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Motivating Situations

e Suppose you have a random sample X = (X1,Xo,...,Xn)
(possibly censored) from an unknown distribution F' which
belongs to either the Weibull class or the gamma class. What

is the best way to estimate F(¢t) or some other parameter of
interest?

e Suppose it is known that the unknown df F belongs to ei-

ther of p models My, Mo, ..., Myp, which are possibly nested.
What is the best way of estimating a parameter common to
each of these models?



Intuitive Strategies

Strategy I. Utilize estimators developed under larger model M,
or implement a fully nonparametric approach.

Strategy II (Classical): [Step 1 (Model Selection):] Choose
most plausible model using the data, possibly via information
measures. [Step 2 (Inference):] Use estimators in the chosen
sub-model, but with these estimators still using the same data
X.

Strategy III (Bayesian): Determine adaptively (i.e., using X)
the plausibility of each of the sub-models, and form a weighted
combination of the sub-model estimators or tests. Referred also
as model averaging.



Relevance and Issues

What are the consequences of first selecting a sub-model and
then performing inference such as estimation or testing hypoth-
esis, with these two steps utilizing the same sample data (i.e.,
double-dipping)?

Is it always better to do model-averaging, that is, a Bayesian
framework, or equivalently, under what circumstances is model
averaging preferable over a classical two-step approach?

When the number of possible models increases, would it be bet-
ter to simply utilize a wider, possibly nonparametric, model?



A Concrete Gaussian Model

e Data:
X =(X1,X2,...,Xp) ID F € M={N(p,0°) : p € ®,0° > 0}

e Uniformly minimum variance unbiased (UMVU) estimator of

o2 is the sample variance

1 fj (X; — X)?.
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e Decision-theoretic framework with loss function
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e Risk function: For the quadratic loss L1,
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e S2 is not the best. Dominated by ML and the minimum risk
equivariant (MRE) estimators:
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Model M,: Our ‘Test’ Model

e Suppose we do not know the exact value of u, but we do
know it is one of p possible values. This leads to model My:

Myp = {N(#,GQ) € {p1, . ppt, ot > O}

where p1, uo, ..., 1p are kKnown constants.

e Under My, how should we estimate ¢2? What are the con-
sequences of using the estimators developed under M7

e Can we exploit structure of M, to obtain better estimators
of 027



Classical Estimators Under M,

e Sub-Model MLEs and MREs:
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e Model Selector: M = M(X)
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e M chooses the sub-model leading to the smallest estimate
of 02, or whose mean is closest to the sample mean.



e MLE of ¢2 under M, (a two-step adaptive estimator):
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e An alternative Estimator: Use the sub-model’'s MRE to

obtain
P
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e Properties of adaptive estimators not easily obtainable due
to interplay between the model selector M and the sub-model
estimator.



Bayes Estimators Under M,

e Joint Prior for (u,o?):
e Independent priors
e Prior for p: Multinomial(1,0)

e Prior for ¢2: Inverted Gamma(k, 3)

e Posterior Probabilities of Sub-Models:
~ —(n/24+Kk—1)
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e Posterior Density of o2:
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e Bayes (Weighted) Estimator of o2:

p
65 Bayes(X) = D 0;(X)x
1=1
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¢ Non-Informative Priors: Uniform prior for sub-models: 8, =
1/p,i=1,2,...,p;, 8 — 0.




e One particular limiting Bayes estimator is:
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an adaptively weighted estimator formed from the sub-model
estimators.

e But, based on the simulation studies, a better one is that
formed from the sub-model MRESs:
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Comparing the Estimators
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Properties of M,-Based Estimators

e Notation: Let Z ~ N(O,1) and with u;, the true mean,
define
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e Proposition: Under M,,
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with W and V independent, and
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e Notation: Given A, let Ay < Ay < ... < A, be the
ordered values. A always has a zero component.

e Theorem: Under My,
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e Mean:
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e Case of p= 2.
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° 8§’MLE IS negatively biased for o2 (even though each sub-

model estimator is unbiased). Effect of double-dipping.



e \Variance:
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e [ hese formulas enable computations of the theoretical risk
functions of the classical Mjy-based estimators.



An Iterative Estimator

Consider the Class: C = {5%(¢) = ¢d2 yppp: ¢ >0}

The risk function of 32(¢), which is a quadratic function
in ¢, could be minimized wrt ¢. The minimizing value is

c*(A) = EpMLE(A)/{VpMLE(A) + [EpMLE(A)]?}

Given a ¢*, A = (u — piylp)/o could be estimated via

A = = ryplp)
o(c*)

This in turn could be used to obtain a new estimate of
c*(A)




Algorithm for 52 ;1o

Step O (Initialization): Set a value for tol (say, tol =
1073) and set ¢,y = 1.

Step 1: Define 52 = (Cold)ag MLE-
Step 2: Compute A = (u — pilp) /o

EpMLE(A)

Step 3: Compute cpew = VpMLE(A) 4 EpMLEAY?

Step 4: If |c,jg—Cnew| < tol set 5§,ITER = 52

else c,jqg = Ccnew then back to Step 1.

then stop;



Impact of Number of Sub-Models

e Theorem: With n > 1 fixed, if as p — oo, Maxo<i<p D) —
A(i—l)l — 0, A(l) — —00, and A(p) — 00, then

2(n + 2)2
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e T herefore, the advantage of exploiting the structure of M,
could be lost forever when p increases!



Representation: Weighted Estimators

e ‘Umbrella’ Estimator: For o > 0, define
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e Theorem: Under My,
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e Even with this representation, still difficult to obtain exact
expressions for the mean and variance.

e Developed 2nd-order approximations, but were not so satis-
factory when n < 15.

e In the comparisons, we resorted to simulations to approxi-
mate the risk function of the weighted estimators.



Some Simulation Results

Figures 1 and 2

Simulated and Theoretical Risk Curves
for n =3 and n = 10
(Based on 10000 replications per A)




Efficiency (relative to UMVU)
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Efficiency (relative to UMVU)
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Table: Relative efficiency (wrt UMVU) for symmetric A and
increasing p with limits [—-1,1] and n = 3,10,30 using 1000 repli-
cations. Except for the first set, denoted by (*), where the mean
vector is {0, 1}, the other mean vectors are of form [—1 : 277 : 1]
whose p = 2(k+1) 4 1. A Jast letter of ‘s’ on the label means
‘theoretical’, whereas an ‘s’ means ‘simulated.’



n | k| p | PMLEsS | pMLEt | pPMREs | pMREt | pPLB1ls | pITERS
3 | *| 2 171 170 238 232 247 238
10 | * | 2 118 115 139 134 133 135
30 | ¥ | 2 101 104 109 111 108 109
3 10| 3 208 195 219 216 260 224
10 0] 3 116 120 136 134 127 129
30 0| 3 111 104 115 111 114 114
3 11| 5 185 185 203 199 248 212
10| 1] 5 114 119 119 124 120 118
301 5 111 106 115 110 112 113
3 12| 9 188 182 198 195 243 209
101 2] 9 117 118 120 120 127 123
302 9 102 106 104 107 103 103
3 |3 17 183 181 190 194 235 200
10 | 3 | 17 111 117 118 119 123 119
30 | 3| 17 113 105 115 106 115 115
3 14| 33 184 181 193 194 239 204
10 | 4 | 33 117 117 116 119 125 121
30 | 4 | 33 102 105 105 105 105 105
3 | 5|65 159 181 194 194 226 199
10 | 5 | 65 124 117 120 119 132 127
30 | 5| 65 106 105 105 105 107 107




Concluding Remarks

e In models with sub-models, and interest is to infer about a
common parameter, possible approaches are:

e Approach I. Use a wider model subsuming the sub-models,
possibly a fully nonparametric model. Possibly inefficient,
though might be easier to ascertain properties.

e Approach II: A two-step approach: Select sub-model using
data; then use procedure for chosen sub-model, again using
same data.



e Approach III: Utilize a Bayesian framework. Assign a prior
to the sub-models, and (conditional) priors on the parameters
within the sub-models. Leads to model-averaging.

e Approaches (II) and (III) are preferable over approach (I);
but when the number of sub-models is large, approach (I)
may provide better estimators and a simpler determination
of the properties.

e If the sub-models are quite different and the model selec-
tor can choose the correct model easily, or the sub-models
are not too different that an erroneous choice of the model
by the selector will not matter much, approach (II) appears



preferable. In the in-between situation, approach (III) seems
preferable.

e For the specific Gaussian model considered, the iterative es-
timator actually performed in a robust fashion.

e [0 conclude,
Observe Caution!

when doing inference after model selection especially when
double-dipping on the data!



