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Multiple Testing
Multiple hypotheses testing problems (MHTP) arise
in many situations, notably in large M , small n
settings that characterize data sets dealing with
multiple comparisons, microarrays, proteomics, and
in other areas.

Many MHTP procedures starts with the p-values of
the individual tests associated with the M pairs of
null and alternative hypotheses.

The famous Benjamini-Hochberg FDR-controlling
procedure is an example of such a procedure.

A very active area of research with many challenges.
Proofs, e.g., in BH procedure, are quite challenging
and interesting to understand!
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Features
Many talks, and experts, on this area here at IBC ’08!

Of utmost importance to scientists, e.g., medical
researchers and biologists.

Several recent publications, e.g., a recent issue of
Annals of Stat has several, notably Efron’s paper.

New books on this area, e.g., Dudoit and van der
Laan (2007) in the Springer desk.

Data for each of the pairs of hypotheses could come
in complicated structures, e.g., Discrete, Continuous;
ANOVA-type data; Regression-type; others.

For moderate M , data could even be of the recurrent
event type and/or longitudinal data type.
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Our Motivating Questions
What is the role of the power functions of the
individual tests in MHTP procedures?

Are we exploiting the potential differences in their
powers in current MHTP procedures?

It appears that FWER-controlling procedures, such
as the Sidak procedure, or FDR-controlling
procedures, such as the BH procedure, assumes the
same powers for each of the M tests as the p-values
are treated in a symmetric fashion.

It seems rather unlikely, however, that the M tests,
especially with large M , would all have the same
powers.
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A Look into History
In 1920-30s, Neyman and Pearson recognized that in
the search for optimal hypothesis tests, one must
consider the alternative hypothesis. This is in
contrast to the then-existing significance testing
(p-value) approach.

Led to development of Neyman-Pearson framework,
resulting in the theory of most powerful (MP) and
uniformly most powerful (UMP) tests, and exploitation
of the monotone likelihood ratio (MLR) property.

In MHTP we may view the configurations of the M
pairs of hypotheses as the ‘alternative.’ From the
Neyman-Pearson lesson we should exploit this
alternative configuration together with the individual
powers of the tests to develop good procedures.
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Usual Mathematical Setting

Table 1: Tabular Form of Elements in an MHTP.
‘Genes’ 1 2 ... M

Observable Vectors (Data) X1 X2 ... XM

Data Spaces X1 X2 ... XM

Null Hypotheses H10 H20 ... HM0

Alternative Hypotheses H11 H21 ... HM1

True States (Unknown) θ1 θ2 ... θM

Test Functions δ1 δ2 ... δM

P -Values P1 P2 ... PM

Note: Each Xm could be of a complicated structure, and
they need not be of the same structure.
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Usual Assumptions
θm = I{Hm1 is true}: indicates whether Hm1 is true.

Pm|Hm0 ∼ U [0, 1] and Pm|Hm1

st
≤ U [0, 1].

δm(xm) ∈ {0, 1}, i.e., nonrandomized. The test
δm : Xm → {0, 1} depends only on Xm.

Usually δm is chosen to be the ‘best’ test (MP, UMP,
UMPU) when dealing with Hm0 versus Hm1 only, for
each m.

Generally, the Xms are tacitly assumed continuous
and the tests (or the Xms) are independent.

Continuity needed for uniformity of P -values to hold
under the null hypotheses.
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Spaces and Losses
Parameter (θ) Space: Θ = {0, 1}M

Action (a) Space: A = {0, 1}M

Data (x) Space: X = X1 ×X2 × · · · × XM

L0(a, θ) = I
{

∑M
m=1 am(1 − θm) > 0

}

L1(a, θ) =
[

P

M

m=1
am(1−θm)

P

M

m=1
am

]

I
{

∑M
m=1 am > 0

}

L2(a, θ) =
[

P

M

m=1
(1−am)θm

P

M

m=1
θm

]

I
{

∑M
m=1 θm > 0

}

Note that L1(a, θ) is the false discovery rate (FDR)
and L2(a, θ) is the missed discovery rate (MDR) for
action a and state θ.
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Decision and Risk Functions
MHTP Decision Function (MHTPDF):

δ = (δ1, δ2, . . . , δM ) : X → A

Risk Functions for a MHTPDF δ

R0(δ, θ) = Eθ[L0(δ(X), θ)].

FWER(δ) ≡ R0(δ,0), family-wise error rate.

R1(δ, θ) = Eθ[L1(δ(X), θ)], (expected) FDR.

R2(δ, θ) = Eθ[L2(δ(X), θ)], (expected) MDR.

MP Tests, p-Values, FWER and FDR Control in Multiple Testing – p.8



(Optimal) Choice of MHTPDF δ

With FWER-Control at Level α:

Given an α ∈ (0, 1), to find a δ such that
FWER(δ) = R0(δ,0) ≤ α with R2(δ,1) minimized (or
made small).

With FDR-Control at Level q∗:

Given a q∗ ∈ (0, 1), to find a δ such that R1(δ, θ0) ≤ q∗

with R2(δ,1) minimized (or made small). Here, θ0 is
the true state and is unknown.
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FWER Control: Sidak Procedure

Given α ∈ (0, 1), define

η = 1 − (1 − α)1/M .

The Sidak MHTPDF rejects all null hypothesis Hm0

with pm(xm) ≤ η, where pm(xm) is the observed
p-value for testing Hm0 versus Hm1.

Procedure is p-value based.

Independence of the Xm,m = 1, 2, . . . ,M , crucially
needed to achieve control.
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FDR Control: BH Procedure
Let q∗ ∈ (0, 1) be the desired FDR level.

Let p(1) ≤ p(2) ≤ . . . ≤ p(M) be the ordered p-values,
and let H(m)0 be the null hypothesis associated with
p(m). Define

J = max

{

m ∈ {1, 2, . . . ,M} : p(m) ≤
q∗m

M

}

.

BH MHTPDF: Reject all H(m)0 for m = 1, 2, . . . , J .

Benjamini-Hochberg (JRSS B (95)) proved that this
p-value based procedure, which is adaptive, achieves
the desired FDR control at q∗ whatever θ0 is.
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Some Remarks
In BH procedure, independence is only needed
among those Xms that correspond to true null
hypotheses.

In both Sidak and BH MHTPDFs, powers of the
individual tests were not used in the procedures.

Not clear if differences in powers of the individual
tests are actually taken into account. Since p-values
are treated in a symmetric fashion, it appears that
differences in powers are not invoked.

We now look into the potential effects of differences
in powers. As in the Neyman-Pearson development,
at each m, we first consider a simple null and a
simple alternative.
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Revised Mathematical Setting

‘Genes’ 1 2 ... M

Observed Data X1 X2 ... XM

Data Spaces X1 X2 ... XM

Density of Xm f1 f2 ... fM

Randomizers U1 U2 ... UM

Nulls H10 : f10 H20 : f20 ... HM0 : fM0

Alternatives H11 : f11 H21 : f21 ... HM1 : fM1

True States θ1 θ2 ... θM

NP MP Tests δ∗1(η1) δ∗2(η2) ... δ∗M (ηM )

Test Sizes η1 η2 ... ηM

Test Powers π1(η1) π2(η2) ... πM (ηM )
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Elements of Revised Setting
fm0: known density or mass functions.

fm1: known density or mass functions.

U1, U2, . . . , UM are IID U [0, 1] variables, independent
of the Xms.

Ums auxiliary data generated at start of experiment.
Used only if there is a need to randomize in each of
the tests.

δ∗m(Xm, Um; ηm) is the nonrandomized (we have a
randomizer Um) Neyman-Pearson most powerful test
for Hm0 vs Hm1 of size ηm.

πm(ηm) = Pr{δm(Xm, Um; ηm) = 1|Xm ∼ fm1}: power
of test δm(ηm). Viewed as a function of the size ηm.
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Neyman-Pearson MP Test
For testing Hm0 : fm = fm0 versus Hm1 : fm = fm1 based
on Xm, the size ηm most powerful test is of form:

δm(Xm; ηm) =











1 if λm(Xm) > cm(ηm)

γm(ηm) if λm(Xm) = cm(ηm)

0 if λm(Xm) < cm(ηm)

,

where

λm(xm) =
fm1(xm)

fm0(xm)

and cm(ηm) and γm(ηm) ∈ [0, 1) are chosen to satisfy the
size requirement E{δm(Xm; ηm)|Xm ∼ fm0} = ηm.
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Using the Randomizer Um

The NP most powerful test may need to randomize when
λm(xm) = cm(ηm). As we statisticians are apt to proclaim,

When in doubt, Randomize!

When given the auxiliary data Um, it could be made a
nonrandomized test via:

δ∗m(Xm, Um; ηm) = I{δm(Xm; ηm) = 1}+

I{δm(Xm; ηm) = γm(ηm); Um ≤ γm(ηm)}.

This is the form of the tests displayed in the table of the
revised mathematical setting.
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FWER and MDR in Setting

Suppose then that the respective sizes of the MP tests
are η1, η2, . . . , ηM . Then,

FWER(δ∗) = 1 −
M
∏

m=1

(1 − ηm);

and

R2(δ
∗,1) =

1

M

M
∑

m=1

(1 − πm(ηm)).
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Optimal FWER Control
The problem of choosing an MHTPDF with FWER ≤ α
amounts therefore to choosing the test sizes

(η1(α), η2(α), . . . , ηM (α))

such that
M
∑

m=1

πm(ηm) is maximized

subject to the constraint

M
∏

m=1

(1 − ηm) ≥ 1 − α.
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Existence and Uniqueness: PHM(08)

Theorem: For any α ∈ (0, 1), there always exists a
size vector (η1(α), η2(α), . . . , ηM (α)) that solves the
constrained optimization problem, hence an optimal
MHTPDF that controls the FWER among the
(restricted) class of decision functions considered.

Theorem: If the power functions ηm 7→ πm(ηm) are
strictly increasing for each m = 1, 2, . . . ,M , then the
optimal size vector (η1(α), η2(α), . . . , ηM (α)) is unique.

Corollary: The Sidak MHTFDF obtains when the
power functions ηm 7→ πm(ηm) for m = 1, 2, . . . ,M are
identical.
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Main Ideas Behind Proofs
ηm 7→ πm(ηm) is a concave, continuous, and
nondecreasing function, with πm(1) = 1.

The constraint set Cα = {η :
∏

m(1 − ηm) ≥ 1 − α} is
a closed and convex set containing 0.

For each b, the set Nb = {η :
∑

m πm(ηm) ≥ Mb} is a
closed and convex set containing 1 and is
nonincreasing in b. Also, N0 = [0, 1]M .

Maximize b such that Cα ∩Nb 6= ∅.

Separating Hyperplane Theorem guarantees the
existence of such an optimal b∗ = b.

A size vector in the non-empty intersection Cα ∩Nb∗

is optimal.
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Case of M = 2: Regions in η-Space
BLUE: Upper Boundary of Cα for α = .40; Other Colors:
Lower Boundaries of Nb for Increasing b.
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When Twice-Differentiable
Theorem: If ηm 7→ πm(ηm) is twice-differentiable with
first derivative π′

m(ηm) and second derivative π′′

m(ηm),
the optimal size vector (η1, η2, . . . , ηM ) solves the
Lagrange equations

π′

m(ηm)(1 − ηm) = λ ∈ ℜ;

M
∑

m=1

log(1 − ηm) = log(1 − α).

In PHM (08) we have written an R code to compute
this optimal size vector for certain situations involving
normal, exponential, and binomial distributions.
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Families with MLR Properties
Formulation is for simple null vs simple alternative for
each m so appears limited.

Suppose Xm ∼ fm ∈ Fm = {fm(x;βm) : βm ∈ ℜ}
possessing monotone likelihood ratio (MLR) property.

UMP exists for Hm0 : βm ≤ βm0 vs Hm1 : βm > βm0.

Focus might be on βm1(> βm0) on which a desired
power is needed, and this determines effect size.
Power is evaluated at the value βm1.

Therefore, framework extends more generally in MLR
families.

In the examples, the elements of effect size vector is
varied to induce different powers.
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Example: Normal Distributions
Setting: Xm ∼ N(µm, 1),m = 1, 2, . . . ,M .

At each m, to test Hm0 : µm ≤ 0 vs Hm1 : µm > 0.

The UMP test of level ηm:

δ∗m(Xm; ηm) = I{Xm > Φ−1(1 − ηm)}

with Φ−1(·) is standard normal quantile function.

Effect Size: γm = µm1. Power at this effect size is

πm(ηm) = 1 − Φ(Φ−1(1 − ηm) − γm).

Effect Size Vector: γ = (γ1, γ2, . . . , γM ).
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Normal Example: Small M

Effect Size, γ, Size Vector/[Effi over Sidak]

Configuration M = 20

M/2 : (.5, 1) 10 : (0, .0051)

[125.1]

M/2 : (1, 5) 10 : (.0035, .0016)

[100.3]

M/4 : (0.5, 1, 2, 4) 5 : (0, .0003, .0068, .0031)

[107.1]
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Normal Example: M = 2000; γm

IID
∼ U [.1, 10]
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Exponential Example: M = 400; γm

IID
∼ U [1.1, 12]; n = 10
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Some Observations
Both the normal and exponential settings allowed the
Lagrange solution approach.

Also did an example with binomial distributions;
computations more elaborate since this does not
allow the Lagrange approach.

General characteristics of the optimal size vector and
the powers under this optimal size vector for the
binomial example are similar to the normal and
exponential examples.

Patterns similar as well when the effect sizes were
generated by a non-uniform distribution.

Improvement in overall discovery rate over the Sidak
procedure.
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A ‘Size Investment’ Lesson!
An interesting result from the plots of the optimal size
vectors is that small optimal sizes are allocated to
those where the effect size is either small (which
converts to low power) or the effect size is large
(which converts to high power).

Result is intuitive, in hindsight, and is indeed a
simplistic investment strategy, albeit with respect to
the allocation of test sizes:

Do not invest your size on those where you will not
make discoveries (small power) or those that you will
certainly make discoveries (high power)! Rather,
concentrate on those where it is a bit uncertain, since
your differential gain in overall discovery rate would
be greater!
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Extending to FDR-Control

The optimal FWER-controlling procedure can be
extended to make it into an FDR-controlling
procedure in the spirit of Benjamini-Hochberg.

Idea is to use the FWER value α as the ‘anchor’
which will then lead to the determination of the
optimal sizes for the M tests.

Let
α 7→ (η1(α), η2(α), . . . , ηM (α))

denote the mapping from FWER-value α to the M
tests’ optimal sizes as guaranteed by the earlier
results.
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Proposed Generalized BH Procedure

Data: (X,U) = ((Xm, Um),m = 1, 2 . . . ,M).

Desired FDR-level: q∗. Define α∗

M ≡ α∗

M (X,U) via

α∗

M = sup

{

α ∈ (0, 1) : α ≤
q∗

M

M
∑

m=1

δ∗m(Xm, Um; ηm(α))

}

.

The proposed FDR-controlling MHTPDF is

δ∗(α∗

M ) = (δ∗m(Xm, Um; ηm(α∗

M )),m = 1, 2, . . . ,M).

Theorem: Whatever the true θ0 is, R1(δ
∗(α∗

M ), θ0) ≤ q∗.

Formal Proof: In a forthcoming manuscript.
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Intuition & Motivation (Informal Proof)

QM (δ∗(α)) =

∑

m δm(ηm(α)))(1 − θm)
∑

m δm(α)

E

{

∑

m

δm(ηm(α)(1 − θm)

}

≤ M [1 −
∏

m

(1 − ηm(α)]] = Mα

QM (δ∗(α))
∼

≤
Mα

∑

m δm(ηm(α))

Now, Optimize! α∗

M = sup

{

α : Mα ≤ q∗
∑

m

δm(ηm(α))

}
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Concluding Remarks
Power functions (as functions of their size) of
individual tests matter! Heeded an old lesson of
Neyman and Pearson.

Invest your size on tests with neither too small nor
too high a power.

FWER-controlling procedure an anchor to developing
better FDR-controlling procedures.

However, most probably, the procedures are not yet
the truly optimal ones, since we started with a test δm

that depended only on the data (Xm, Um).

Route to Real Optimality? Is the Bayesian Way!?
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