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Goals and Outline of Talk

a Review of estimation methods for complete and
censored single-event data.

a Discuss aspects of recurrent event modelling.
e Provide a general model for recurrent events.

a Present some properties of the estimation methods
for general model for recurrent events.

e Provide an application to a biomedical data.
e Some concluding remarks.
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Fallure Times

a A positive-valued random variable, denoted by T,
which denotes the time to the occurrence of an
‘event’ Is called a failure-time.

a Events of interest might be, for example:

a failure of a machine or computer software
o death; relapse; onset of cancer

a divorce

a terrorist attack

a sale of a house

e Relevant in a variety of settings; biomedical,
engineering, economics, sociology, etc.

ISU Talk: Failure-Time Data — p



Distributions and Hazards

e Assume: T'Is a continuous failure-time.

e Distribution Function: F(t) = P{T <t}

e Survivor Function: F(t) =1 — F(t) = P{T > t}
e (Cumulative) Hazard Function: A(t) = —log F'(t)
e Density Function: f(t) = dF(t)/dt

f)ydt =P{t <T < t—+dt}
e Hazard Rate: \(t) = dA(t)/dt = f(t)/F(t)

Nt)dt = P{t <T < t+dt|T >t}
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Relationships
F(t) = exp{—A(t)}

ft) = At) expi—A(t)

A general representation is through product-integration:

M

Py = dim o TT= A — A0
S

]2 - Ads)]

s=0



Single-Event Complete Data

e« T1,Ty,...,T, lID F(t), where F(-) is unknown.

e A nonparametric estimator of F(-) is the empirical
survivor function

Ft) = % f: T, > )
1=1

where [(A) = 1 Iff A occurs, 0 otherwise.
o E{F(t)} = F(t), ie, it is unbiased.

o Var{F(t)} = F(t)F(t)/n since nEF(t) ~ BIN(n, F(t))
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Asymptotic (asn — oc) Properties of EDF

a Consistency property (Glivenko-Cantelli):

sup |F(t) — F(t)] =0
s>0

o Weak convergence property (Doob):

A

VnlF() = F()] = W() on D[0,o0)

where W (-) Is a Gaussian process with mean
function zero and variance function

Var{W(t)} = F(t)F(t)
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Single-Event Censored Data

e T1,T>,...,T, IID from survivor function F(¢t) and
hazard A(t). T;s are failure times, and F' and

functionals of F such as the mean or median are the
guantities of interest.

o C1,Cy,....C, IID from a survivor function G. C;s are
the right-censoring variables.

e T;s are not completely observed, but what are
observed are the censored data:

(Zla 51)7 (227 52)7 R (ZN7 5?7,)
where Z;, = min(Ti, Cz) and ¢; = ]{Tz < Cz}
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Product-Limit Estimator

e Problem: Given the data (Z7;,9;),: =1,2,...,n, how to

estimate F'(-) nonparametrically?

o Kaplan and Meier (1958) proposed and examined
the product-limit estimator (PLE) of F.

e The PLE is given by:

fo-11[ 55

s=0

N(t) = zn:I{ZZ- <t:5i=1%; Y(t) = i[{zi > 11
1=1 1=1
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Properties of PLE (kwm; Efron; BC; Gill)

o Asymptotic properties of the PLE are:

sup |F(t) — F(t)] = 0
t>0

A

Vo[F(-) = F(-)] = W() on DI[0,7]

{W(t):0<t<r7}Isazero-mean Gaussian process
with variance function

Var{W(t)} = F?(t)d(t)

B LdA(w)
a) _/0 F(w)Gl(w)
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Censored Data with Covariates

e |In many practical situations, especially in biomedical
settings, aside from the failure times, there usually is
a set of covariates that affects the occurrence of the
event of interest.

e It is imperative that these covariates be taken into
account in the modelling and statistical inference. For
Instance, one of the covariates could be a treatment
Indicator, and it is desired to compare the treatment
group with a control group.

e Observed censored data In this situation are of form:

(Z1,01,X1),(Z2,02,X2),...,(Zn, 0n, Xp)
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Cox (1972) PH Model

a D. Cox proposed a hazard-based model which
Incorporates covariates. For a unit with covariate
vector x, the (conditional) hazard-rate of failure is

A(E]x) = Ao(t) exp{x )
e M\o(-) = an unknown baseline hazard rate.
e [ = IS aregression parameter vector.

a exp(B;) has the interpretation of being the change in

hazard rate if the jth component of the covariate
vector changes by one unit, others remaining the
same.

o Goal: To estimate Fy(-) and 3 based on (Z;, §;, X;)s.

ISU Talk: Failure-Time Data — p.]



Inference for Cox PH Model

e For estimating &, Cox introduced the partial likelihood
(which is also a profile likelihood) given by:

- _57;

. _ exp(Xzﬂ)
P = =

1=

o Note that this partial likelihood is free of the unknown
baseline hazard rate \g(-).

a b, which maximizes this function, is called the partial
likelihood MLE of 3. Requires iterative methods to

obtain b.
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Estimator of Ay and Fj,

e Having obtained an estimator of 3, the baseline
hazard function Ay(-) Is estimated by:

A B t dN(s)
Ao(t) = /O > i1 Yj(s) exp{x;b}

N(t) = E”:[{Zi <t 0, =1} Yi(t) =I{Z >t}
i=1

a Aalen-Breslow Estimator of Fy(-):

t

Fot) =TT |1 - dho®)

s=0
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Properties of Estimators

e Andersen and Gill (1982), using counting process
and martingale theory, obtained rigorously the

properties of the estimators of 3, Ag, and L.

e In particular, they showed that under regularity
conditions,b Is asymptotically normal with mean 3
and some covariance matrix X.

a This result is used to develop testing and confidence
Interval procedures for 3, such as for example, in
comparing control versus treatment groups.

o The estimator Fy is also asymptotically Gaussian
with mean Fy, though for finite sample size, it is
biased, but with the bias decreasing to zero at a
geometric rate.
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Recurrent Phenomena

e In Health and Biomedical Settings
o hospitalization due to a chronic disease
a drug/alcohol abuse
a occurrence of migraine headaches
a onset of depression
a episodes of epileptic seizures
a asthma attacks

e In Engineering/Reliability and Other Settings
a Software crashes and medical equipment failures

ISU Talk: Failure-Time Data — p.]



Bladder Cancer Data (WLW,
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Calendar Time

Questions: Difference in recurrence rates for placebo and
thiotepa groups? Heterogeneity? Impact of more events?
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A Pictorial Representation: One Subject

Unobserved
Event

@s performed just after each event>:

Unobserved
Frailty \ ,

/T
End of observation period
Observed events

An observable covariate vector: X(s) = (X,(s), X,(s), ..., Xq(s))t

3
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Random Entities: One Subject

e P P P

X(s) = covariate vector, possibly time-dependent
T1,15,T5, ... = Inter-event or gap times

51,959,553, ... = calendar times of event occurrences
T = end of observation period

e Accrued History: FT = {]—";r s >0}
e Z = unobserved frallty variable

NT(s) = number of events in [0, s]

YT(s) = at-risk indicator at time s
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On Recurrent Event Modelling

Intervention effects after each event occurrence.

©

Effects of accumulating event occurrences. Could be
weakening or strengthening effect.

©

Effects of covariates.
Associations of event occurrences per subject.
Random observation monitoring period.

e P P P

Number of events observed informative about
stochastic mechanism generating events.

Informative right-censoring mechanism arising
because of the sum-quota accrual scheme.

©
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General Class of Models

o Pena and Hollander proposed a general class of
models.

e {AT(s|Z):s>0}is a predictable, nondecreasing
process such that given Z and accrued information:

{MT(s|Z2) = NT(s) — Al(s|Z) : s >0}

IS a zero-mean martingale (a fair game process).
Assume multiplicative form:

Al(s|Z2) = /O YT (w)A(w|Z)dw.
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Intensity Process

a Specify, possibly dynamically, a predictable,
observable process {£(s) : 0 < s < 7} called the
effective age process, satisfying

a £(0)=eg>0;
o &(s) > 0 for every s;

e On [S._1,5), £(s) Is monotone and differentiable
with £’(s) > 0.

e Specification:

A(s|Z) = Z Mo[E(s)] p[NT(5-); ] 0[5 X (s)]
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Model Components

Q

Q

Ao(-) = unknown baseline hazard rate function.

£(s) = effective age at calendar time s. Rationale:
Intervention changes effective age acting on baseline
hazard.

p(+; ) = a positive function on Z,; known form,;
p(0; a) = 1; unknown «. Encodes effect of
accumulating events.

Y(+) = positive link function containing the effect of
subject covariates. 3 is unknown.

Z = unobservable frailty variable. Induces
associations among subject’s inter-event times.
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Effective Age Process

Illustration: Effective Age Process

Effective “Possible Intervention Effects”
Age, E(s)

No
improvemen
p >,

Perfect
intervention

Some
improvement

Calendar Time T

10
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Flexibility

e |ID renewal model: £(s) = s — Syi(,—) (backward
recurrence time), p(k) =1, ¥(x) = 1.

o |ID renewal model with frailties: same as above
except for an unobserved frailty per subject/unit.

e Models dealt with in Pena, Strawderman and
Hollander (JASA, 2001) and in Wang and Chang
(JASA, 1999).

e Extended Cox (1972) PH model; Prentice, Williams
and Peterson (1981) model; Lawless (1987):

E(s) = s,p(k) = 1,94(x) = exp(z)
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Generality

e Gall, Santner and Brown (1980) carcinogenesis
model and the Jelinski and Moranda (1972) software
reliability model.

p(k;a) = max(0,a — k + 1)

e Includes the Dorado, Hollander and Sethuraman
(1997) general repair model.

a Also, reliability models of Kijima (1989); Baxter,
Kijima and Tortorella (1996); Stadje and Zuckerman
(1991); and Last and Szekli (1998).
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‘Minimal Repair’ Models

e (Generalized) Brown and Proschan (1983) minimal
repair model: Let I, I, ... lID Ber(p), p be the ‘perfect
repair’ probabillity.

e I'y =min{j >Ix_1: [; =1} : Index of kth perfect

repair
e n(s) = ngs) I; - # of perfect repairs till s
e £(s)=s—25r,,,: lengthsince last perfect repair

e (Generalized) Block, Borges and Savits (1985):
Perfect repair probability depends on s, SO p(s).
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Estimation of Parameters

e Developed procedures for estimating the parameters
of this general model, both with and without the frailty
components.

e Estimator of baseline survivor function is also of
product-limit type.

e Extended the idea of a partial likelihood.

e Expectation-Minimization (EM) algorithm utilized Iin
estimating parameters for the model with frailties.

e Estimation procedure coded in Rand Fortran.

e Lots of notation, so focus here instead on some
empirical properties.
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Simulated Data from the Model

True Model Parameters: n = 15; a = 0.90; 8 = (1.0, —1.0);
£ =2; X1~ Ber(.5); Xo~N(0,1); 7~ UNIF(0,10);
Minimal Repair with .6 prob; Baseline: Weibull(2,1)
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Estimates of Parameters

@ With Frailty Fit
o 102 iterations in m
EM — o
o & = .8748
o (= (1.099, —1.3986)
o & =2.1831
@ Without Frailty Fit
o & = .963
o (3 =(0.590,—0.571) .
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Baseline Survivor Function

20 Simulated Estimates of BSF

Black(True); Blue(Esti); Red(Mean)

1.0

0.8

0.6

0.4

0.2

0.0 0.5 1.0 1.5 2.0 25 3.0
Time
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Properties: Simulated

e plk;a)=a% ae{91.0,1.05)
e YP(u) =exp(u); 3= (1,-1); X1 ~Ber(.5); Xo ~N(0,1)

o Weibull baseline with shape v = .9 (DFR) and v = 2
(IFR)

Gamma frailty parameter ¢ € {2,6, 00}

Effective Age: Minimal repair model with p = .6
Sample Size n € {10, 30,50}

Censoring 7 ~ Unif(0, B) (approx 10 events/unit)

N

1000 replications per simulation combination
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Finite-Dimensional Parameters

TableA  « g n no gy & B1 B2 i
A2me 09 0.9 0.67 30 4.1 0.898 1.01 -1.01 0.734
A2.sd 0.031 0.379 0.24 0.124
A3.me 09 0.9 0.67 50 5.2 0.899 1.02 -1 0.705
A3.sd 0.021 0.287 0.165 0.091
Ab.me 09 0.9 0.86 30 4.3 0.9 0.988 -1.01 0.904
Ab5.sd 0.030 0.3 0.175 0.085
Ab.me 09 0.9 0.86 50 5.3 0.899 0.998 -1 0.884
A6.sd 0.021 0.221 0.136 0.071
A8.me 09 0.9 1 30 4.8 0.893 1.03 -1.03

A8.sd 0.0247 0.222 0.135

A9 me 09 0.9 1 50 4.4 0.895 1.02 -1.02

A9.sd 0.018 0.158 0.104
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Baseline Survivor Function
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Peek Towards Asymptopia

Simulation A2: Fit frailty is TRUE Simulation A3 Fit frailty is TRUE
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Bladder Data Set
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An Application

Bladder cancer data pertaining to times to recurrence for
n = 85 subjects studied in Wel, Lin and Weissfeld (’89).
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Estimates of Parameters

Q

Q

Q

Q

X1: (1 = placebo; 2 = thiotepa)
Xo: size (cm) of largest initial tumor
X3 # of initial tumors

Effective age: backward recurrence time (perfect
repair) [also fitted with ‘minimal’ repair].

Fitting model without frailties and ‘perfect’ repair:
e @ =0.98 (s.e. =0.07);

o (81,02, 03) = (—0.32,—0.02,0.14);

o s.e.sof 3 =(0.21,0.07,0.05).

Fitting model with gamma frailties: 13 iterations in
EM led to € = 5432999 indicating absence of frailties.
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Estimates of SFs for Two Groups

Blue: Thiotepa Group

Red: Placebo Group

Solid: Perfect Repair

Dashed: Minimal Repair
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Concluding Remarks

o General and flexible model: incorporates aspects of
recurrent event modelling.

o Allows a formal mathematical treatment which could
enable reconciliation of different methods.

e Robust analysis of recurrent event data.

o Current deficiency: Effective age! Needed: paradigm
shift in data gathering. Importance demonstrated Iin
bladder data!

e Further studies: asymptotics; goodness of fit, and
model validation aspects.

o Recurrent event model and longitudinal markers via
latent classes. Research in progress with E. Slate.
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