Estimation after Model Selection

Vanja M. Dukić

Department of Health Studies University of Chicago E-Mail: vanja@uchicago.edu

Edsel A. Peña*

Department of Statistics University of South Carolina E-Mail: pena@stat.sc.edu

ENAR 2003 Talk March 31, 2003 Tampa Bay, FL

Research support from NSF

Motivating Situations

- Suppose you have a random sample $X = (X_1, X_2, ..., X_n)$ (possibly censored) from an unknown distribution F which belongs to either the Weibull class or the gamma class. What is the best way to estimate F(t) or some other parameter of interest?
- Suppose it is known that the unknown df F belongs to either of p models M₁, M₂, ..., M_p, which are possibly nested.
 What is the best way of estimating a parameter common to each of these models?

Intuitive Strategies

Strategy I: Utilize estimators developed under larger model \mathcal{M} , or implement a fully nonparametric approach.

Strategy II (Classical): [Step 1 (Model Selection):] Choose most plausible model using the data, possibly via information measures. [Step 2 (Inference):] Use estimators in the chosen sub-model, but with these estimators still using the same data X.

Strategy III (Bayesian): Determine adaptively (i.e., using X) the plausibility of each of the sub-models, and form a weighted combination of the sub-model estimators or tests. Referred also as model averaging.

Relevance and Issues

What are the consequences of first selecting a sub-model and then performing inference such as estimation or testing hypothesis, with these two steps utilizing the *same* sample data (i.e., *double-dipping)*?

Is it always better to do model-averaging, that is, a Bayesian framework, or equivalently, under what circumstances is model averaging preferable over a classical two-step approach?

When the number of possible models increases, would it be better to simply utilize a wider, possibly nonparametric, model?

A Concrete Gaussian Model

• Data:

$$\boldsymbol{X} \equiv (X_1, X_2, \dots, X_n) \text{ IID } F \in \mathcal{M} = \left\{ N(\mu, \sigma^2) : \mu \in \Re, \sigma^2 > 0 \right\}$$

• Uniformly minimum variance unbiased (UMVU) estimator of σ^2 is the sample variance

$$\hat{\sigma}_{UMVU}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

• Decision-theoretic framework with loss function

$$L_1(\hat{\sigma}^2, (\mu, \sigma^2)) = \left(\frac{\hat{\sigma}^2 - \sigma^2}{\sigma^2}\right)^2.$$

• Risk function: For the quadratic loss L_1 ,

$$\mathsf{Risk}(\hat{\sigma}^2) = \mathsf{Variance}\left(\frac{\hat{\sigma}^2}{\sigma^2}\right) + \left[\mathsf{Bias}\left(\frac{\hat{\sigma}^2}{\sigma^2}\right)\right]^2$$

• S^2 is *not* the best. Dominated by ML and the minimum risk equivariant (MRE) estimators:

$$\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$\hat{\sigma}_{MRE}^2 = \left(\frac{n}{n+1}\right)\hat{\sigma}_{MLE}^2$$

Model M_p : Our 'Test' Model

• Suppose we do not know the exact value of μ , but we do know it is one of p possible values. This leads to model \mathcal{M}_p :

$$\mathcal{M}_p = \left\{ N(\mu, \sigma^2) : \mu \in \{\mu_1, \dots, \mu_p\}, \sigma^2 > 0 \right\}$$

where $\mu_1, \mu_2, \ldots, \mu_p$ are known constants.

- Under \mathcal{M}_p , how should we estimate σ^2 ? What are the consequences of using the estimators developed under \mathcal{M} ?
- Can we exploit structure of \mathcal{M}_p to obtain better estimators of σ^2 ?

Classical Estimators Under M_p

• Sub-Model MLEs and MREs:

$$\hat{\sigma}_i^2 = \frac{1}{n} \sum_{j=1}^n (X_j - \mu_i)^2; \quad \hat{\sigma}_{MRE,i}^2 = \frac{1}{n+2} \sum_{j=1}^n (X_j - \mu_i)^2$$

• Model Selector: $\hat{M} = \hat{M}(X)$

$$\widehat{M} = \arg\min_{1 \le i \le p} \widehat{\sigma}_i^2 = \arg\min_{1 \le i \le p} |\overline{X} - \mu_i|.$$

• \hat{M} chooses the sub-model leading to the smallest estimate of σ^2 , or whose mean is closest to the sample mean.

• MLE of σ^2 under \mathcal{M}_p (a two-step *adaptive* estimator):

$$\hat{\sigma}_{p,MLE}^2 = \hat{\sigma}_{\hat{M}}^2 = \sum_{i=1}^p I\{\hat{M} = i\}\hat{\sigma}_i^2.$$

• An alternative Estimator: Use the sub-model's MRE to obtain

$$\hat{\sigma}_{p,MRE}^2 = \hat{\sigma}_{MRE,\hat{M}}^2 = \sum_{i=1}^p I\{\hat{M}=i\}\hat{\sigma}_{MRE,i}^2.$$

• Properties of *adaptive* estimators not easily obtainable due to interplay between the model selector \hat{M} and the sub-model estimator.

Bayes Estimators Under \mathcal{M}_p

- Joint Prior for (μ, σ^2) :
 - Independent priors
 - Prior for μ : Multinomial $(1, \tilde{\theta})$
 - Prior for σ^2 : Inverted Gamma(κ, β)
- Posterior Probabilities of Sub-Models:

$$\theta_i(x) = \frac{\tilde{\theta}_i \left(n \hat{\sigma}_i^2 / 2 + \beta \right)^{-(n/2 + \kappa - 1)}}{\sum_{j=1}^p \tilde{\theta}_j \left(n \hat{\sigma}_j^2 / 2 + \beta \right)^{-(n/2 + \kappa - 1)}}$$

• Posterior Density of σ^2 :

$$\pi(\sigma^2 \mid \boldsymbol{x}) = C \sum_{i=1}^{p} \tilde{\theta}_i \left(\frac{1}{\sigma^2}\right)^{-(\kappa+n/2)} \exp\left[-\frac{1}{\sigma^2} \left(n\hat{\sigma}_i^2/2 + \beta\right)\right].$$

• Bayes (Weighted) Estimator of σ^2 :

$$\hat{\sigma}_{p,Bayes}^{2}(\boldsymbol{X}) = \sum_{i=1}^{p} \theta_{i}(\boldsymbol{X}) \times \left\{ \left(\frac{n}{n+2(\kappa-2)} \right) \hat{\sigma}_{i}^{2} + \left(\frac{2(\kappa-2)}{n+2(\kappa-2)} \right) \left(\frac{\beta}{\kappa-2} \right) \right\}.$$

• Non-Informative Priors: Uniform prior for sub-models: $\tilde{\theta}_i = 1/p, i = 1, 2, ..., p; \beta \to 0.$

• One particular limiting Bayes estimator is:

$$\hat{\sigma}_{p,LB1}^{2} = \sum_{i=1}^{p} \left[\frac{(\hat{\sigma}_{i}^{2})^{-n/2}}{\sum_{j=1}^{p} (\hat{\sigma}_{j}^{2})^{-n/2}} \right] \hat{\sigma}_{i}^{2}$$

an *adaptively* weighted estimator formed from the sub-model estimators.

• But, based on the simulation studies, a better one is that formed from the sub-model MREs:

$$\hat{\sigma}_{p,PLB1}^2 = \left(\frac{n}{n+2}\right)\hat{\sigma}_{p,LB1}^2$$

Comparing the Estimators

•
$$R\left(\hat{\sigma}_{UMVU}^2, (\mu, \sigma^2)\right) = \frac{2}{n-1}.$$

•
$$R\left(\hat{\sigma}_{MRE}^2, (\mu, \sigma^2)\right) = \frac{2}{n+1}.$$

• Efficiency measure relative to $\hat{\sigma}_{UMVU}^2$:

$$\mathsf{Eff}(\hat{\sigma}^2:\hat{\sigma}_{UMVU}^2) = \frac{R(\hat{\sigma}_{UMVU}^2,(\mu,\sigma^2))}{R(\hat{\sigma}^2,(\mu,\sigma^2))}.$$

• Eff
$$(\hat{\sigma}_{MRE}^2 : \hat{\sigma}_{UMVU}^2) = \frac{n+1}{n-1} = 1 + \frac{2}{n-1}$$

Properties of M_p -Based Estimators

• Notation: Let $Z \sim N(0,1)$ and with μ_{i_0} the *true mean*, define

$$\Delta = \frac{\mu - \mu_{i_0} 1}{\sigma}.$$

• **Proposition:** Under \mathcal{M}_p ,

$$\frac{\widehat{\sigma}_i^2}{\sigma^2} \stackrel{d}{=} \frac{1}{n} \left(W + V_i^2 \right), i = 1, 2, \dots, p;$$

with W and V independent, and

$$W \sim \chi^2_{n-1};$$

 $V = Z \mathbf{1} - \sqrt{n} \Delta \sim N_p(-\sqrt{n} \Delta, J \equiv \mathbf{11'}).$

- Notation: Given Δ , let $\Delta_{(1)} < \Delta_{(2)} < \ldots < \Delta_{(p)}$ be the ordered values. Δ always has a zero component.
- Theorem: Under \mathcal{M}_p ,

$$\frac{\widehat{\sigma}_{p,MLE}^2}{\sigma^2} \stackrel{d}{=} \frac{1}{n} \{W + \sum_{i=1}^p I\{L(\Delta_{(i)}, \Delta) < Z < U(\Delta_{(i)}, \Delta)\}(Z - \sqrt{n}\Delta_{(i)})^2 \};$$

with

$$L(\Delta_{(i)}, \Delta) = \frac{\sqrt{n}}{2} \left[\Delta_{(i)} + \Delta_{(i-1)} \right];$$

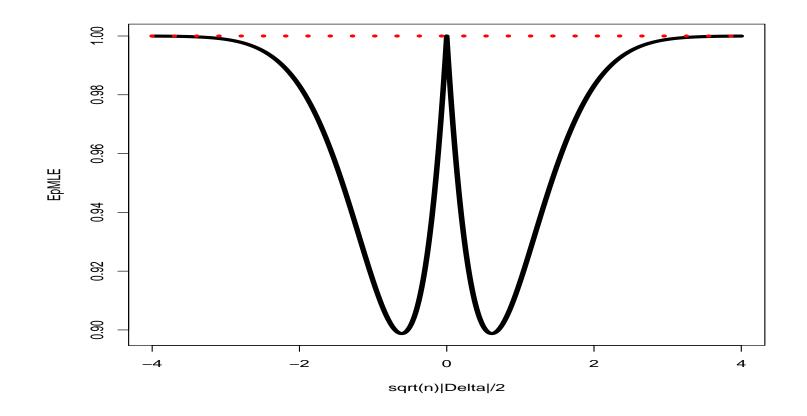
$$U(\Delta_{(i)}, \Delta) = \frac{\sqrt{n}}{2} \left[\Delta_{(i)} + \Delta_{(i+1)} \right].$$

• Mean:

$$\begin{aligned} \mathsf{EpMLE}(\Delta) &\equiv \mathsf{E}\left\{\frac{\widehat{\sigma}_{p,MLE}^2}{\sigma^2}\right\} \\ &= 1 - \frac{2}{\sqrt{n}} \sum_{i=1}^p \Delta_{(i)}[\phi(L(\Delta_{(i)}, \Delta)) - \phi(U(\Delta_{(i)}, \Delta))] + \\ &\sum_{i=1}^p \Delta_{(i)}^2[\Phi(U(\Delta_{(i)}, \Delta)) - \Phi(L(\Delta_{(i)}, \Delta))]; \end{aligned}$$

• Case of p = 2.

$$\mathsf{EpMLE}(\Delta) = 1 - \left(\frac{2}{\sqrt{n}}|\Delta|\right) \times \left\{ \phi\left(\frac{\sqrt{n}}{2}|\Delta|\right) - \left(\frac{\sqrt{n}}{2}|\Delta|\right) \left[1 - \Phi\left(\frac{\sqrt{n}}{2}|\Delta|\right)\right] \right\}$$



• $\hat{\sigma}_{p,MLE}^2$ is negatively biased for σ^2 (even though each submodel estimator is unbiased). Effect of double-dipping. • Variance:

$$VpMLE(\Delta) \equiv Var\left\{\frac{\hat{\sigma}_{p,MLE}^2}{\sigma^2}\right\}$$
$$= \frac{1}{n}\left\{2\left(1-\frac{1}{n}\right) + \frac{1}{n}\left[\sum_{i=1}^p \zeta_{(i)}(4) - \left(\sum_{i=1}^p \zeta_{(i)}(2)\right)^2\right]\right\};$$

$$\zeta_{(i)}(m) \equiv \mathsf{E}\left\{I\{L(\Delta_{(i)}, \Delta) < Z \leq U(\Delta_{(i)}, \Delta)\}(Z - \sqrt{n}\Delta_{(i)})^m\right\}.$$

• These formulas enable computations of the theoretical risk functions of the classical \mathcal{M}_p -based estimators.

An Iterative Estimator

- Consider the Class: $\mathcal{C} = \{ \tilde{\sigma}^2(c) \equiv c \hat{\sigma}_{p,MLE}^2 : c \geq 0 \}$
- The risk function of $\tilde{\sigma}^2(c)$, which is a quadratic function in c, could be minimized wrt c. The minimizing value is

$$c^*(\Delta) = EpMLE(\Delta)/\{VpMLE(\Delta) + [EpMLE(\Delta)]^2\}$$

- Given a c^* , ${\bf \Delta}=(\mu-\mu_{i_0}{\bf 1}_p)/\sigma$ could be estimated via

$$\widehat{\Delta} = \frac{(\mu - \mu_{\widehat{M}} \mathbf{1}_p)}{\widetilde{\sigma}(c^*)}$$

- This in turn could be used to obtain a new estimate of $c^*(\Delta)$

Algorithm for $\tilde{\sigma}_{p,ITER}^2$

- Step 0 (Initialization): Set a value for tol (say, tol = 10^{-8}) and set $c_{old} = 1$.
- Step 1: Define $\tilde{\sigma}^2 = (c_{old}) \hat{\sigma}_{p,MLE}^2$.
- Step 2: Compute $\widehat{\Delta} = (\mu \mu_{\widehat{M}} \mathbf{1}_p) / \widetilde{\sigma}.$
- Step 3: Compute $c_{new} = \frac{EpMLE(\hat{\Delta})}{VpMLE(\hat{\Delta}) + [EpMLE(\hat{\Delta})]^2}$.
- Step 4: If $|c_{old}-c_{new}| < tol$ set $\tilde{\sigma}_{p,ITER}^2 = \tilde{\sigma}^2$ then stop; else $c_{old} = c_{new}$ then back to Step 1.

Impact of Number of Sub-Models

• Theorem: With n > 1 fixed, if as $p \to \infty$, $\max_{2 \le i \le p} |\Delta_{(i)} - \Delta_{(i-1)}| \to 0$, $\Delta_{(1)} \to -\infty$, and $\Delta_{(p)} \to \infty$, then

$$\mathsf{Eff}\left(\hat{\sigma}_{p,MRE}^{2}:\hat{\sigma}_{MRE}^{2}\right) \to \frac{2(n+2)^{2}}{(n+1)(2n+7)} < 1.$$

• Therefore, the advantage of exploiting the structure of \mathcal{M}_p could be *lost forever* when p increases!

Representation: Weighted Estimators

• 'Umbrella' Estimator: For $\alpha > 0$, define

$$\hat{\sigma}_{p,LB}^2(\alpha) = \sum_{i=1}^p \left\{ \frac{(\hat{\sigma}_i^2)^{-\alpha}}{\sum_{j=1}^p (\hat{\sigma}_j^2)^{-\alpha}} \right\} \hat{\sigma}_i^2.$$

• Theorem: Under \mathcal{M}_p ,

$$\frac{\hat{\sigma}_{p,LB}^2(\alpha)}{\sigma^2} \stackrel{d}{=} \frac{W}{n} \{1 + H(T;\alpha)\};$$
$$T = (T_1, T_2, \dots, T_p)' = V/\sqrt{W};$$

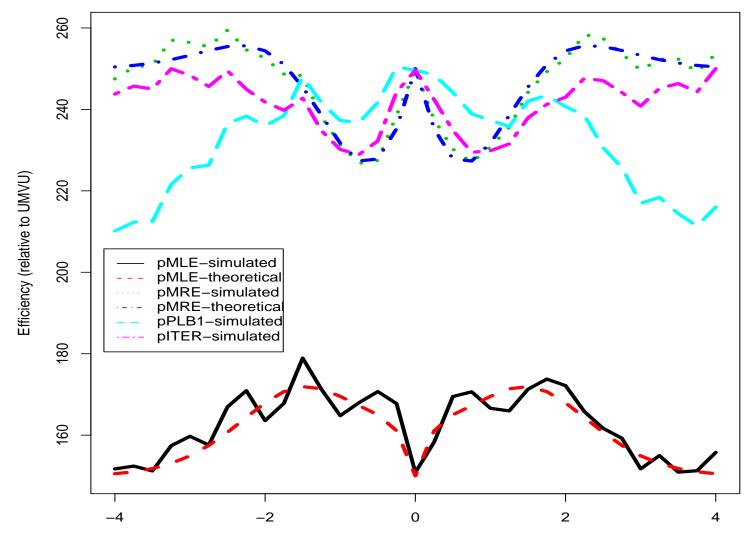
$$H(T; \alpha) = \sum_{i=1}^{p} \theta_i(T; \alpha) T_i^2;$$
$$\theta_i(T; \alpha) = \frac{(1 + T_i^2)^{-\alpha}}{\sum_{j=1}^{p} (1 + T_j^2)^{-\alpha}}.$$

- Even with this representation, still difficult to obtain exact expressions for the mean and variance.
- Developed 2nd-order approximations, but were not so satisfactory when $n \leq 15$.
- In the comparisons, we resorted to simulations to approximate the risk function of the weighted estimators.

Some Simulation Results

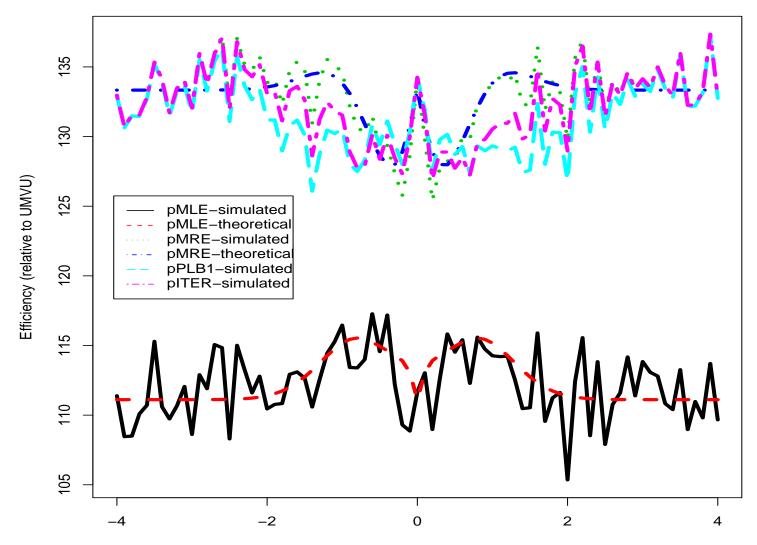
Figures 1 and 2

Simulated and Theoretical Risk Curves for n = 3 and n = 10(Based on 10000 replications per Δ)



Theoretical and/or Simulated Relative (to UMVU) Efficiency Curves

Delta



Theoretical and/or Simulated Relative (to UMVU) Efficiency Curves

Delta

Table: Relative efficiency (wrt UMVU) for symmetric Δ and increasing p with limits [-1, 1] and n = 3, 10, 30 using 1000 replications. Except for the first set, denoted by (*), where the mean vector is $\{0, 1\}$, the other mean vectors are of form $[-1:2^{-k}:1]$ whose $p = 2^{(k+1)} + 1$. A last letter of 's' on the label means 'theoretical', whereas an 's' means 'simulated.'

\overline{n}	k	p	pMLEs	pMLEt	pMREs	pMREt	pPLB1s	pITERs
3	*	2	171	170	238	232	247	238
10	*	2	118	115	139	134	133	135
30	*	2	101	104	109	111	108	109
3	0	3	208	195	219	216	260	224
10	0	3	116	120	136	134	127	129
30	0	3	111	104	115	111	114	114
3	1	5	185	185	203	199	248	212
10	1	5	114	119	119	124	120	118
30	1	5	111	106	115	110	112	113
3	2	9	188	182	198	195	243	209
10	2	9	117	118	120	120	127	123
30	2	9	102	106	104	107	103	103
3	3	17	183	181	190	194	235	200
10	3	17	111	117	118	119	123	119
30	3	17	113	105	115	106	115	115
3	4	33	184	181	193	194	239	204
10	4	33	117	117	116	119	125	121
30	4	33	102	105	105	105	105	105
3	5	65	159	181	194	194	226	199
10	5	65	124	117	120	119	132	127
30	5	65	106	105	105	105	107	107

Concluding Remarks

- In models with sub-models, and interest is to infer about a common parameter, possible approaches are:
- Approach I: Use a wider model subsuming the sub-models, possibly a fully nonparametric model. Possibly inefficient, though might be easier to ascertain properties.
- Approach II: A two-step approach: Select sub-model using data; then use procedure for chosen sub-model, again using same data.

- **Approach III:** Utilize a Bayesian framework. Assign a prior to the sub-models, and (conditional) priors on the parameters within the sub-models. Leads to model-averaging.
- Approaches (II) and (III) are preferable over approach (I); but when the number of sub-models is large, approach (I) may provide better estimators and a simpler determination of the properties.
- If the sub-models are quite different and the model selector can choose the correct model easily, or the sub-models are not too different that an erroneous choice of the model by the selector will not matter much, approach (II) appears

preferable. In the in-between situation, approach (III) seems preferable.

- For the specific Gaussian model considered, the iterative estimator actually performed in a robust fashion.
- To conclude,

Observe Caution!

when doing inference after model selection especially when *double-dipping* on the data!