Estimation after Model Selection

Vanja M. Dukić
Department of Health Studies
University of Chicago
E-Mail: vanja@uchicago.edu

Edsel A. Peña*
Department of Statistics
University of South Carolina
E-Mail: pena@stat.sc.edu

ENAR 2003 Talk
March 31, 2003
Tampa Bay, FL

Research support from NSF

Motivating Situations

- Suppose you have a random sample $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ (possibly censored) from an unknown distribution F which belongs to either the Weibull class or the gamma class. What is the best way to estimate $F(t)$ or some other parameter of interest?
- Suppose it is known that the unknown df F belongs to either of p models $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{p}$, which are possibly nested. What is the best way of estimating a parameter common to each of these models?

Intuitive Strategies

Strategy I: Utilize estimators developed under larger model \mathcal{M}, or implement a fully nonparametric approach.

Strategy II (Classical): [Step 1 (Model Selection):] Choose most plausible model using the data, possibly via information measures. [Step 2 (Inference):] Use estimators in the chosen sub-model, but with these estimators still using the same data \boldsymbol{X}.

Strategy III (Bayesian): Determine adaptively (i.e., using \boldsymbol{X}) the plausibility of each of the sub-models, and form a weighted combination of the sub-model estimators or tests. Referred also as model averaging.

Relevance and Issues

What are the consequences of first selecting a sub-model and then performing inference such as estimation or testing hypothesis, with these two steps utilizing the same sample data (i.e., double-dipping)?

Is it always better to do model-averaging, that is, a Bayesian framework, or equivalently, under what circumstances is model averaging preferable over a classical two-step approach?

When the number of possible models increases, would it be better to simply utilize a wider, possibly nonparametric, model?

A Concrete Gaussian Model

- Data:

$$
\boldsymbol{X} \equiv\left(X_{1}, X_{2}, \ldots, X_{n}\right) \text { IID } F \in \mathcal{M}=\left\{N\left(\mu, \sigma^{2}\right): \mu \in \Re, \sigma^{2}>0\right\}
$$

- Uniformly minimum variance unbiased (UMVU) estimator of σ^{2} is the sample variance

$$
\widehat{\sigma}_{U M V U}^{2}=S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

- Decision-theoretic framework with loss function

$$
L_{1}\left(\hat{\sigma}^{2},\left(\mu, \sigma^{2}\right)\right)=\left(\frac{\hat{\sigma}^{2}-\sigma^{2}}{\sigma^{2}}\right)^{2} .
$$

- Risk function: For the quadratic loss L_{1},

$$
\operatorname{Risk}\left(\hat{\sigma}^{2}\right)=\operatorname{Variance}\left(\frac{\hat{\sigma}^{2}}{\sigma^{2}}\right)+\left[\operatorname{Bias}\left(\frac{\hat{\sigma}^{2}}{\sigma^{2}}\right)\right]^{2}
$$

- S^{2} is not the best. Dominated by ML and the minimum risk equivariant (MRE) estimators:

$$
\begin{aligned}
& \widehat{\sigma}_{M L E}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
& \widehat{\sigma}_{M R E}^{2}=\left(\frac{n}{n+1}\right) \hat{\sigma}_{M L E}^{2}
\end{aligned}
$$

Model \mathcal{M}_{p} : Our 'Test’ Model

- Suppose we do not know the exact value of μ, but we do know it is one of p possible values. This leads to model \mathcal{M}_{p} :

$$
\mathcal{M}_{p}=\left\{N\left(\mu, \sigma^{2}\right): \mu \in\left\{\mu_{1}, \ldots, \mu_{p}\right\}, \sigma^{2}>0\right\}
$$

where $\mu_{1}, \mu_{2}, \ldots, \mu_{p}$ are known constants.

- Under \mathcal{M}_{p}, how should we estimate σ^{2} ? What are the consequences of using the estimators developed under \mathcal{M} ?
- Can we exploit structure of \mathcal{M}_{p} to obtain better estimators of σ^{2} ?

Classical Estimators Under \mathcal{M}_{p}

- Sub-Model MLEs and MREs:

$$
\widehat{\sigma}_{i}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-\mu_{i}\right)^{2} ; \quad \widehat{\sigma}_{M R E, i}^{2}=\frac{1}{n+2} \sum_{j=1}^{n}\left(X_{j}-\mu_{i}\right)^{2}
$$

- Model Selector: $\hat{M}=\hat{M}(\boldsymbol{X})$

$$
\hat{M}=\arg \min _{1 \leq i \leq p} \widehat{\sigma}_{i}^{2}=\arg \min _{1 \leq i \leq p}\left|\bar{X}-\mu_{i}\right| .
$$

- \hat{M} chooses the sub-model leading to the smallest estimate of σ^{2}, or whose mean is closest to the sample mean.
- MLE of σ^{2} under \mathcal{M}_{p} (a two-step adaptive estimator):

$$
\widehat{\sigma}_{p, M L E}^{2}=\widehat{\sigma}_{\widehat{M}}^{2}=\sum_{i=1}^{p} I\{\hat{M}=i\} \widehat{\sigma}_{i}^{2}
$$

- An alternative Estimator: Use the sub-model's MRE to obtain

$$
\hat{\sigma}_{p, M R E}^{2}=\widehat{\sigma}_{M R E, \hat{M}}^{2}=\sum_{i=1}^{p} I\{\hat{M}=i\} \widehat{\sigma}_{M R E, i}^{2}
$$

- Properties of adaptive estimators not easily obtainable due to interplay between the model selector \hat{M} and the sub-model estimator.

Bayes Estimators Under \mathcal{M}_{p}

- Joint Prior for $\left(\mu, \sigma^{2}\right)$:
- Independent priors
- Prior for μ : Multinomial $(1, \tilde{\theta})$
- Prior for σ^{2} : Inverted $\operatorname{Gamma}(\kappa, \beta)$
- Posterior Probabilities of Sub-Models:

$$
\theta_{i}(\boldsymbol{x})=\frac{\tilde{\theta}_{i}\left(n \hat{\sigma}_{i}^{2} / 2+\beta\right)^{-(n / 2+\kappa-1)}}{\sum_{j=1}^{p} \tilde{\theta}_{j}\left(n \widehat{\sigma}_{j}^{2} / 2+\beta\right)^{-(n / 2+\kappa-1)}}
$$

- Posterior Density of σ^{2} :

$$
\pi\left(\sigma^{2} \mid \boldsymbol{x}\right)=C \sum_{i=1}^{p} \tilde{\theta}_{i}\left(\frac{1}{\sigma^{2}}\right)^{-(\kappa+n / 2)} \exp \left[-\frac{1}{\sigma^{2}}\left(n \widehat{\sigma}_{i}^{2} / 2+\beta\right)\right]
$$

- Bayes (Weighted) Estimator of σ^{2} :

$$
\begin{aligned}
& \hat{\sigma}_{p, \text { Bayes }}^{2}(\boldsymbol{X})=\sum_{i=1}^{p} \theta_{i}(\boldsymbol{X}) \times \\
& \quad\left\{\left(\frac{n}{n+2(\kappa-2)}\right) \widehat{\sigma}_{i}^{2}+\left(\frac{2(\kappa-2)}{n+2(\kappa-2)}\right)\left(\frac{\beta}{\kappa-2}\right)\right\} .
\end{aligned}
$$

- Non-Informative Priors: Uniform prior for sub-models: $\widetilde{\theta}_{i}=$ $1 / p, i=1,2, \ldots, p ; \beta \rightarrow 0$.
- One particular limiting Bayes estimator is:

$$
\widehat{\sigma}_{p, L B 1}^{2}=\sum_{i=1}^{p}\left[\frac{\left(\hat{\sigma}_{i}^{2}\right)^{-n / 2}}{\sum_{j=1}^{p}\left(\widehat{\sigma}_{j}^{2}\right)^{-n / 2}}\right] \widehat{\sigma}_{i}^{2}
$$

an adaptively weighted estimator formed from the sub-model estimators.

- But, based on the simulation studies, a better one is that formed from the sub-model MREs:

$$
\widehat{\sigma}_{p, P L B 1}^{2}=\left(\frac{n}{n+2}\right) \hat{\sigma}_{p, L B 1}^{2}
$$

Comparing the Estimators

- $R\left(\hat{\sigma}_{U M V U}^{2},\left(\mu, \sigma^{2}\right)\right)=\frac{2}{n-1}$.
- $R\left(\hat{\sigma}_{M R E}^{2},\left(\mu, \sigma^{2}\right)\right)=\frac{2}{n+1}$.
- Efficiency measure relative to $\hat{\sigma}_{U M V U}^{2}$:

$$
\operatorname{Eff}\left(\widehat{\sigma}^{2}: \widehat{\sigma}_{U M V U}^{2}\right)=\frac{R\left(\hat{\sigma}_{U M V U}^{2},\left(\mu, \sigma^{2}\right)\right)}{R\left(\hat{\sigma}^{2},\left(\mu, \sigma^{2}\right)\right)}
$$

- $\operatorname{Eff}\left(\widehat{\sigma}_{M R E}^{2}: \widehat{\sigma}_{U M V U}^{2}\right)=\frac{n+1}{n-1}=1+\frac{2}{n-1}$.

Properties of \mathcal{M}_{p}-Based Estimators

- Notation: Let $Z \sim N(0,1)$ and with $\mu_{i_{0}}$ the true mean, define

$$
\Delta=\frac{\mu-\mu_{i_{0}} \mathbf{1}}{\sigma} .
$$

- Proposition: Under \mathcal{M}_{p},

$$
\frac{\hat{\sigma}_{i}^{2}}{\sigma^{2}} \stackrel{d}{=} \frac{1}{n}\left(W+V_{i}^{2}\right), i=1,2, \ldots, p ;
$$

with W and \boldsymbol{V} independent, and

$$
\begin{gathered}
W \sim \chi_{n-1}^{2} ; \\
\boldsymbol{V}=Z 1-\sqrt{n} \boldsymbol{\Delta} \sim N_{p}\left(-\sqrt{n} \boldsymbol{\Delta}, \boldsymbol{J} \equiv 11^{\prime}\right) .
\end{gathered}
$$

- Notation: Given Δ, let $\Delta_{(1)}<\Delta_{(2)}<\ldots<\Delta_{(p)}$ be the ordered values. Δ always has a zero component.
- Theorem: Under \mathcal{M}_{p},

$$
\begin{aligned}
& \frac{\widehat{\sigma}_{p, M L E}^{2}}{\sigma^{2}} \stackrel{d}{=} \frac{1}{n}\{W+ \\
& \left.\quad \sum_{i=1}^{p} I\left\{L\left(\Delta_{(i)}, \Delta\right)<Z<U\left(\Delta_{(i)}, \Delta\right)\right\}\left(Z-\sqrt{n} \Delta_{(i)}\right)^{2}\right\}
\end{aligned}
$$

with

$$
\begin{aligned}
L\left(\Delta_{(i)}, \Delta\right) & =\frac{\sqrt{n}}{2}\left[\Delta_{(i)}+\Delta_{(i-1)}\right] ; \\
U\left(\Delta_{(i)}, \Delta\right) & =\frac{\sqrt{n}}{2}\left[\Delta_{(i)}+\Delta_{(i+1)}\right] .
\end{aligned}
$$

- Mean:

$$
\begin{aligned}
& \operatorname{EpMLE}(\Delta) \equiv \mathbf{E}\left\{\frac{\hat{\sigma}_{p, M L E}^{2}}{\sigma^{2}}\right\} \\
& =1-\frac{2}{\sqrt{n}} \sum_{i=1}^{p} \Delta_{(i)}\left[\phi\left(L\left(\Delta_{(i)}, \Delta\right)\right)-\phi\left(U\left(\Delta_{(i)}, \Delta\right)\right)\right]+ \\
& \\
& \quad \sum_{i=1}^{p} \Delta_{(i)}^{2}\left[\Phi\left(U\left(\Delta_{(i)}, \Delta\right)\right)-\Phi\left(L\left(\Delta_{(i)}, \Delta\right)\right)\right]
\end{aligned}
$$

- Case of $p=2$.

$$
\begin{aligned}
& \operatorname{EpMLE}(\Delta)=1-\left(\frac{2}{\sqrt{n}}|\Delta|\right) \times \\
& \qquad\left\{\phi\left(\frac{\sqrt{n}}{2}|\Delta|\right)-\left(\frac{\sqrt{n}}{2}|\Delta|\right)\left[1-\Phi\left(\frac{\sqrt{n}}{2}|\Delta|\right)\right]\right\}
\end{aligned}
$$

- $\hat{\sigma}_{p, M L E}^{2}$ is negatively biased for σ^{2} (even though each submodel estimator is unbiased). Effect of double-dipping.
- Variance:

$$
\begin{gathered}
\operatorname{VpMLE}(\Delta) \equiv \operatorname{Var}\left\{\frac{\hat{\sigma}_{p, M L E}^{2}}{\sigma^{2}}\right\} \\
=\frac{1}{n}\left\{2\left(1-\frac{1}{n}\right)+\frac{1}{n}\left[\sum_{i=1}^{p} \zeta_{(i)}(4)-\left(\sum_{i=1}^{p} \zeta_{(i)}(2)\right)^{2}\right]\right\} \\
\zeta_{(i)}(m) \equiv \mathbf{E}\left\{I\left\{L\left(\Delta_{(i)}, \Delta\right)<Z \leq U\left(\Delta_{(i)}, \Delta\right)\right\}\left(Z-\sqrt{n} \Delta_{(i)}\right)^{m}\right\} .
\end{gathered}
$$

- These formulas enable computations of the theoretical risk functions of the classical \mathcal{M}_{p}-based estimators.

An Iterative Estimator

- Consider the Class: $\mathcal{C}=\left\{\tilde{\sigma}^{2}(c) \equiv c \hat{\sigma}_{p, M L E}^{2}: c \geq 0\right\}$
- The risk function of $\tilde{\sigma}^{2}(c)$, which is a quadratic function in c, could be minimized wrt c. The minimizing value is

$$
c^{*}(\boldsymbol{\Delta})=E p M L E(\boldsymbol{\Delta}) /\left\{V p M L E(\boldsymbol{\Delta})+[E p M L E(\boldsymbol{\Delta})]^{2}\right\}
$$

- Given a $c^{*}, \boldsymbol{\Delta}=\left(\mu-\mu_{i_{0}} \mathbf{1}_{p}\right) / \sigma$ could be estimated via

$$
\widehat{\Delta}=\frac{\left(\mu-\mu_{\hat{M}} \mathbf{1}_{p}\right)}{\tilde{\sigma}\left(c^{*}\right)}
$$

- This in turn could be used to obtain a new estimate of $c^{*}(\Delta)$

Algorithm for $\tilde{\sigma}_{p, I T E R}^{2}$

- Step 0 (Initialization): Set a value for tol (say, tol $=$ 10^{-8}) and set $c_{\text {old }}=1$.
- Step 1: Define $\tilde{\sigma}^{2}=\left(c_{o l d}\right) \hat{\sigma}_{p, M L E}^{2}$.
- Step 2: Compute $\widehat{\Delta}=\left(\mu-\mu_{\widehat{M}} \mathbf{1}_{p}\right) / \tilde{\sigma}$.
- Step 3: Compute $c_{\text {new }}=\frac{E p M L E(\widehat{\boldsymbol{\Delta}})}{\operatorname{VpMLE(\overline {\mathbf {\Delta }})+[EpMLE(\overline {\boldsymbol {\Delta }})]^{2}}}$.
- Step 4: If $\left|c_{o l d}-c_{n e w}\right|<t o l$ set $\tilde{\sigma}_{p, I T E R}^{2}=\tilde{\sigma}^{2}$ then stop; else $c_{o l d}=c_{n e w}$ then back to Step 1.

Impact of Number of Sub-Models

- Theorem: With $n>1$ fixed, if as $p \rightarrow \infty, \max _{2 \leq i \leq p} \mid \Delta_{(i)}-$ $\Delta_{(i-1)} \mid \rightarrow 0, \Delta_{(1)} \rightarrow-\infty$, and $\Delta_{(p)} \rightarrow \infty$, then

$$
\operatorname{Eff}\left(\hat{\sigma}_{p, M R E}^{2}: \widehat{\sigma}_{M R E}^{2}\right) \rightarrow \frac{2(n+2)^{2}}{(n+1)(2 n+7)}<1 .
$$

- Therefore, the advantage of exploiting the structure of \mathcal{M}_{p} could be lost forever when p increases!

Representation: Weighted Estimators

- 'Umbrella' Estimator: For $\alpha>0$, define

$$
\hat{\sigma}_{p, L B}^{2}(\alpha)=\sum_{i=1}^{p}\left\{\frac{\left(\widehat{\sigma}_{i}^{2}\right)^{-\alpha}}{\sum_{j=1}^{p}\left(\widehat{\sigma}_{j}^{2}\right)^{-\alpha}}\right\} \widehat{\sigma}_{i}^{2}
$$

- Theorem: Under \mathcal{M}_{p},

$$
\begin{aligned}
& \frac{\widehat{\sigma}_{p, L B}^{2}(\alpha)}{\sigma^{2}} \stackrel{d}{=} \frac{W}{n}\{1+H(\boldsymbol{T} ; \alpha)\} ; \\
& \boldsymbol{T}=\left(T_{1}, T_{2}, \ldots, T_{p}\right)^{\prime}=\boldsymbol{V} / \sqrt{W} ;
\end{aligned}
$$

$$
\begin{gathered}
H(\boldsymbol{T} ; \alpha)=\sum_{i=1}^{p} \theta_{i}(\boldsymbol{T} ; \alpha) T_{i}^{2} \\
\theta_{i}(\boldsymbol{T} ; \alpha)=\frac{\left(1+T_{i}^{2}\right)^{-\alpha}}{\sum_{j=1}^{p}\left(1+T_{j}^{2}\right)^{-\alpha}}
\end{gathered}
$$

- Even with this representation, still difficult to obtain exact expressions for the mean and variance.
- Developed 2nd-order approximations, but were not so satisfactory when $n \leq 15$.
- In the comparisons, we resorted to simulations to approximate the risk function of the weighted estimators.

Some Simulation Results

Figures 1 and 2
Simulated and Theoretical Risk Curves
for $n=3$ and $n=10$
(Based on 10000 replications per Δ)

Theoretical and/or Simulated Relative (to UMVU) Efficiency Curves

Theoretical and/or Simulated Relative (to UMVU) Efficiency Curves

Table: Relative efficiency (wrt UMVU) for symmetric Δ and increasing p with limits $[-1,1]$ and $n=3,10,30$ using 1000 replications. Except for the first set, denoted by $(*)$, where the mean vector is $\{0,1\}$, the other mean vectors are of form $\left[-1: 2^{-k}: 1\right]$ whose $p=2^{(k+1)}+1$. A last letter of ' s ' on the label means 'theoretical', whereas an ' s ' means 'simulated.'

n	k	p	pMLEs	pMLEt	pMREs	pMREt	pPLB1s	pITERs
3	$*$	2	171	170	238	232	247	238
10	$*$	2	118	115	139	134	133	135
30	$*$	2	101	104	109	111	108	109
3	0	3	208	195	219	216	260	224
10	0	3	116	120	136	134	127	129
30	0	3	111	104	115	111	114	114
3	1	5	185	185	203	199	248	212
10	1	5	114	119	119	124	120	118
30	1	5	111	106	115	110	112	113
3	2	9	188	182	198	195	243	209
10	2	9	117	118	120	120	127	123
30	2	9	102	106	104	107	103	103
3	3	17	183	181	190	194	235	200
10	3	17	111	117	118	119	123	119
30	3	17	113	105	115	106	115	115
3	4	33	184	181	193	194	239	204
10	4	33	117	117	116	119	125	121
30	4	33	102	105	105	105	105	105
3	5	65	159	181	194	194	226	199
10	5	65	124	117	120	119	132	127
30	5	65	106	105	105	105	107	107

Concluding Remarks

- In models with sub-models, and interest is to infer about a common parameter, possible approaches are:
- Approach I: Use a wider model subsuming the sub-models, possibly a fully nonparametric model. Possibly inefficient, though might be easier to ascertain properties.
- Approach II: A two-step approach: Select sub-model using data; then use procedure for chosen sub-model, again using same data.
- Approach III: Utilize a Bayesian framework. Assign a prior to the sub-models, and (conditional) priors on the parameters within the sub-models. Leads to model-averaging.
- Approaches (II) and (III) are preferable over approach (I); but when the number of sub-models is large, approach (I) may provide better estimators and a simpler determination of the properties.
- If the sub-models are quite different and the model selector can choose the correct model easily, or the sub-models are not too different that an erroneous choice of the model by the selector will not matter much, approach (II) appears
preferable. In the in-between situation, approach (III) seems preferable.
- For the specific Gaussian model considered, the iterative estimator actually performed in a robust fashion.
- To conclude,

Observe Caution!

when doing inference after model selection especially when double-dipping on the data!

