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M odeling Dependence Between Components

Most reliability methods are intended for components
that operate independently within a system.

It iIs more realistic, however, to develop models that
Incorporate stochastic dependencies among the
system’s components. Options for modeling dependent
systems:

« Shock models.
« Load-share models.

ICRSA 2003 - p.1



Load Sharing Models

e Load share models dictate that component failure
rates depend on the operating status of the other
system components and the effective system
structure function.

e Daniels (1945) originally adopted this model to
describe how the strain on yarn fibers increases as
iIndividual fibers within a bundle break.

e A bundle of fibers can be considered as a parallel
system subject to a steady tensile load.
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The L oad-Share Rule

The most important element of the load-share model is
the rule that governs how failure rates change after some
components in the system falil.

e Equal Load Share Rule: A constant system load
distributed equally among the working components

@ Local load sharing rule: A failled component’s load is
transferred to adjacent components.

@ Monotone load sharing rule: The load on any individual
component is nondecreasing as other items fail.

Past research has stressed reliability estimation based
on known load share rules
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Examples of L oad-Share Systems

@ Textile Engineering.

@ Nuclear Reactor Safety: Failure of one back-up system
adversely affects another

e Software Reliability: Discovery of a major software
defect can help reveal or conceal other existing bugs

a Civil Engineering: Welded joints on large support
structures

e Materials Testing: Fatigue and crack growth
e Population Sampling: Capture/Recapture methods

@ Combat Modeling: Loss of component in combat
affects death rate of others
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An Unknown Load-Share Rule

e Past research emphasizes load-share modeling
based on known load share rules.

e In these examples, the load-share rule might be
unknown.

e Our focus: Case in which the system is governed by
an unknown equal load-share rule.

e General set up: Observe component lifetimes in
parallel systems of identical components .
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Estimation of L oad-Share Model Parameters

a Observe n I.1.d. systems of £ components.

e Fori=1,23,..,letS;; < S;2<...bethe
successive component failure times for the th system

e F' represents the baseline component failure time
distribution function.

e Hazard function corresponding to F'is
R(x) = —log(1 — F())

e Hazardrateis r(x) = f(x)/[1 — F(x)], where f(x) Is
the density of F.
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L oad Share Parameters

Until the first component failure, the failure rate of each of
k components in the system equals the baseline rate

r(x).
Upon the first failure within a system, the failure rates of

the k£ — 1 remaining components jump to v;7(z), and
remain at that rate until the next component failure.

After this failure, the failure rates of the k£ — 2 surviving
components jump to yor(z), and so on.
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L oad Share Parameters

The (equal) load share rule can be characterized by the
k — 1 unknown parameters ~v = 1,79, ...,v,—1 and the
unknown baseline distribution or hazard function.

For example, a system with a constant load would assign

vi=k/(k—3), j=1,..,k—-1
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Maximum Likelihood Estimation of R and ~

In the ith system, the conditional hazard function of the
(7 + 1) smallest component lifetime S; 11, given the first i

component failure times S; 1,...,S;, Is (for s > §; ;)

ViR(s) + (-1 —vj) R(Si ) + ...+ (1 —71)R(Si1)

The corresponding likelihood function, in terms of R*, Is

n k
H H dR*(Sij) eXp{—R*(SZ'j)}.

i=1j=1
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Computing the MLE

Standard approach for finding the MLE:

a Fix ~.

o Maximize likelihood with respect to R to obtain R(-;~)

o Plug R(-;~) in to obtain the profile likelihood for ~

o Compute the MLE #; final estimator of R(-) is R(-;¥)

To understand properties of the nonparametric MLE, we
model the load-share system using counting processes.
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Notation for Counting Processes

Q Ni(t)22§:1[(sijj§t), 1=1,2,...,n

k— .
e Y[Ni(w)] = 3370 v (Ni(w) = j)
o Yi(w) = (k- Ni(w=)) I(T > w)
@ Ai(t) = Jo [Ni(u=)r(w)Yi(w)du
If v Is known, then analogous to the derivation of the the

Nelson-Aalen estimator (with J(w) = I(32F_, Yi(w) > 0)), we
obtain the estimator

S J(w)dN (w)
R(s;7) _/0 Yo Yi(w)y[N; (w—)]
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MLE using Counting Processes

To obtain the estimator of R(-) for the more general case
where ~ Is unknown, we first obtain the profile likelihood

for v by plugging in R(-;~) into the likelihood function

Yi(w)y | Ni(w—))
H0<w<8[ > e Yi(w)y [Ny (w—)]
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MLE using Counting Processes

By virtue of the product representation of ¥ =1 — F in
terms of R given by F(s) = 7T g<w<s[l — R(dw)], we then
obtain an estimator of F' via

A

F(s)= 1T [1—R(dw)}.

- 0<w<s
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Solvingthe MLE

The MLE can be computed by solving the set of £
nonlinear equations

N - " Q;(w) B Q(w) () =
U(T”Y)_;/o o)~ Yot N =0

where
@ Qij(t) =Yi)I(Ni(t—) =j), 1 <i<n,0<j<k—1
e Q;(t) = (Qio(t), ., Qix-1(1)), 1 <i<n;
- Q(t) = (Z?:l Qi,O(t)a . Z?:l Qi,k—l(t))/;

(Solve with an iterative scheme; e.g. Newton-Raphson.)



Asymptotic Properties

Suppose we have that
e P(t;y) =217 *Q;(t)/YQ(1);

e 0;(t) = (0i0(f), ..., 0ix—1(¢))", With
0;i(t) = 1(Q;(t) >0),1 <7 < n;

e Y(s;7) =
Jo [D(p(w;~)) — p(w;y)p(w; ¥)]v'q(w)dR(w).



| emma:

If {N;(:),2 =1,...,n} are independent and identically
distributed, and

k—1
oot O(k =)y P(Ni(w=) = j) >0,
J:

then U (s;) = S0y [y [8i(w) — p(w; )] (dNi(w) — dA;(w))
IS a square-integrable martingale with quadratic variation
process (U(-;~))(s) whose in-probability limit is Y (s; ).
Furthermore, n=1/2U (-; ~) converges weakly to a

zero-mean Gaussian process with covariance matrix
function Y (-;~).
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Theorem 1

Under the conditions of the Lemma,
() 4 converges Iin probability to «; and

(i) V(¥ —~) 5 N(0,%(r,~)) where
S(7,~) = D(v)X(r,7) " D(~), and with

(= [ " [D(p(w: 7)) — pwiy)p(wiv)] v q(w)dR(w).

where
e p(t;y) = ED v *Q:(0)/E[Y Q)] =
v * q(t)(y1q(t))~! and

e q(s) = (qo(s),..., Gr—1(8)), wWith g;(w) = E(Q;,j(w)) =
(k — ) P(t > w, Ny(w—) = 7).



Theorem 2

Under the conditions of the Lemma, if 7 is such that
~v'q(T) > 0, then

{\/ﬁ(ﬁz(s) _R(s)):0<s< T}

converges weakly to a zero-mean Gaussian process with
variance function

=(s;7) = /OS{’Y’q(w)}‘ldR(w) +0(s;7) [X (T3] els; ),

where o(s;v) = [, p(w;~¥)dR(w).
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Corollary

Under the conditions of Theorem 2,

{\/ﬁ(]%(s)—p(s)):()gng}

converges weakly to a zero-mean Gaussian process
{Z(s) : 0 < s < 7} whose variance function is

var{Z(s)} = F(s)2 Z(s;7).
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3-Component
Parallel System:

2000-2001 Boston
Celtics

Paul
Pierce

Kenny
Anderson

Antoine
Walker




Estimated Cumulative Hazard: Minutes Played Until 2" Foul

Nonparametric Estimate of Hazard Function
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Estimated Survivor Function of Minutes Played

Nonparametric Estimate of Survivor Function
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Confidence Regions (50%, 90%0, 95%) for (71, 2)
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