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INTRODUCTION: DEGRADATON AND FAILURE

e Events( “failures”) that have undesirable consequences and require cor-
rective action occur in systems and processes, e.g.

- catastrophic failure of a metal part due to fatigue-crack growth —
- manufacturing process stoppages — lost productivity, cost of repair

e Occurrence of failures is related to the “condition” of a unit or system
and to external factors (e.g. environment, usage)

e Degradation measures are variables that reflect deterioration in a unit
or system

e By relating degradation to failure we hope to reduce or prevent failures,
e.g., by monitoring degradation (planned maintenance) or reducing
degradation (system improvement)



Suppose a degradation measure Y (¢) is associated with units of equip-

ment at time £ > 0, and that a counting process { N (), > 0} records
the number of failures over (0, ).

e Defined failures: a failure is defined to occur at time ¢ when Y'(Z) enters
some region D, i.e. when Y (t—)eD,Y (t)eD.

e Degradation-related failures: the failure intensity is
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where H (t) includes the degradation history g(¢) = {y(s) : 0 < s < t}

and previous failure history. External covariates x(t) (e.g.stress, usage)
may also be included.

e [n some settings a failure time 7" > 0 is defined, measured from a
specified time origin.



Some examples

e Fatigue-crack growth in metal (Lu and Meeker 1993)
Y (t) = crack length after ¢ load-cycles (¢ > 0)

T = inf{t:Y(t) > d}

e Jon source filament failures in semiconductor manufacturing (S. Crow-

der 1993)
Y (t) = current through filament (decreases as filament degrades)

T = time to failure (breakage) of filament (hrs. of operation)

e Pump bearing failures (Banjevic et al. 2001)
Y (t) = vector derived from frequency domain analysis of axial,

horizontal, and vertical vibration measurements.

e Persons with HIV (human immunodeficiency virus) disease
Y(t) = CD4 and viral load counts

T = time to first major opportunistic infection
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Failure prediction

e Want to determine P(no failure in(¢,¢ + s)|H(t))

- look at effect of including degradation history g(t) in H (¢)

e For a single failure time 7', compare

P(T >t+s|T >t yt) and P(T >t+ s|T >t).

e A joint model for failure and {Y (¢),¢ > 0} is required.
P(T > t+s|T > t,4(t)) = E{eap(— i Mu; g(u))du)}
e Features that affect the usefulness of degradation (or condition) mea-
sures include
- degree of dependence of failure on degradation

- the variability of degradation curves
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SOME MODELS FOR DEGRADATION AND FAILURE

Defined Failures
For simplicity consider scalar y(¢) > 0 for ¢ > 0 and failure threshold
F .
y* , with
T=inf(t:Y(t)>y")
e Processes {Y(t),t > 0} with independent increments
- Wiener processes, e.g. AY (t) =Y (t+ At) — Y () ~ N(uAt, 0%At)

T ~ mverse (Gaussian

- Gamma processes, AY (t) ~ Gamma(a, AB(t))
Monotonic, so P(T > t) = P(Y(t) < y)

e Other Markov processes

e Monotonic processes are fairly straightforward, but not always suitable
Singpurwalla (1995 Stat. Sci), Aalen and Gjessing (2001 Stat. Sci)



e Need for random effects to accommodate unit-to-unit heterogeneity
e.g. Wiener processes with random drift parameter y or threshold @ﬁ
(Aalen and Gjessing 2001)

Gamma processes with random scale « or shape function 3(t)
(Crowder and Lawless 2003)

e Random growth curves (e.g. Lu and Meeker 1993)
Yi(t) = g(t; 0;) 0 ~ F(-)
T} is a function of 6,

Measurement error is sometimes added, so that Y;*(¢) = Y;(t) + €;(¢)
is observed instead of Y;(t).



Degradation-related Failures

e Discrete-state models

l|lz=PRl= 3= 4
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e Multiplicative hazards A(¢;g(t)) = Ao(t)g(y(t))

Additive hazards A(¢; 7(t)) = Ao(t) + g(y(t))

Tractability depends on the Y (¢) process, but failure time calculations
are usually difficult. A few hazard-based models where {Y (¢)} or a
function of it is Markov are moderately tractable.

e.g. A(t;y(t)) = Aolt) + Bg(y(t))



P(T > t+ AT > t,5(t)) = E{e " 2MO=FAVE|T S ¢ 5(4))
where

ANg(t) = T2 Ng(u)du

AV(t) = T2 g(y(u))du,
which gives, if [AV($)|T > t,y(t)] = [AV(t)|V(¢)],

e MLV IOV (1)},

e This is a m.g.f. and is tractable for certain processes {V(¢),t > 0};
numerical methods can also be employed

e Random effects on V(¢) can also be introduced.



Shared Random Effects Models

e Unobservable random effect Z; for unit or system 2:

{Yi(t)}
) /!
T; LY;(00)]z Z
N\
1;
e.g.(various authors)
Yi(t) = Zoi + Z1it + €i(t) Zi = (Zoi, Z1j) ~ BVN

log Ty ~ N(1(Zojis Z1i),0°)

o P(T; >t + At|T; > t,5;(t))

= [ P(T; > t + At|T; > t,2) P(%|T; > t,5(t))dz;



Data and Model Selection

e Data often of form {y(¢;),7 =1,...,m;T}or {y(t;),j=1,...,m;T >
tn}

e Experimental (off-line) data: can often observe a unit until failure,
perhaps under accelerated stress conditions

e Observational (on-line) data: often observe very few failures.

- May have substantial data on degradation of units but little indication
as to when the failure intensity is high



ILLUSTRATION: CRACK GROWTH FAILURES

e Experimental setting considered by Hudak et al (Lu and Meeker 1993)
Y;(t) = crack length after ¢ test cycles for i’th unit (¢ =1,...,21)

T; = inf{t:Y;(t) > 1.6 inches}
—1;(0) = 0.9 for all units.
Y;(t) observed for ¢t = .01,.02,...,.12 (million cycles)

e Consider gamma proceses with random effects z; = a; :

AY;(t) = Y;(t + At) — Y;(t) ~ Gamma(a;j, Ab(t))
where E(AY(t)|a;, 5;(t)) = Ab(t)a; ! and

Ab(t) = bt + At) — b(t)



e Used Z; ~ Gamma (c,d) with F(Z;) = p, = d/c and
b(t) = ePo(eP1t — 1)
e straightforward to fit

e Failure time prediction:

(L4 b)) (y" —y(t)
Ab(t)(y(t)yz + 1)

where v, = 0, /u, and F' ~ ﬁwbgvb@@iw\&

P(T; >t + At|T; > t, (1)) = F

e Plot shows probability density functions for T}, given 1; > 0.12, for
two values of y;(.12) : 1.3 and 1.5, along with the p.d.f for T;, given
only that T; > 0.12 ( no degradation measure)
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FAILURE PREVENTION AND MAINTENANCE

e Preventive maintenance and planned replacements (PM)

- seek to minimize disruptions and loss of service from equipment or a
system while maximizing profit (minimizing cost)

e Corrective maintenance (CM) following equipment or system failure
- typically more costly to deal with than PM; loss of control
- want to avoid failures, in general

e Maintenance planning and logistics is a complex issue, especially with
large systems involving many parts. Focus here on individual parts or
subsystems.



Optimization of Maintenance Plans

e Huge mathematical literature but most of it is unused; few examples
of models fitted to data.

e Age-based replacement policies
T = time to failure of part from last maintenance

C1 = cost of PM replacement
C9 = cost of CM replacement (9 > ('

POLICIES: Choose a time 7 and replace part at man(T, 7)

Seek to minimize expected long run cost per unit time of replacements,
which under renewal process assumptions is

CyP(T < 1)+ CLP(T > 1)
E{min(T,T)}




e Reasons why optimal policy theory is not used much include model
inadequacy, lack of good data on which to build models, changing con-
ditions, and the need for flexibility in maintenance logistics.

Condition-based Maintenance

e In a dynamic environment, use system condition measures y(t) to mon-
itor systems and to help plan maintenance. Widely applied in an in-
formal way (engineering judgement).

e Covariates x(t) related to usage, environment, previous maintenance
can also be used.

e Optimality theory * here (e.g. Aven, Bergman, Makis and Jardine)
also makes very strong renewal assumptions; its better to use an adap-
tive approach.

*Most policies replace a part at min(T, 7;) where

T = mun(t : A(t; y(t)) > d)



e Need good data and simple models that can utilize them. Finding
appropriate condition measures is crucial.

e Consideration of P(T" > t; 4|T > t;,9(t;),2(t;)) at a sequence of
monitoring times t{, %o, ... 1s basic. This can be used to guide selec-
tion of the next monitoring time (if monitoring is not continuous) and
decisions to do PM.

e In systems that have successtully avoided failure, there may be little
direct empirical information about where the failure intensity

A(t: 5(t), 2(t)) is high.

e a model for Y (¢) (given x(t)) plus auxiliary assumptions about A(-)
can still be useful. “Control limit” policies where

7= min(t : y(t) > d)

are often used.



e Discrete-state models for Y'(¢) are often appealing.
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e “Delay-time” models

e.g. D. Banjevic et al. (2001) INFOR 39, 32-50
Comments on application and a case study involving pump
bearings and y(t) based on vibration measurements

(PH-Markov Models)

P.A. Scarf (1997) Europ. J. Op. Res. 99, 493-506
Retferences to modelling and case studies.



ADDITIONAL COMMENTS

e Reiterate need for “good” degradation or condition measures, simple
models.

e ['mphasize data collection in system monitoring

e Composite time scale methods (Kordonsky and Gertsbakh, Duchesne)



