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Motivating Situations

• Suppose you have a random sample X = (X1, X2, . . . , Xn)

(possibly censored) from an unknown distribution F which

belongs to either the Weibull class or the gamma class. What

is the best way to estimate F (t) or some other parameter of

interest?

• Suppose it is known that the unknown df F belongs to ei-

ther of p models M1,M2, . . . ,Mp, which are possibly nested.

What is the best way of estimating a parameter common to

each of these models?



Intuitive Strategies

Strategy I: Utilize estimators developed under larger model M,

or implement a fully nonparametric approach.

Strategy II (Classical): [Step 1 (Model Selection):] Choose

most plausible model using the data, possibly via information

measures. [Step 2 (Inference):] Use estimators in the chosen

sub-model, but with these estimators still using the same data

X.

Strategy III (Bayesian): Determine adaptively (i.e., using X)

the plausibility of each of the sub-models, and form a weighted

combination of the sub-model estimators or tests. Referred also

as model averaging.



Relevance and Issues

What are the consequences of first selecting a sub-model and

then performing inference such as estimation or testing hypoth-

esis, with these two steps utilizing the same sample data (i.e.,

double-dipping)?

Is it always better to do model-averaging, that is, a Bayesian

framework, or equivalently, under what circumstances is model

averaging preferable over a classical two-step approach?

When the number of possible models increases, would it be bet-

ter to simply utilize a wider, possibly nonparametric, model?



A Concrete Gaussian Model

• Data:

X ≡ (X1, X2, . . . , Xn) IID F ∈ M =
{

N(µ, σ2) : µ ∈ <, σ2 > 0
}

• Uniformly minimum variance unbiased (UMVU) estimator of

σ2 is the sample variance

σ̂2
UMV U = S2 =

1

n − 1

n
∑

i=1

(Xi − X̄)2.

• Decision-theoretic framework with loss function

L1(σ̂
2, (µ, σ2)) =

(

σ̂2 − σ2

σ2

)2

.



• Risk function: For the quadratic loss L1,

Risk(σ̂2) = Variance

(

σ̂2

σ2

)

+

[

Bias

(

σ̂2

σ2

)]2

• S2 is not the best. Dominated by ML and the minimum risk

equivariant (MRE) estimators:

σ̂2
MLE =

1

n

n
∑

i=1

(Xi − X̄)2

σ̂2
MRE =

(

n

n + 1

)

σ̂2
MLE



Model Mp: Our ‘Test’ Model

• Suppose we do not know the exact value of µ, but we do

know it is one of p possible values. This leads to model Mp:

Mp =
{

N(µ, σ2) : µ ∈ {µ1, . . . , µp}, σ2 > 0
}

where µ1, µ2, . . . , µp are known constants.

• Under Mp, how should we estimate σ2? What are the con-

sequences of using the estimators developed under M?

• Can we exploit structure of Mp to obtain better estimators

of σ2?



Classical Estimators Under Mp

• Sub-Model MLEs and MREs:

σ̂2
i =

1

n

n
∑

j=1

(Xj − µi)
2; σ̂2

MRE,i =
1

n + 2

n
∑

j=1

(Xj − µi)
2

• Model Selector: M̂ = M̂(X)

M̂ = arg min
1≤i≤p

σ̂2
i = arg min

1≤i≤p
|X̄ − µi|.

• M̂ chooses the sub-model leading to the smallest estimate

of σ2, or whose mean is closest to the sample mean.



• MLE of σ2 under Mp (a two-step adaptive estimator):

σ̂2
p,MLE = σ̂2

M̂
=

p
∑

i=1

I{M̂ = i}σ̂2
i .

• An alternative Estimator: Use the sub-model’s MRE to

obtain

σ̂2
p,MRE = σ̂2

MRE,M̂
=

p
∑

i=1

I{M̂ = i}σ̂2
MRE,i.

• Properties of adaptive estimators not easily obtainable due

to interplay between the model selector M̂ and the sub-model

estimator.



Bayes Estimators Under Mp

• Joint Prior for (µ, σ2):

• Independent priors

• Prior for µ: Multinomial(1, θ̃)

• Prior for σ2: Inverted Gamma(κ, β)

• Posterior Probabilities of Sub-Models:

θi(x) =
θ̃i

(

nσ̂2
i /2 + β

)−(n/2+κ−1)

∑p
j=1 θ̃j

(

nσ̂2
j /2 + β

)−(n/2+κ−1)



• Posterior Density of σ2:

π(σ2 | x) = C
p
∑

i=1

θ̃i

(

1

σ2

)−(κ+n/2)

exp

[

− 1

σ2

(

nσ̂2
i /2 + β

)

]

.

• Bayes (Weighted) Estimator of σ2:

σ̂2
p,Bayes(X) =

p
∑

i=1

θi(X)×
{(

n

n + 2(κ − 2)

)

σ̂2
i +

(

2(κ − 2)

n + 2(κ − 2)

)

(

β

κ − 2

)

}

.

• Non-Informative Priors: Uniform prior for sub-models: θ̃i =

1/p, i = 1,2, . . . , p; β → 0.



• One particular limiting Bayes estimator is:

σ̂2
p,LB1 =

p
∑

i=1





(σ̂2
i )

−n/2

∑p
j=1(σ̂

2
j )

−n/2



 σ̂2
i

an adaptively weighted estimator formed from the sub-model

estimators.

• But, based on the simulation studies, a better one is that

formed from the sub-model MREs:

σ̂2
p,PLB1 =

(

n

n + 2

)

σ̂2
p,LB1



Comparing the Estimators

• R
(

σ̂2
UMV U , (µ, σ2)

)

= 2
n−1.

• R
(

σ̂2
MRE, (µ, σ2)

)

= 2
n+1.

• Efficiency measure relative to σ̂2
UMV U :

Eff(σ̂2 : σ̂2
UMV U) =

R(σ̂2
UMV U , (µ, σ2))

R(σ̂2, (µ, σ2))
.

• Eff(σ̂2
MRE : σ̂2

UMV U) = n+1
n−1 = 1 + 2

n−1.



Properties of Mp-Based Estimators

• Notation: Let Z ∼ N(0,1) and with µi0 the true mean,

define

∆ =
µ − µi01

σ
.

• Proposition: Under Mp,

σ̂2
i

σ2

d
=

1

n

(

W + V 2
i

)

, i = 1,2, . . . , p;

with W and V independent, and

W ∼ χ2
n−1;

V = Z1 −
√

n∆ ∼ Np(−
√

n∆, J ≡ 11
′).



• Notation: Given ∆, let ∆(1) < ∆(2) < . . . < ∆(p) be the

ordered values. ∆ always has a zero component.

• Theorem: Under Mp,

σ̂2
p,MLE

σ2

d
=

1

n
{W+

p
∑

i=1

I{L(∆(i),∆) < Z < U(∆(i),∆)}(Z −
√

n∆(i))
2







;

with

L(∆(i),∆) =

√
n

2

[

∆(i) + ∆(i−1)

]

;

U(∆(i),∆) =

√
n

2

[

∆(i) + ∆(i+1)

]

.



• Mean:

EpMLE(∆) ≡ E







σ̂2
p,MLE

σ2







= 1 − 2√
n

p
∑

i=1

∆(i)[φ(L(∆(i),∆)) − φ(U(∆(i),∆))] +

p
∑

i=1

∆2
(i)[Φ(U(∆(i),∆)) − Φ(L(∆(i),∆))];

• Case of p = 2.

EpMLE(∆) = 1 −
(

2√
n
|∆|

)

×
{

φ

(√
n

2
|∆|

)

−
(√

n

2
|∆|

)[

1 − Φ

(√
n

2
|∆|

)]}
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• σ̂2
p,MLE is negatively biased for σ2 (even though each sub-

model estimator is unbiased). Effect of double-dipping.



• Variance:

VpMLE(∆) ≡ Var







σ̂2
p,MLE

σ2







=
1

n











2

(

1 − 1

n

)

+
1

n







p
∑

i=1

ζ(i)(4) −




p
∑

i=1

ζ(i)(2)





2
















;

ζ(i)(m) ≡ E
{

I{L(∆(i),∆) < Z ≤ U(∆(i),∆)}(Z −
√

n∆(i))
m
}

.

• These formulas enable computations of the theoretical risk

functions of the classical Mp-based estimators.



An Iterative Estimator

• Consider the Class: C = {σ̃2(c) ≡ cσ̂2
p,MLE : c ≥ 0}

• The risk function of σ̃2(c), which is a quadratic function

in c, could be minimized wrt c. The minimizing value is

c∗(∆) = EpMLE(∆)/{V pMLE(∆) + [EpMLE(∆)]2}

• Given a c∗, ∆ = (µ − µi01p)/σ could be estimated via

∆̂ =
(µ − µM̂1p)

σ̃(c∗)

• This in turn could be used to obtain a new estimate of

c∗(∆)



Algorithm for σ̃2
p,ITER

• Step 0 (Initialization): Set a value for tol (say, tol =

10−8) and set cold = 1.

• Step 1: Define σ̃2 = (cold)σ̂
2
p,MLE.

• Step 2: Compute ∆̂ = (µ − µM̂1p)/σ̃.

• Step 3: Compute cnew = EpMLE(∆̂)

V pMLE(∆̂)+[EpMLE(∆̂)]2
.

• Step 4: If |cold−cnew| < tol set σ̃2
p,ITER = σ̃2 then stop;

else cold = cnew then back to Step 1.



Impact of Number of Sub-Models

• Theorem: With n > 1 fixed, if as p → ∞, max2≤i≤p |∆(i) −
∆(i−1)| → 0, ∆(1) → −∞, and ∆(p) → ∞, then

Eff
(

σ̂2
p,MRE : σ̂2

MRE

)

→ 2(n + 2)2

(n + 1)(2n + 7)
< 1.

• Therefore, the advantage of exploiting the structure of Mp

could be lost forever when p increases!



Representation: Weighted Estimators

• ‘Umbrella’ Estimator: For α > 0, define

σ̂2
p,LB(α) =

p
∑

i=1







(σ̂2
i )

−α

∑p
j=1(σ̂

2
j )

−α







σ̂2
i .

• Theorem: Under Mp,

σ̂2
p,LB(α)

σ2

d
=

W

n
{1 + H(T ;α)} ;

T = (T1, T2, . . . , Tp)
′ = V /

√
W ;



H(T ;α) =
p
∑

i=1

θi(T ;α)T2
i ;

θi(T ;α) =
(1 + T2

i )−α

∑p
j=1(1 + T2

j )−α
.

• Even with this representation, still difficult to obtain exact

expressions for the mean and variance.

• Developed 2nd-order approximations, but were not so satis-

factory when n ≤ 15.

• In the comparisons, we resorted to simulations to approxi-

mate the risk function of the weighted estimators.



Some Simulation Results

Figures 1 and 2

Simulated and Theoretical Risk Curves

for n = 3 and n = 10

(Based on 10000 replications per ∆)
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Table: Relative efficiency (wrt UMVU) for symmetric ∆ and

increasing p with limits [−1,1] and n = 3,10,30 using 1000 repli-

cations. Except for the first set, denoted by (*), where the mean

vector is {0,1}, the other mean vectors are of form [−1 : 2−k : 1]

whose p = 2(k+1) + 1. A last letter of ‘s’ on the label means

‘theoretical’, whereas an ‘s’ means ‘simulated.’



n k p pMLEs pMLEt pMREs pMREt pPLB1s pITERs
3 * 2 171 170 238 232 247 238
10 * 2 118 115 139 134 133 135
30 * 2 101 104 109 111 108 109
3 0 3 208 195 219 216 260 224
10 0 3 116 120 136 134 127 129
30 0 3 111 104 115 111 114 114
3 1 5 185 185 203 199 248 212
10 1 5 114 119 119 124 120 118
30 1 5 111 106 115 110 112 113
3 2 9 188 182 198 195 243 209
10 2 9 117 118 120 120 127 123
30 2 9 102 106 104 107 103 103
3 3 17 183 181 190 194 235 200
10 3 17 111 117 118 119 123 119
30 3 17 113 105 115 106 115 115
3 4 33 184 181 193 194 239 204
10 4 33 117 117 116 119 125 121
30 4 33 102 105 105 105 105 105
3 5 65 159 181 194 194 226 199
10 5 65 124 117 120 119 132 127
30 5 65 106 105 105 105 107 107



Concluding Remarks

• In models with sub-models, and interest is to infer about a

common parameter, possible approaches are:

• Approach I: Use a wider model subsuming the sub-models,

possibly a fully nonparametric model. Possibly inefficient,

though might be easier to ascertain properties.

• Approach II: A two-step approach: Select sub-model using

data; then use procedure for chosen sub-model, again using

same data.



• Approach III: Utilize a Bayesian framework. Assign a prior

to the sub-models, and (conditional) priors on the parameters

within the sub-models. Leads to model-averaging.

• Approaches (II) and (III) are preferable over approach (I);

but when the number of sub-models is large, approach (I)

may provide better estimators and a simpler determination

of the properties.

• If the sub-models are quite different and the model selec-

tor can choose the correct model easily, or the sub-models

are not too different that an erroneous choice of the model

by the selector will not matter much, approach (II) appears



preferable. In the in-between situation, approach (III) seems

preferable.

• For the specific Gaussian model considered, the iterative es-

timator actually performed in a robust fashion.

• To conclude,

Observe Caution!

when doing inference after model selection especially when

double-dipping on the data!


