)]H=C%s
Viglo(n) = Vylog Lo(n) =
= fj A;(m[O; — EF ()];
with =
E?(n) = RjA; (n);
VA2 (n)
AO(m)[1 — A9(n)]

are the ¢ x 1 ‘standardized’ gradients of
A (n).

Aji(n) =



Form the J x ¢ matrix of standardized gra-
dients

A(n) = [A1(m), Ax(n),. .., A (],

and the J x 1 vectors

O = (01,0,...,0)%;
EO(m) = (EQ(), E(n)...., E9(m))" .

Matrix form: Vylg(n) = A(n)t [O — Eo(n)} :

Estimating equation for the RPLMLE #:

A [0~ E%(n)| =0

Example: If Cog = {\g(¢;7) = n}, then
A(n) =1;/[n(1 —n)l;

E°(n) = Ry,



so the estimating equation is
{n(1 =)} *15(0 —Rn) =0.
This yields the RPLMLE

J
1t ToJ )

33N

e 7 will usually be obtained through numeri-
cal methods.



Asymptotics and Test

With

T(n) =[¥1(n), ¥a(n),..., ¥ (],

the score function for 6 at 6 = 0 is

Uyg(0=0,7) = ¥(nO -E(n)].

Estimated Score Function:

Uy = Uy(6 = 0,7) = ('O -~ E°(@H)].
Needed: Asymptotic distribution of Up.

Entails obtaining the asymptotic distribu-
tion of the (p + q) x 1 vector of scores:

t
tmn:[@W>]m—E%m]



e Needed notations:

D(n) = Dg (A;(m[1 - X;(m)])
A(m) = (A1(m), 22(m), ..., Ay(m)t
A(n) =DV, ()
V(n) = Dg(R)D(n);

B(n) = [¥(n), A(n)]
=Z(n) = BV (n)B(n)

e Proposition 1 Spse Hy holds with n = ng
and p does not change with n. Under regu-
larity conditions, in particular if, as n — oo,

3(p + q) x (p+ q) pos def matrix =) (yq)
with

;”(no) P 2O (),
then
~U() = —=B(no)T0 — E%(no)]
Jn VN

L N (0,2 (o).



e Corollary 1

1
~=¥(10)'10 —E°(ro) L Np(0, 289 (o))

—‘I’(no)tV(no)‘I’(no) 2L =2 ().

e Result not directly useful since ng is un-
known. This however leads to the desired
asymptotic result.

e Theorem 1 Under Hy and regularity con-
ditions,

1 = = -
MO~ BT % Ny (0.2(750m0)).

where

289 (no) = no)—

E&?(no){sgzmo)} (1),



Effect of estimating the unknown parame-
ter ng by the RPLMLE: A decrease of

1
5P 00) {2R 00} =D (o).

‘Adaptiveness:’ Occurs if there is orthog-
onality between ¥ and A(ng).

Test Statistic:

a2 1 W 2\t O,= ¢ Q(O) B
2 = | Lv@tio- @) (&0}

< {%ﬁmﬂo _ EO@]}.

Test Procedure: An asymptotic a-level
test rejects Hg whenever



Representations via

Projections
Let
A*(n) = yV(n)A(),

VV(n)¥(n).

For a full rank J x g (with J > ¢g) matrix X,
let

v*(n)

P(X) = X(Xx)~Ixt

be the projection operator on the linear
subspace £(X) generated by X in ®/.

Denote by
PL(X) =1- P(X)

the projection operator on the orthocom-
plement of £(X).



= 1 = * 7= * 7=
Ei7o = () PH(AT @) (7).

Define the ‘standardized’ observed and dy-
namic expected frequencies vectors to be

O* = /V(»O
E'(7) = JV@E®

The test statistic can be re-expressed via
32 = [T* (M0 - E*®)]]
(T @ PLHA@)T*@H)} x
()0 - E*(H)]] .

Corollary 1 If¥*(7) € L(A*(7))+ (orthog-
onality(, then

Sp =l P(¥*(@)O* —E* (] |I* -



Local Power

Asymptotics under a contiguous sequence
of alternatives for local power analysis.

Theorem 1 For local alternatives HY‘) :
1
0(") = n=1~(1 + o(1)) for v € RP,
1 -~ = d
(7)o — E°
NG ()l (n)] —

Np (Eg(i),z(no)% Eg_(:)l_).Q(TIO)> :

Asymptotic local power:

ALP(7) = P {x2.(8°(7) > x%.0}
with noncentrality parameter

52 () = Vtﬁg%(no)%

Under orthogonality this becomes

52 = y'211(no).



Two Choices of v

o A1, A>,..., Ay a partition of {ay,ap,...,a;}.
Define

/
vy = [1A1>1A17---71Ap]
where 14 = (I{a; € A},j =1,2,...,J)".

e T his choice leads to a generalization of
Pearson’s chi-square test. The test statis-
tic for the simple null case is:

P [0e(A;) — EQ(AD]?

S0 = 3 s )




e Another choice, which has proven effective
in the simple null case, is provided by

o= (2" ()

e When p =1 and in the simple null setting,
the test statistic is

[7_1(0; — E))?

0 0y’
V=1 BjAT (1 = A7)

This coincides with Hyde's ('77, Bmka)
statistic.

S2(Wy) =




Adaptive Choice
of Smoothing Order

Test requires that the smoothing order p
be fixed.

— Arbitrary.

— Potential of choosing a p that is far from
optimal.

Repeated testing with different smoothing
orders? Unwise since Typel error rates will
become inflated.

Imperative and Important! A data-driven
or adaptive approach for determining p.

Proposal: Use a modified Schwarz infor-
mation criterion. Modified to accommo-
date right-censoring.



For a given p:

Lp(Op,1) = sup  Lp(6p,n).
pRop bpeRP; nel "

Modified Schwarz information criterion:

MSIC(p) = log Ly(8p, 7)—
g [Iog(n) + |09(5\max)}

with Amax being the largest eigenvalue of
Ip(9p7ﬁ)'

Adaptively-chosen smoothing order:

*=ar max MSIC :
p g 1§p§Pmax{ (p)}
Pmax a pre-specified maximum order e.g.,
10.

Adaptive Test Procedure: Rejects Hg
whenever

: =~ =~ (0
Sg* > X%*;a, with k* = r(ngl)g).



Simulation Results:
Simple Null

e Simple Null Hypothesis: failure times are
geometrically distributed.

e Simulation studies to determine achieved
levels and powers of the tests with fixed
order (p = 1,2,3,4) and the adaptive test
with Pmax = 10 associated with W,

e Table: presents performance of tests under
25% censoring for n = 100 and J = 100.
Hypothesized null mean was 30. Based on
1000 replications.



e Empirical levels and powers (in percents)
of the 5% asymptotic level fixed-order and
adaptive tests for testing the geometric dis-
tribution.

Test | Geo. | Geo. | Neg. | ‘Poly’ | ‘Trig’
Stat | (Null) | (Alt) | Bin. | Haz Haz

52 46 | 525 | 2.0 | 11.7 | 8.8
S 5.1 | 45.8 192.8| 58.2 | 33.9
S 5.9 | 41.5|90.6 | 53.7 | 83.6
Sz 7.6 |40.3|87.9| 54.3 | 92.1

52, 69 | 545|942] 584 | 91.5

e Fixed-order tests good for some alterna-
tives; bad for others! Can qualify as an
omnibus test.

e considered an Akaike information criterion
based procedure, but this turned out to be
very anti-conservative.



Concluding Remarks

An approach to constructing goodness-of-
fit tests in the presence of right-censored
discrete data.

Approach can be described as ‘functional’
in nature.

Adaptive approach uses Schwarz Bayesian
information criterion for determining the
smoothing order.

Simulation studies for simple null case in-
dicates that the adaptive test serves as an
omnibus test.

Many other issues! In progress.



