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Goals and Outline of Talk

Review of estimation methods for complete and
censored single-event data.

Discuss aspects of recurrent event modelling.

Provide a general model for recurrent events.

Present some properties of the estimation methods
for general model for recurrent events.

Provide an application to a biomedical data.

Some concluding remarks.
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Failure Times
A positive-valued random variable, denoted by T ,
which denotes the time to the occurrence of an
‘event’ is called a failure-time.

Events of interest might be, for example:
failure of a machine or computer software
death; relapse; onset of cancer
divorce
terrorist attack
sale of a house

Relevant in a variety of settings; biomedical,
engineering, economics, sociology, etc.
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Distributions and Hazards
Assume: T is a continuous failure-time.

Distribution Function: F (t) = P{T ≤ t}
Survivor Function: F̄ (t) = 1 − F (t) = P{T > t}
(Cumulative) Hazard Function: Λ(t) = − log F̄ (t)

Density Function: f(t) = dF (t)/dt

f(t)dt ≈ P{t ≤ T < t+ dt}
Hazard Rate: λ(t) = dΛ(t)/dt = f(t)/F̄ (t)

λ(t)dt ≈ P{t ≤ T < t+ dt|T ≥ t}
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Relationships

F̄ (t) = exp{−Λ(t)}

f(t) = λ(t) exp{−Λ(t)}

A general representation is through product-integration:

F̄ (t) = lim
max |ti−ti−1|→0

M
∏

i=1

[1 − {Λ(ti) − Λ(ti−1)}]

≡
t

∏

s=0

[1 − Λ(ds)]
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Single-Event Complete Data

T1, T2, . . . , Tn IID F̄ (t), where F̄ (·) is unknown.

A nonparametric estimator of F̄ (·) is the empirical
survivor function

ˆ̄F (t) =
1

n

n
∑

i=1

I{Ti > t}

where I(A) = 1 iff A occurs, 0 otherwise.

E{ ˆ̄F (t)} = F̄ (t), ie, it is unbiased.

V ar{ ˆ̄F (t)} = F (t)F̄ (t)/n since n ˆ̄F (t) ∼ BIN(n, F̄ (t))
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Asymptotic (asn→ ∞) Properties of EDF

Consistency property (Glivenko-Cantelli):

sup
s≥0

| ˆ̄F (t) − F̄ (t)| pr−→ 0

Weak convergence property (Doob):

√
n[ ˆ̄F (·) − F̄ (·)] ⇒ W (·) on D[0,∞)

where W (·) is a Gaussian process with mean
function zero and variance function

V ar{W (t)} = F̄ (t)F (t)
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Single-Event Censored Data

T1, T2, . . . , Tn IID from survivor function F̄ (t) and
hazard Λ(t). Tis are failure times, and F̄ and
functionals of F̄ such as the mean or median are the
quantities of interest.

C1, C2, . . . , Cn IID from a survivor function Ḡ. Cis are
the right-censoring variables.

Tis are not completely observed, but what are
observed are the censored data:

(Z1, δ1), (Z2, δ2), . . . , (Zn, δn)

where Zi = min(Ti, Ci) and δi = I{Ti ≤ Ci}.
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Product-Limit Estimator
Problem: Given the data (Zi, δi), i = 1, 2, . . . , n, how to
estimate F̄ (·) nonparametrically?

Kaplan and Meier (1958) proposed and examined
the product-limit estimator (PLE) of F̄ .

The PLE is given by:

ˆ̄F (t) =
t

∏

s=0

[

1 − N(∆s)

Y (s)

]

N(t) =
n

∑

i=1

I{Zi ≤ t; δi = 1}; Y (t) =
n

∑

i=1

I{Zi ≥ t}
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Properties of PLE (KM; Efron; BC; Gill)

Asymptotic properties of the PLE are:

sup
t≥0

| ˆ̄F (t) − F̄ (t)| pr−→ 0

√
n[ ˆ̄F (·) − F̄ (·)] ⇒ W (·) on D[0, τ ]

{W (t) : 0 ≤ t ≤ τ} is a zero-mean Gaussian process
with variance function

V ar{W (t)} = F̄ 2(t)d(t)

d(t) =

∫ t

0

dΛ(w)

F̄ (w)Ḡ(w)
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Censored Data with Covariates
In many practical situations, especially in biomedical
settings, aside from the failure times, there usually is
a set of covariates that affects the occurrence of the
event of interest.

It is imperative that these covariates be taken into
account in the modelling and statistical inference. For
instance, one of the covariates could be a treatment
indicator, and it is desired to compare the treatment
group with a control group.

Observed censored data in this situation are of form:

(Z1, δ1,X1), (Z2, δ2,X2), . . . , (Zn, δn,Xn)
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Cox (1972) PH Model
D. Cox proposed a hazard-based model which
incorporates covariates. For a unit with covariate
vector x, the (conditional) hazard-rate of failure is

λ(t|x) = λ0(t) exp{xβ}
λ0(·) = an unknown baseline hazard rate.

β = is a regression parameter vector.

exp(βj) has the interpretation of being the change in
hazard rate if the jth component of the covariate
vector changes by one unit, others remaining the
same.

Goal: To estimate F̄0(·) and β based on (Zi, δi,Xi)s.
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Inference for Cox PH Model
For estimating β, Cox introduced the partial likelihood
(which is also a profile likelihood) given by:

LP (β) =
n

∏

i=1

[

exp(xiβ)
∑

{j: tj≥ti} exp(xjβ)

]δi

Note that this partial likelihood is free of the unknown
baseline hazard rate λ0(·).
b, which maximizes this function, is called the partial
likelihood MLE of β. Requires iterative methods to
obtain b.
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Estimator of Λ0 and F̄0

Having obtained an estimator of β, the baseline
hazard function Λ0(·) is estimated by:

Λ̂0(t) =

∫ t

0

dN(s)
∑n

j=1 Yj(s) exp{xjb}

N(t) =
n

∑

i=1

I{Zi ≤ t; δi = 1}; Yi(t) = I{Zi ≥ t}

Aalen-Breslow Estimator of F̄0(·):

ˆ̄F 0(t) =
t

∏

s=0

[

1 − dΛ̂0(t)
]
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Properties of Estimators
Andersen and Gill (1982), using counting process
and martingale theory, obtained rigorously the
properties of the estimators of β, Λ0, and F̄0.

In particular, they showed that under regularity
conditions,b is asymptotically normal with mean β
and some covariance matrix Σ.

This result is used to develop testing and confidence
interval procedures for β, such as for example, in
comparing control versus treatment groups.

The estimator ˆ̄F 0 is also asymptotically Gaussian
with mean F̄0, though for finite sample size, it is
biased, but with the bias decreasing to zero at a
geometric rate.
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Recurrent Phenomena
In Health and Biomedical Settings

hospitalization due to a chronic disease

drug/alcohol abuse

occurrence of migraine headaches

onset of depression

episodes of epileptic seizures

asthma attacks

In Engineering/Reliability and Other Settings

Software crashes and medical equipment failures
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Bladder Cancer Data (WLW, ’89)
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Questions: Difference in recurrence rates for placebo and
thiotepa groups? Heterogeneity? Impact of more events?

ISU Talk: Failure-Time Data – p.16



Representation: One Subject

3

A Pictorial Representation: One Subject

An observable covariate vector: X(s) = (X1(s), X2(s), …, Xq(s))t

Z

Unobserved

Frailty

s

0
τ

End of observation period
Observed events

Unobserved

EventAn intervention is performed just after each event

T1 T2 T3 T4

S1 S2 S3 S4

τ-S4

ISU Talk: Failure-Time Data – p.17



Random Entities: One Subject

X(s) = covariate vector, possibly time-dependent

T1, T2, T3, . . . = inter-event or gap times

S1, S2, S3, . . . = calendar times of event occurrences

τ = end of observation period

Accrued History: F
† = {F†

s : s ≥ 0}
Z = unobserved frailty variable

N †(s) = number of events in [0, s]

Y †(s) = at-risk indicator at time s
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On Recurrent Event Modelling

Intervention effects after each event occurrence.

Effects of accumulating event occurrences. Could be
weakening or strengthening effect.

Effects of covariates.

Associations of event occurrences per subject.

Random observation monitoring period.

Number of events observed informative about
stochastic mechanism generating events.

Informative right-censoring mechanism arising
because of the sum-quota accrual scheme.
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General Class of Models
Peña and Hollander proposed a general class of
models.

{A†(s|Z) : s ≥ 0} is a predictable, nondecreasing
process such that given Z and accrued information:

{M †(s|Z) = N †(s) − A†(s|Z) : s ≥ 0}

is a zero-mean martingale (a fair game process).
Assume multiplicative form:

A†(s|Z) =

∫ s

0
Y †(w)λ(w|Z)dw.
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Intensity Process

Specify, possibly dynamically, a predictable,
observable process {E(s) : 0 ≤ s ≤ τ} called the
effective age process, satisfying

E(0) = e0 ≥ 0;
E(s) ≥ 0 for every s;
On [Sk−1, Sk), E(s) is monotone and differentiable
with E ′(s) ≥ 0.

Specification:

λ(s|Z) = Z λ0[E(s)] ρ[N †(s−);α]ψ[βtX(s)]
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Model Components
λ0(·) = unknown baseline hazard rate function.

E(s) = effective age at calendar time s. Rationale:
intervention changes effective age acting on baseline
hazard.

ρ(·;α) = a positive function on Z+; known form;
ρ(0;α) = 1; unknown α. Encodes effect of
accumulating events.

ψ(·) = positive link function containing the effect of
subject covariates. β is unknown.

Z = unobservable frailty variable. Induces
associations among subject’s inter-event times.
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Effective Age Process
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Illustration: Effective Age Process

“Possible Intervention Effects”

s

0
τCalendar Time

Effective

Age, E(s)

No 

improvement

Perfect

intervention
Some

improvement

Complications
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Flexibility
IID renewal model: E(s) = s− SN†(s−) (backward
recurrence time), ρ(k) = 1, ψ(x) = 1.

IID renewal model with frailties: same as above
except for an unobserved frailty per subject/unit.

Models dealt with in Peña, Strawderman and
Hollander (JASA, 2001) and in Wang and Chang
(JASA, 1999).

Extended Cox (1972) PH model; Prentice, Williams
and Peterson (1981) model; Lawless (1987):

E(s) = s, ρ(k) = 1, ψ(x) = exp(x)
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Generality
Gail, Santner and Brown (1980) carcinogenesis
model and the Jelinski and Moranda (1972) software
reliability model.

ρ(k;α) = max(0, α− k + 1)

Includes the Dorado, Hollander and Sethuraman
(1997) general repair model.

Also, reliability models of Kijima (1989); Baxter,
Kijima and Tortorella (1996); Stadje and Zuckerman
(1991); and Last and Szekli (1998).
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‘Minimal Repair’ Models
(Generalized) Brown and Proschan (1983) minimal
repair model: Let I1, I2, . . . IID Ber(p), p be the ‘perfect
repair’ probability.

Γk = min{j > Γk−1 : Ij = 1} : index of kth perfect
repair

η(s) =
∑N†(s)

i=1 Ii : # of perfect repairs till s
E(s) = s− SΓη(s−)

: length since last perfect repair

(Generalized) Block, Borges and Savits (1985):
Perfect repair probability depends on s, so p(s).
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Estimation of Parameters
Developed procedures for estimating the parameters
of this general model, both with and without the frailty
components.

Estimator of baseline survivor function is also of
product-limit type.

Extended the idea of a partial likelihood.

Expectation-Minimization (EM) algorithm utilized in
estimating parameters for the model with frailties.

Estimation procedure coded in R and Fortran.

Lots of notation, so focus here instead on some
empirical properties.
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Simulated Data from the Model
True Model Parameters: n = 15; α = 0.90; β = (1.0,−1.0);
ξ = 2; X1 ∼ Ber(.5); X2 ∼ N(0, 1); τ ∼ UNIF (0, 10);
Minimal Repair with .6 prob; Baseline: Weibull(2,1)
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Estimates of Parameters

With Frailty Fit

102 iterations in
EM
α̂ = .8748

β̂ = (1.099,−1.3986)

ξ̂ = 2.1831

Without Frailty Fit

α̂ = .963

β̂ = (0.590,−0.571)
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20 Simulated Estimates of BSF
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Properties: Simulated
ρ(k;α) = αk; α ∈ {.9, 1.0, 1.05}
ψ(u) = exp(u); β = (1,−1); X1 ∼ Ber(.5); X2 ∼ N(0, 1)

Weibull baseline with shape γ = .9 (DFR) and γ = 2
(IFR)

Gamma frailty parameter ξ ∈ {2, 6,∞}
Effective Age: Minimal repair model with p = .6

Sample Size n ∈ {10, 30, 50}
Censoring τ ∼ Unif(0, B) (approx 10 events/unit)

1000 replications per simulation combination
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Finite-Dimensional Parameters

TableA α γ ξ η n µ̂Ev α̂ β̂1 β̂2 η̂

A2.me 0.9 0.9 2 0.67 30 4.1 0.898 1.01 -1.01 0.734

A2.sd 0.031 0.379 0.24 0.124

A3.me 0.9 0.9 2 0.67 50 5.2 0.899 1.02 -1 0.705

A3.sd 0.021 0.287 0.165 0.091

A5.me 0.9 0.9 6 0.86 30 4.3 0.9 0.988 -1.01 0.904

A5.sd 0.030 0.3 0.175 0.085

A6.me 0.9 0.9 6 0.86 50 5.3 0.899 0.998 -1 0.884

A6.sd 0.021 0.221 0.136 0.071

A8.me 0.9 0.9 ∞ 1 30 4.8 0.893 1.03 -1.03

A8.sd 0.0247 0.222 0.135

A9.me 0.9 0.9 ∞ 1 50 4.4 0.895 1.02 -1.02

A9.sd 0.018 0.158 0.104
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Baseline Survivor Function
ξ Bias RMSE
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Peek Towards Asymptopia
ξ n = 30 n = 50
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Simulation A5:  Fit frailty is TRUE
n = 30, p = 0.6, γ = 0.9, α =0.9, ξ = 6
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Effect of Mis-specifications
Type Bias RMSE

Under

0 1 2 3 4 5

−0
.10

−0
.05

0.0
0

0.0
5

0.1
0

Time

Bi
as

0 1 2 3 4 5

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Time

Ro
ot−

Me
an

−S
qu

ar
e−

Er
ro

r

Over

0 1 2 3 4 5

−0
.10

−0
.05

0.0
0

0.0
5

0.1
0

Time

Bi
as

0 1 2 3 4 5

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Time

Ro
ot−

Me
an

−S
qu

ar
e−

Er
ro

r

Comb.

0 1 2 3 4 5

−0
.10

−0
.05

0.0
0

0.0
5

0.1
0

Time

Bi
as

0 1 2 3 4 5

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

Time

Ro
ot−

Me
an

−S
qu

ar
e−

Er
ro

r

ISU Talk: Failure-Time Data – p.35



An Application: Bladder Data Set
Bladder cancer data pertaining to times to recurrence for
n = 85 subjects studied in Wei, Lin and Weissfeld (’89).
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Estimates of Parameters
X1: (1 = placebo; 2 = thiotepa)

X2: size (cm) of largest initial tumor

X3: # of initial tumors

Effective age: backward recurrence time (perfect
repair) [also fitted with ‘minimal’ repair].

Fitting model without frailties and ‘perfect’ repair:

α̂ = 0.98 (s.e. = 0.07);

(β̂1, β̂2, β̂3) = (−0.32,−0.02, 0.14);

s.e.s of β̂ = (0.21, 0.07, 0.05).

Fitting model with gamma frailties: 13 iterations in
EM led to ξ̂ = 5432999 indicating absence of frailties.
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Estimates of SFs for Two Groups
Blue: Thiotepa Group Red: Placebo Group
Solid: Perfect Repair Dashed: Minimal Repair
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Concluding Remarks
General and flexible model: incorporates aspects of
recurrent event modelling.

Allows a formal mathematical treatment which could
enable reconciliation of different methods.

Robust analysis of recurrent event data.

Current deficiency: Effective age! Needed: paradigm
shift in data gathering. Importance demonstrated in
bladder data!

Further studies: asymptotics; goodness of fit, and
model validation aspects.

Recurrent event model and longitudinal markers via
latent classes. Research in progress with E. Slate.
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