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Modeling Dependence Between Components

Most reliability methods are intended for components
that operate independently within a system.

It is more realistic, however, to develop models that
incorporate stochastic dependencies among the
system’s components. Options for modeling dependent
systems:

Shock models.
Load-share models.
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Load Sharing Models

Load share models dictate that component failure
rates depend on the operating status of the other
system components and the effective system
structure function.

Daniels (1945) originally adopted this model to
describe how the strain on yarn fibers increases as
individual fibers within a bundle break.

A bundle of fibers can be considered as a parallel
system subject to a steady tensile load.
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The Load-Share Rule

The most important element of the load-share model is
the rule that governs how failure rates change after some
components in the system fail.

Equal Load Share Rule: A constant system load
distributed equally among the working components

Local load sharing rule: A failed component’s load is
transferred to adjacent components.

Monotone load sharing rule: The load on any individual
component is nondecreasing as other items fail.

Past research has stressed reliability estimation based
on known load share rules ICRSA 2003 – p.3



Examples of Load-Share Systems

Textile Engineering:

Nuclear Reactor Safety: Failure of one back-up system
adversely affects another

Software Reliability: Discovery of a major software
defect can help reveal or conceal other existing bugs

Civil Engineering: Welded joints on large support
structures

Materials Testing: Fatigue and crack growth

Population Sampling: Capture/Recapture methods

Combat Modeling: Loss of component in combat
affects death rate of others
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An Unknown Load-Share Rule

Past research emphasizes load-share modeling
based on known load share rules.

In these examples, the load-share rule might be
unknown.

Our focus: Case in which the system is governed by
an unknown equal load-share rule.

General set up: Observe component lifetimes in
parallel systems of identical components .
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Estimation of Load-Share Model Parameters

Observe n i.i.d. systems of k components.

For i = 1, 2, 3, . . ., let Si,1 < Si,2 < . . . be the
successive component failure times for the ith system

F represents the baseline component failure time
distribution function.

Hazard function corresponding to F is
R(x) = − log(1 − F (x))

Hazard rate is r(x) = f(x)/[1 − F (x)], where f(x) is
the density of F .
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Load Share Parameters

Until the first component failure, the failure rate of each of
k components in the system equals the baseline rate
r(x).

Upon the first failure within a system, the failure rates of
the k − 1 remaining components jump to γ1r(x), and
remain at that rate until the next component failure.

After this failure, the failure rates of the k − 2 surviving
components jump to γ2r(x), and so on.
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Load Share Parameters

The (equal) load share rule can be characterized by the
k − 1 unknown parameters γ = γ1, γ2, . . . , γk−1 and the
unknown baseline distribution or hazard function.

For example, a system with a constant load would assign

γj = k/(k − j), j = 1, ..., k − 1
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Maximum Likelihood Estimation of R and γ

In the ith system, the conditional hazard function of the
(j + 1) smallest component lifetime Si,j+1, given the first i

component failure times Si,1, . . . , Si,j , is (for s > Si,j)

R∗(s|Si,1, . . . , Si,j) =

γjR(s) + (γj−1 − γj)R(Si,j) + . . . + (1 − γ1)R(Si,1)

The corresponding likelihood function, in terms of R∗, is

n
∏

i=1

k
∏

j=1

dR∗(Sij) exp{−R∗(Sij)}.
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Computing the MLE

Standard approach for finding the MLE:

Fix γ.

Maximize likelihood with respect to R to obtain R̂(·; γ)

Plug R̂(·; γ) in to obtain the profile likelihood for γ

Compute the MLE γ̂; final estimator of R(·) is R̂(·; γ̂)

To understand properties of the nonparametric MLE, we
model the load-share system using counting processes.
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Notation for Counting Processes

Ni(t) =
∑k

j=1 I(Si,j ≤ t), i = 1, 2, . . . , n

γ[Ni(w)] =
∑k−1

j=0 γjI(Ni(w) = j)

Yi(w) = (k − Ni(w−)) I(τ ≥ w)

Ai(t) =
∫ t
0 γ[Ni(u−)]r(u)Yi(u)du

If γ is known, then analogous to the derivation of the the

Nelson-Aalen estimator (with J(w) = I(
∑

k

i=1
Yi(w) > 0)), we

obtain the estimator

R̂(s; γ) =

∫

s

0

J(w)dN(w)
∑

n

i=1
Yi(w)γ[Ni(w−)]
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MLE using Counting Processes

To obtain the estimator of R(·) for the more general case
where γ is unknown, we first obtain the profile likelihood
for γ by plugging in R̂(·; γ) into the likelihood function

Lp(s; γ) =
n

∏

i=1

π
0≤w≤s

[

Yi(w)γ[Ni(w−)]
∑n

l=1 Yl(w)γ[Nl(w−)]

]dNi(w)

.

Once γ̂ is obtained, the estimator of R becomes

R̂(s) = R̂(s; γ̂).
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MLE using Counting Processes

By virtue of the product representation of F̄ = 1 − F in
terms of R given by F̄ (s) = π0≤w≤s[1 − R(dw)], we then
obtain an estimator of F̄ via

ˆ̄F (s) = π
0≤w≤s

[

1 − R̂(dw)
]

.
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Solving the MLE

The MLE can be computed by solving the set of k
nonlinear equations

U (τ ; γ) =
n

∑

i=1

∫ τ

0

[

Qi(w)

γ ′Qi(w)
− Q(w)

γ ′Q(w)

]

dNi(w) = 0

where

Qi,j(t) = Yi(t)I(Ni(t−) = j), 1 ≤ i ≤ n, 0 ≤ j ≤ k − 1;

Qi(t) = (Qi,0(t), ..., Qi,k−1(t))
′, 1 ≤ i ≤ n;

Q(t) = (
∑n

i=1 Qi,0(t), ...,
∑n

i=1 Qi,k−1(t))
′;

(Solve with an iterative scheme; e.g. Newton-Raphson.) ICRSA 2003 – p.14



Asymptotic Properties

Suppose we have that

ρ̂(t; γ) =
∑n

i=1 γ ∗ Qi(t)/γ
′Q(t);

δi(t) = (δi,0(t), ..., δi,k−1(t))
′, with

δi,j(t) = I(Qi,j(t) > 0), 1 ≤ i ≤ n;

Υ(s; γ) ≡
∫ s

0 [D(ρ(w; γ)) − ρ(w; γ)ρ(w; γ)′] γ ′q(w)dR(w).
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Lemma:

If {Ni(·), i = 1, ..., n} are independent and identically
distributed, and

inf
0≤w≤τ

k−1
∑

j=0

(k − j)γjP (N1(w−) = j) > 0,

then U(s; γ) =
∑n

i=1

∫ s
0 [δi(w) − ρ̂(w; γ)] (dNi(w) − dAi(w))

is a square-integrable martingale with quadratic variation
process 〈U (·; γ)〉(s) whose in-probability limit is Υ(s; γ).
Furthermore, n−1/2U(·; γ) converges weakly to a
zero-mean Gaussian process with covariance matrix
function Υ(·; γ).
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Theorem 1

Under the conditions of the Lemma,

(i) γ̂ converges in probability to γ; and

(ii)
√

n(γ̂ − γ)
d→ N(0,Σ(τ, γ)) where

Σ(τ, γ) = D(γ)Υ(τ, γ)−1D(γ), and with

Υ(τ, γ) ≡
∫ τ

0

[

D(ρ(w; γ)) − ρ(w; γ)ρ(w; γ)′
]

γ ′q(w)dR(w).

where

ρ(t; γ) = E[
∑n

i=1 γ ∗ Qi(t)]/E[γ ′Q(t)] =
γ ∗ q(t)(γ′q(t))−1 and

q(s) = (q0(s), . . . , qk−1(s)), with qj(w) = E(Qi,j(w)) =
(k − j)P (τ ≥ w, N1(w−) = j). ICRSA 2003 – p.17



Theorem 2

Under the conditions of the Lemma, if τ is such that
γ ′q(τ) > 0, then

{√
n(R̂(s) − R(s)) : 0 ≤ s ≤ τ

}

converges weakly to a zero-mean Gaussian process with
variance function

Ξ(s; γ) ≡
∫ s

0
{γ ′q(w)}−1dR(w) + %(s; γ)′[Υ(τ ; γ)]−1%(s; γ),

where %(s; γ) =
∫ s
0 ρ(w; γ)dR(w).
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Corollary

Under the conditions of Theorem 2,
{√

n( ˆ̄F (s) − F̄ (s)) : 0 ≤ s ≤ τ
}

converges weakly to a zero-mean Gaussian process
{Z(s) : 0 ≤ s ≤ τ} whose variance function is
Var{Z(s)} = F̄ (s)2 Ξ(s; γ).
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Estimated Cumulative Hazard: Minutes Played Until 2nd Foul
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Estimated Survivor Function of Minutes Played
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Confidence Regions (50%, 90%, 95%) for (γ1, γ2)
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