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Recurrent Phenomena
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Hospitalization due to a chronic disease.
Drug/alcohol abuse

Occurrence of migraine headaches.
Onset of depression.

Episodes of epileptic seizures.

Non-fatal heart attacks.

Software crashes and subsystem failures.
Non-life insurance claims.

In sociology: serious marital disagreements.

Publication of a research paper or book.
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Motivating Data Set: MMC Data Set

Migratory Motor Complex (MMC) Times for 19 Subjects
(Aalen and Husebye, 1991)

MMC Data Set
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Representation: One Subject

[ Intervention performed after an event ]
1 Unobserved
:event
v
1

T, _4 T, A\ L A T NY 1:'S4 b

End of study

I n

Unobserved
frailty

[ Observed events ]

Covariate vector: X(s) = (X,(s), ... , X,(s))
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Observables: One Subject

e X(s) = covariate vector, possibly time-dependent

e T1,715,T5, ... = Inter-event or gap times

a S1,959,853,... = calendar times of event occurrences
e 7 = end of observation period.

e K =max{k:S; <7} =number of events in [0, 7]

e Z = unobserved frailty variable

e NT(s) = number of events in [0, s]

e YT(s) = I{r > s} = at-risk indicator at time s

o Fi = {F!:s> 0} = filtration: information that
iIncludes interventions, covariates, etc.
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Aspect of Sum-Quota Accrual

Remark: A unique feature of recurrent event modeling is
the sum-quota constraint that arises due to a fixed or
random observation window. Failure to recognize this in
the statistical analysis leads to erroneous conclusions.

( )

k
K =max< k: ZTj§T>
\ J=1

K+1
(T, Ts, ..., Tx) satisfies ZT <7< ZT
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General Class of Dynamic Models
e Pena and Hollander (2004) model.

NT(s) = Al(s|Z) + MT(s|2)

M'(s|Z) e M2 = square-integrable martingales
Al(s|Z) = S T(w)\Mw w
612) = | ViwAwlz)d
e Intensity Rate Process:
Ms|Z) = Z X[E(s)] pINT(s—=); a] ¥[3° X (s)]

e Class includes as special cases many models in
reliability and survival analysis.
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Effective Age Process
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Some Effective Age Processes

e Perfect Intervention: £(s) = s — Syi(s-).-

e Imperfect Intervention: £(s) = s.
o Minimal Intervention (Brown & Proschan, '83; Block,
Borges & Savits, '85):

g(S)ZS—SF

n(s—)
where, with 1, I, ... [ID BER(p),

N'(s)

77(8) = Z I; and T = min{j > 1 [j = 1}.
1=1
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Semi-Parametric Estimation: no Fraity

Observed Data for n Subjects:

{(Xi(s), NI (s), Y (8),&(s)): 0<s<sVi=1,....n

N (s) = # of events in [0, s] for ith unit

Y/!(s) = at-risk indicator at s for ith unit
Al(s) = /O Y (0) oV (v—); 0] 985K (0)] Mol&i(v)]do

Baseline gap-time distribution associated with A\y(-) will
be denoted by F;,.
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Processes and Notations

Calendar/Gap Time Processes:

N;(s,t) = /O 8 I{&(v) < t}N] (dv)

Ai(s,t) = /OS I{&(v) < t}AI(dv)

Notational Reductions:
Eij-1(v) = Ei(0)](s,,,,5,) ()Y (v) > 0}

p(j — 1; a)p{ BEXG[E L (w)]}

patlle D) = = T (w)



Change-of-Variable Transformations
/ H(s, EW)I{&(v) < t}NT(dv) / H(s,w)N (s,dw);

/0 H(s, E()I{&(v) < tYAT(dv) / H(s,w)Y (s, w)\o(dw);

N'(s-)

Y(s,w) = Lig, (8,1, &-1(5;) (W) pj—1(w) +
j=1

](5NT(5—)(SNT(3—))7 gNT(s—)((S/\T))](w) gOJ\TZ-T(S—)(U}‘OJ’ ﬁ)7

/S H(s, E()I{E&(v) <t} M1 (dv) = / H(s,w)M(s,dw).
0 0



Generalized At-Risk Processes

NT(S

Yi(s,w|a, B Lig ), E51(5:)] (W) wij—1(wla, B)+
7=1

[(giN;r(S—)(SiN;r(S—))7 giNJ<s—>((SATi))](w) gO’L'J\C-T(S—)(WLU’O"5)

For IID Renewal Model (PSH, 01) this simplifies to:

N/ (s—)

Yi(s,w) Z HTy; > w +1{(s A7) — Sz‘NT(s—) > w}
g=1
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Estimation of Ay
Ay(s. o B) = /O Yi(s, wla, B)Ag(duw)

So(s, t|a, B ZYSﬂaﬁ

J (s, tlo, B) = I{S0(s, o, 3) > 0}

Generalized Nelson-Aalen ‘Estimator’:

bt = [ {2 |

1=1




Estimation of o and

e Partial Likelihood (PL) Process:

NT(s*)

i

=1 =1

[ j—1; (X)@bthi(Sij)]]ANj(Sw)
ols™, & (i) |av, B

e PL-MLE: & and  are maximizers of the mapping

(o, B) = Lp(s™|ev, B)

a lterative procedures. Implemented in an R package
called gcmrec (Gonzaléz, Slate, Pena '04).
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Estimation of F},

o G-NAE of Ag(-): Ag(s*, 1) = Ao(s*, t|a, 3)

o G-PLE of Fy(t):

. _ " ON(s*. dw)

FO(S*,{;) _ H 1 ZZZl (8 ,d:(U)
So(s*, wl|a, 3)

w=0

e For IID renewal model with &;(s) = s — SiNt(s—)

p(k; ) =1, and ¢ (w) = 1, the estimator in PSH
(2001) obtains.
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Semi-Parametric Estimation: with Frailty

o Recall the intensity rate:
Ni(51Zi, X3) = Zi dolEis)] p[N] (s—); 0] 4 (B°Xi(s))
e Frailties 71, 7o, ..., Z, are unobserved and assumed
to be IID Gammal(¢, §)

e Unknown parameters: (&, a, 3, \o(+))

a Use of the EM algorithm (Dempster, et al; Nielsen, et
al), with frailties as missing observations.

e Estimator of baseline hazard function under no-frailty
model plays an important role.

e Details in Pena, Slate & Gonzalez (JSPI, to appear).
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An Application: MMC Data Set

Aalen and Husebye (1991) Data
Estimates of distribution of MMC period
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On Asymptotic Properties

o Asymptotics under the no-frailty models.

e Difficulty: A\g(-) has £(s) as argument in the model;
whereas, interest is usually on Ag(?).

o No martingale structure in gap-time axis. MCLT not
directly applicable.

e Under regularity conditions: consistency and joint
weak convergence to Gaussian processes of

standardized (&, 5) and Ag(s*, ).

o Results extend those in Andersen and Gill (AoS 82)
regarding Cox PHM, though proofs different.

a Research on the asymptotics for the model with
frailty in progress.
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Asymptotics: Master Theorem

e {H;} a sequence defined on [0, s*] x [0, t*].
o Mi(s,t) = [ I{&(v) < t}M](dv).

e Y;(s,t) - generalized at-risk process.

o Under some regularity conditions, and if

1 n
SY HP(s V(") (st ),

a then, with X(s*, 1) fo s*, w)Ao(dw),

% Z /0. H;(s™, w)M;(s", dw) = GP(0, %(s,-)).
1=1
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Relevant Empirical Measures
o Simplified model (one unit):

Pr{dN] (v) = 1|Fs-} = ¥, () \o[E(0)|Zi(v; ) dv.
e Conditional PM Q(s*,w;n)on {1,2,... , NT(s—) + 1}:

(w; ) I{E(Sj—1) <w < E(5;)}

Vs ) = 7L
Q) s, win) Y (s*,w)

with SNT(S—)—I—l = min(s, 7‘).
e Conditional PM P(s*, w;n)on {1,2,...,n}:

Yi(s*, w;n)
PY (s*,w;n)

P({i};s",win) =



Empirical Means & Variances



Relevant Limit Functions

e so(s*,w;n, Ag) = plim PY (s*, w;n).
e Partial Likelihood Information Limit:

T,(s",t;m, Np) = plim

t
/ { [EP(S*,w;n)VQ(S*,w;n) (vn 10g El(gjjjl_l (UJ), 77)) +

Vp(s wmEQ (st wim) (Vylog —*I(SIJI H(w);m) ]} %
s0(s*,wi . Ag) Ao(duw).

PV??Y(S* 7w;77)

(s ) (et

e With e(s*, w;n, Ag) = plim

t
A(S*,t;n,/\o)/ e(s™, w;n, Ag)Ao(dw).
0
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Weak Convergence Results

As n — oo and under certain regularity conditions:

Vn(i(s™, £°) —n) = N(0.Zy(s",t":1,M0) ")

A

Vn(Ao(s®,-) = Ao()) = GP(0,I(s%, - m, Ao))

where the limiting variance function is given by

!
Ag(dw)
['(s*, t;n, A :/
( - Ro) 0 so(s*,w;n)

+ A(S*a t;m, AO)IP(S*7 t*a n, AO)_lA(S*a t;m, AO)t'
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Concluding Remarks

Q
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Many aspects of the general dynamic recurrent event
model still under investigation.

Asymptotics for the model with frailty.
Testing hypothesis procedures.
Goodness-of-fit and residual analysis.

Its practical relevance still needs exploring, e.g.,
could the effective age process be determined
appropriately in practice.

Comparisons with marginal-based models (PWP,
WLW).

Dynamic recurrent event modeling remains a
challenge and is a fertile area for research.
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