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A new Bayesian regression framework is presented for the analysis of continuous response 
data with support restricted to an unknown finite interval. A four-parameter beta distri-
bution is assumed for the response conditioning on covariates, with the mean or mode 
depending linearly on covariates through a known link function. An informative g-prior 
is proposed to incorporate the prior distribution for the marginal mean or mode of the 
response. Byproducts of the Markov chain Monte Carlo sampling for implementing the 
proposed method lead to model criteria useful for model selection. Goodness-of-fit of the 
model is assessed using Cox-Snell residual plots. The methodology is illustrated in simu-
lations and demonstrated in two real-life data applications. An R package, betaBayes, is 
developed for easy implementation of the proposed regression methodology.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Researchers in a wide range of fields encounter bounded data in their studies. For example, environmental scientists 
monitor the proportion of hygienic waste in residential solid waste. Asset allocations in a portfolio and the share of house-
hold income spent on food are bounded data of interest in economics. Psychologists analyze confidence ratings and bounded 
scores from cognitive tests administered to study subjects. Examples of bounded data in the biomedical field include preva-
lence rates and death rates of the coronavirus disease 2019 (COVID-19), and body fat percentages of athletes. Different from 
unbounded data, central tendency measures, skewness, and other features of the underlying distribution for bounded data 
are inextricable from the support of the distribution. Consequently, more caution is necessary when drawing inference for 
these features based on bounded data, especially when the support is unknown.

Existing approaches for analyzing bounded data typically assume a prefixed support such as (0, 1), sometimes after scal-
ing the raw data. The beta mean regression model proposed by Ferrari and Cribari-Neto (2004) probably has received the 
most attention for modeling response data bounded on the unit interval, where the mean parameter of the beta distribu-
tion depends linearly on covariates through a known link function. Model diagnostic methods for a beta mean regression 
were considered in Espinheira et al. (2008a,b), Ferrari et al. (2011), and Rocha and Simas (2011). The model has also been 
extended to allow the precision parameter to vary with covariates (Smithson and Verkuilen, 2006; Ferrari et al., 2011). An R 
package betareg (Cribari-Neto and Zeileis, 2010; Grün et al., 2012) is available on CRAN for fitting the beta mean regres-
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sion model with varying precision and performing model diagnostics. This R package also allows for fitting a finite mixture 
of beta regression models (Verkuilen and Smithson, 2012). Time series analysis of bounded data via a beta mean regression 
is presented in Guolo et al. (2014), which incorporates a serial dependence between responses via a Gaussian copula. All 
the aforementioned works carry out frequentist inference, mostly based on maximum likelihood. Bayesian treatments for 
modeling the response data bounded on (0, 1) include the Bayesian beta mean regression model (Branscum et al., 2007), a 
beta rectangular regression model based on a mixture of a beta distribution and a uniform distribution (Bayes et al., 2012), 
a mixed effects beta model (Figueroa-Zúñiga et al., 2013), and a flexible beta model based on a special mixture of two beta 
distributions (Migliorati et al., 2018). Unlike all the above regression models which focus on inferring the conditional mean 
of a bounded response, Bayes et al. (2017) developed quantile regression models for bounded responses built upon beta 
distributions. Barrientos et al. (2017) proposed a fully nonparametric Bayesian approach to model the covariates-dependent 
distribution of a bounded response. Recently, Zhou et al. (2020) considered a beta mode regression model where the mode 
of the response is related to covariates through a link function.

All existing works mentioned above assume that the response variable is bounded on a prefixed interval such as (0, 1), 
which may not be appropriate. For example, a human being’s body fat percentage can never reach a value close to zero 
or one. Google results show that the lowest body fat percentage is 2% in a human being; although the highest body fat 
percentage is not available, it is probably much less than one. In cases like this, misspecifying the support can degrade 
inference for a central tendency measure of the response conditioning on covariates, for instance. In some applications, 
inferring the support is the focal point of interest. For example, an accurate prediction for the support of the prevalence 
rate of COVID-19, that is more refined than the unit interval, in an upcoming flu season is important to local health officials. 
Other examples where the support of a response is unknown yet is of practical interest include models for survival analysis 
to study the minimum possible life time (Smith, 1994), the job-search problem (Flinn and Heckman, 1982; Christensen and 
Kiefer, 1991), and the procurement-auction problem (Paarsch, 1992; Donald and Paarsch, 2002). In these and many other 
existing works on regression models with the support of the response depending on unknown parameters, the authors 
established some unusual, often unappealing, properties of maximum likelihood estimators for the support parameters and 
other model parameters (e.g., Donald and Paarsch, 1993; Smith, 1994). These theoretical findings motivated alternative 
estimators for parameters in these nonregular regression models, many of which were proposed in the Bayesian paradigm.

To allow for inference on the support along with other features of the response, we consider in this study the four-
parameter beta distribution, which extends the beta distribution by introducing two parameters to define the support, in 
addition to the two shape parameters. As noted above, statisticians have long recognized that estimating the support cre-
ates a non-regular problem, where the maximum likelihood estimation may fail to yield consistent estimators (Smith, 1985; 
Cheng and Traylor, 1995). Existing methods for estimating the four-parameter beta distribution include the moment-based 
estimation (Johnson et al., 1995; McGarvey et al., 2002), the maximum likelihood estimation when both shape parameters 
are greater than two (Carnahan, 1989), the corrected maximum likelihood method when both shape parameters are greater 
than one (Cheng and Iles, 1987), and the penalized likelihood approach (Wang, 2005), among others. The penalized likeli-
hood approach by Wang (2005) is applicable without restricting the shape parameters to be above one or two, but standard 
error estimation for estimators of the four parameters are not provided.

These existing works on four-parameter beta distributions are not in a regression context. In fact, we can find little 
research on the four-parameter beta distribution in a regression setting. In this article, we present a class of Bayesian 
regression models that permit an inference for the support boundaries by considering the four-parameter beta distribution 
supported on (θ1, θ2), and introducing either a mean or mode parameter that linearly depends on covariates through a 
known link function. To facilitate Bayesian inference, we adopt an informative g-prior on the regression coefficients that 
leads to more efficient posterior sampling, especially when the data provide relatively weak information on the conditional 
mode or when multicollinearity is present. With a careful choice of blocking, we develop a fully automated (no manual 
“tuning” is required) Markov chain Monte Carlo (MCMC) algorithm for the posterior sampling. A new variation of the 
Cox-Snell residual plot (Cox and Snell, 1968) is provided for gross assessment of the model fit. Furthermore, all methods 
developed in the paper can be easily implemented in a freely-available R package, betaBayes, calling complied C++. The 
ready availability of software allows researchers to empirically compare various competing beta regression models on their 
own data with a continuous bounded response.

The remaining of the article is organized as follows. Section 2 describes the four-parameter beta regression models, in-
cluding prior development and posterior inference. We consider in Section 3 model selection criteria and model diagnostics. 
Section 4 presents simulations to illustrate the quality of inference results when comparing to relevant existing methods. 
Section 5 comprises two illustrative data analyses with software implementation. The paper is concluded in Section 6 where 
we summarize the contributions of our study and discuss future research directions.

2. Model formulation and inference

2.1. The regression models

Consider observed data consisting of n independent realizations of the response-covariates pair, D = {(yi, xi), i =
1, . . . , n}, where yi is the response supported on an unknown interval (θ1, θ2), and xi = (1, xi1, . . . , xip)′ is a vector of covari-
2
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ates with the intercept. For a random variable Y that follows a four-parameter beta distribution, Y ∼ beta4(α1, α2, θ1, θ2) in 
short, its probability density function (pdf) is given by

fbeta(y;α1,α2, θ1, θ2) = �(α1 + α2)

�(α1)�(α2)

(y − θ1)
α1−1(θ2 − y)α2−1

(θ2 − θ1)α1+α2−1 , for y ∈ (θ1, θ2), (1)

where �(t) is the gamma function, α1 > 0 and α2 > 0 are two shape parameters, and θ1 and θ2 are two unknown support 
parameters. One can show that W = (Y −θ1)/(θ2 −θ1) follows a beta distribution with shape parameters α1 and α2. Let μw

and μy denote the mean for W and Y , respectively. It is easy to show that μw = α1/(α1 + α2) and μy = μw(θ2 − θ1) + θ1. 
In preparation for formulating of a mean regression model, we set α1 = φm and α2 = φ(1 − m), for 0 < m < 1 and φ > 0, 
which leads to μw = m, and that φ plays the role of a precision parameter, of which a larger value implies a lower variance 
of the beta or beta4 distribution. Let β = (β0, β1, . . . , βp)′ denote a vector of regression coefficients with β0 being the 
intercept. We propose a Bayesian beta4 mean regression model specified by the following submodels,

yi|mi, φ, θ1, θ2 ∼ beta4 (φmi, φ(1 − mi), θ1, θ2) ,

mi ≡ m(xi) = h−1(β ′xi),

p(β, φ, θ1, θ2) = p(β)p(φ)p(θ1)p(θ2),

(2)

where h(·) is a link function such as logit, probit, and log-log, and each p(·) represents a prior density. The prior specification 
is discussed in Section 2.2. Under this beta4 mean model, we have

h{(Mean[yi |xi] − θ1)/(θ2 − θ1)} = β ′xi,

the left-hand side of which can be interpreted as a quantile-score for the position of Mean[yi |xi] within (θ1, θ2). A higher 
quantile-score leads to a higher mean response. Therefore, the interpretation of the regression coefficient β j is that, for 
every one unit increase in xij , the quantile-score for the mean response increases by β j units, for j = 1, . . . , p.

With the mode instead of mean as the central tendency measure of interest, we revise the above mean regression model 
to construct a mode regression model. It is easy to show that, when α1, α2 > 1, there is a unique mode for W and Y given 
by mw ≡ Mode(W ) = (α1 − 1)/(α1 + α2 − 2) and my ≡ Mode(Y ) = mw(θ2 − θ1) + θ1, respectively. Focusing on a unimodal 
beta or beta4 distribution, we set α1 = 1 +φm and α2 = 1 +φ(1 −m), for 0 < m < 1 and φ > 0, which leads to mw = m and 
that φ again can be interpreted as a precision parameter. Mimicking the beta4 mean regression model in (2), we propose 
the Bayesian beta4 mode regression model via the following hierarchical models,

yi|mi, φ, θ1, θ2 ∼ beta4 (1 + φmi, 1 + φ(1 − mi), θ1, θ2) ,

mi ≡ m(xi) = h−1(β ′xi),

p(β, φ, θ1, θ2) = p(β)p(φ)p(θ1)p(θ2).

(3)

Under this beta4 mode regression model, we have

h{(Mode[yi |xi] − θ1)/(θ2 − θ1)} = β ′xi,

with the interpretation of regression coefficients similar to that under the beta4 mean regression model.

2.2. Prior specification

In what follows, we specify prior distributions for the support parameters, the precision parameter, and the regression 
coefficients successively.

Prior for θ1 and θ2

Suppose one has some natural prior information that the support of the response is within the interval (aθ1 , bθ2 ), where 
aθ1 < θ1 and bθ2 > θ2 are known. For instance, the body fat percentage of a human being is naturally bounded within 
(aθ1 , bθ2 ) = (0, 1), but its true support should be strictly within and much narrower than (0, 1). Given such prior information 
and data D, we consider the following priors on θ1 and θ2,

θ1 ∼ unif(aθ1 ,bθ1), θ2 ∼ unif(aθ2 ,bθ2), (4)

where unif(a, b) refers to the uniform distribution on (a, b), bθ1 < y(1) , and aθ2 > y(n) , in which y(k) refers to the kth order 
statistic of {y1, . . . , yn}. When the prior information on bounds is not available, we consider the following default choices: 
aθ1 = y(1) −�, bθ1 = y(1) − 10−15, aθ2 = y(n) + 10−15, bθ2 = y(n) +�, where � > 10−15 is used to control the prior precision 
with larger � values indicating more vague priors. The choice of � = 2sy has been shown in our simulation studies to 
perform well, where sy is the sample standard deviation of yi ’s.
3
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Prior for φ
The precision parameter φ > 0 controls the variability of yi given xi with a larger value implying lower variability. In most 
applications where bounded data are of interest, observed data typically provide enough information to infer φ. Hence, 
we consider a commonly used gamma prior, �(aφ, bφ), on φ with aφ = bφ = 0.001 as the defaults, where aφ is the shape 
parameter and bφ is the rate parameter.

Informative g-prior on β
A common choice for the prior on β = (β0, β1, . . . , βp)′ in beta-related mean regression models has been the usual flat 
normal prior Np+1(0, 105Ip+1) (Bayes et al., 2012; Migliorati et al., 2018). However, for beta4 mode regression, we find 
that the flat prior does not always yield reasonable posterior results when data provide relatively weak information on the 
conditional mode, e.g., when φ is small, or α1 and α2 are both less than one leading to nonexistence of mode. In these 
cases, the likelihood function often approaches a constant that is free of data, leading to non-uniqueness of the maximum 
likelihood estimate for β . Similar phenomenon can emerge from linear models with a strong multicollinearity, for which a 
well-received strategy is to include a penalty term in the likelihood function within the frequentist framework, or to impose 
an informative prior on β in the Bayesian paradigm. As for the beta4 mean mode, although a flat prior for β works well 
in most cases, an informative prior is also preferable in the presence of multicollinearity. We next propose an informative 
prior on β in both beta4 mean and mode models along the same vein of this Bayesian strategy.

Denote by m ∈ (0, 1) the central tendency measure of (yi − θ1)/(θ2 − θ1) in a proposed regression model, which is the 
mean in the beta4 mean model, and it is the mode in the beta4 mode model. Consider the situation where a subject-
matter expert has information on the marginal distribution of m, which can be well-characterized by beta(am, bm), where 
am > 0 and bm > 0 are known. Here we use m ∼ beta(am, bm) because the beta prior is quite flexible for modeling (0, 1)-
supported parameter and brings mathematical convenience in the prior development. Our goal is to formulate a prior on 
β that takes advantage of this prior information while adjusting for covariates. For this purpose, we consider the following 
g-prior (Zellner, 1986),

β ∼ Np+1
(
be1, gn(X′X)−1) , (5)

where e1 = (1, 0, . . . , 0)′ is of length p + 1, b is a prior mean for the intercept, and g > 0 is a scaling constant. Suppose 
covariates x1, . . . , xn arise independently from a population H(·) with mean μ and variance-covariance �. With xi including 
the intercept in the first element, the first element of μ is one, and entries in the first row and those in the first column of 
� are all zeros. For any new subject with covariates x ∼ H and response y, we have the mean or mode of (y − θ1)/(θ2 − θ1)

equal to m(x) = h−1(β ′x). Given the data X, assuming x and β are mutually independent, one has E(β ′x) = Ex{Eβ(β ′x|x)} =
Ex(be′

1x) = Ex(b) = b, by the law of iterated expectations. In addition, by the law of total variance, one has

Var(β ′x) = Ex{Varβ(β ′x|x)} + Varx{Eβ(β ′x|x)}
= Ex{gnx′(X′X)−1x} + Varx(b)

= g · trace
{
n(X′X)−1(� + μμ′)

}
p→ g · trace

{
(� + μμ′)−1(� + μμ′)

} = g(p + 1),

where 
p→ denotes “converge in probability,” and the limiting statement originates from the fact that n(X′X)−1 p→ (μμ′ +

�)−1 (Vershynin, 2012). Hence, given X, the g-prior in (5) implies that β ′x has a variance approximately equal to g(p + 1)

for any covariate x randomly drawn from its population H(·). Hanson et al. (2014) found that β ′x also often approximately 
follows a normal distribution, and this approximation is very good for a variety of H considered in their simulations, even 
when some covariates are categorical. Therefore, it is reasonable to assume that β ′x approximately follows N(b, g(p + 1)).

Motivated by the above findings, we choose values of b and g in the g-prior (5) so that the induced distribution of 
m(xi) = h−1(β ′xi) matches the marginal prior distribution m ∼ beta(am, bm). More specifically, we minimize the Kullback-
Leibler divergence from the distribution of m(x) = h−1(β ′x) to beta(am, bm), yielding b = E{h(m)} and g = Var{h(m)}/(p +1)

for m ∼ beta(am, bm). When h(·) is the logit link, explicit expressions of the above mean and variance can be obtained, 
leading to b = δ(am) − δ(bm) and g = {δ′(am) + δ′(bm)}/(p + 1), where δ(x) = �′(x)/�(x) is the digamma function. For other 
link functions, we use approximations b ≈ ̂E{h(m)} and g = ̂Var{h(m)}/(p +1), where ̂E{h(m)} and ̂Var{h(m)} are the sample 
mean and variance of a random sample from m ∼ beta(am, bm).

When the values for am and bm are not available, we use am = bm = 1 as the defaults, yielding relatively weak prior 
information on the location of m.

2.3. Block MCMC

Given data D = {(yi, xi), i = 1, . . . , n}, the likelihood function of parameters 	 = (β, φ, θ1, θ2) associated with model (2)
or (3) is
4
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L(D|	) =
n∏

i=1

�(αi1 + αi2)(yi − θ1)
αi1−1(θ2 − yi)

αi2−1

�(αi1)�(αi2)(θ2 − θ1)αi1+αi2−1 , (6)

where αi1 = φmi and αi2 = φ(1 − mi) for the beta4 mean mode in (2), and αi1 = 1 + φmi and αi2 = 1 + φ(1 − mi) for the 
beta4 mode model in (3). The posterior density is

p(β, φ, θ1, θ2|D) ∝ L(D|	)

× exp

{
− 1

2gn
(β − be1)

′X′X(β − be1)

}
× I(aθ1 < θ1 < bθ1)I(aθ2 < θ2 < bθ2)

× φaφ−1 exp(−bφφ).

Posterior sampling is carried out through adaptive Metropolis samplers (Haario et al., 2001). As commented earlier, 
central tendency measures of bounded data typically entangle with the support of the underlying distribution. For example, 
according to the beta4 mean model in (2), the conditional mean of yi given xi , Mean[yi |xi] = h−1(β ′xi)(θ2 − θ1) + θ1, 
depends on the support (θ1, θ2). Consequently, the posterior distribution of β and (θ1, θ2)

′ are often highly correlated. We 
thus update them in a single block to effectively eliminate problematic MCMC mixing. It has been well documented in the 
literature that block sampling can improve MCMC efficiency relative to updating each parameter independently (Liu et al., 
1994; Roberts and Sahu, 1997; Sargent et al., 2000). The algorithm for posterior sampling that incorporates block sampling 
is described next, where the d = p + 3 dimensional vector ξ = (β ′, z1, z2)

′ is introduced, with zi = log{(θi − aθi )/(bθi − θi)}, 
i = 1, 2.

Step 1: Update ξ .
Because zi follows a standard logistic distribution, the full conditional distribution for ξ is

p(ξ |else) ∝ L(D|	)exp

{
− 1

2gn
(β − be1)

′X′X(β − be1)

}
ez1+z2

(1 + ez1)2(1 + ez2)2
,

where “else” denotes all other model parameters and the data. The vector ξ is updated using adaptive Metropolis samplers 
(Haario et al., 2001). More specifically, suppose we have sampled the states ξ (1), . . . , ξ (l−1) , now in iteration l, we generate 
ξ∗ from Nd(ξ

(l−1), �(l)
ξ ) and accept it with probability

min

{
1,

p(ξ∗|else)

p(ξ (l−1)|else)

}
,

where

�
(l)
ξ =

⎧⎨⎩�0ξ , l ≤ l0,
2.42

d
(Cl + 10−10Id), l > l0,

in which l0 is the length of an initial period (e.g., l0 = 1000), Cl is the sample variance of ξ (1), . . . , ξ (l−1) , �0ξ =
diag(
̂β , π2/3, π2/3) is an initial diagonal covariance matrix of ξ , π2/3 is the variance of a standard logistic distribu-
tion, and 
̂β is the covariance estimate for β when using the R package betareg to fit a beta mean regression model 
{(yi − θ̂10)/(θ̂20 − θ̂10)} ∼ beta(φh−1(x′

iβ), φ(1 − h−1(x′
iβ))), with θ̂10 = y(1) − sy/

√
n and θ̂20 = y(n) + sy/

√
n being the ad 

hoc estimates of θ1 and θ2. These ad hoc estimates of (θ1, θ2) are borrowed from Turnbull and Ghosh (2014) for modeling 
bounded data with unknown support. The current choices for these initial estimates work well in our extensive simulation 
studies, although other choices can be used as well and usually have little impact on posterior inferences (as long as they 
are not too small or large).

Step 2: Update φ.
The full conditional distribution for log φ is

p(logφ|else) ∝ L(D|	)φaφ exp(−bφφ).

The logarithm of the precision parameter log φ is updated via adaptive Metropolis samplers with normal proposal log φ∗ ∼
N1(log φ(l−1), �(l)

φ ), where �(l)
φ is defined similarly as �(l)

ξ above but with �0ξ replaced by �0φ = 1/n, and the acceptance 
probability is

min

{
1,

p(logφ∗|else)

(l−1)

}
.

p(log φ |else)

5
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To determine the running length of an MCMC run, one may first run a short chain without thinning, then use R pack-
age coda (Plummer et al., 2006) for convergence diagnostics and effective sample size calculations. Specifically, we use
raftery.diag (Raftery and Lewis, 1992) to determine the burn-in period, the thinning interval, and the total number of 
iterations, use heidel.diag (Heidelberger and Welch, 1983) to ascertain stationarity, and use effectiveSize to calcu-
late the effective sample size for each parameter. The mixing of the chains is evaluated through trace and auto-correlation 
plots. These MCMC diagnostics are demonstrated in the sample R code provided in supplementary Appendix A.

As pointed out by a referee, besides the block sampling algorithm implemented here, the Hamiltonian Monte Carlo 
(HMC) sampling algorithm (Duane et al., 1987) is another well-accepted MCMC algorithm designed to reduce the correlation 
between successive sampled states. Although algorithmic performance comparison is not the focus of our study, we compare 
these two algorithms in the context of a real-life data application in Section 5.1.

3. Model comparison and diagnostics

To compare different regression models that one may fit to the same data set, we adopt three model criteria described 
next, all of which are readily computed from the MCMC output. This computational convenience partly motivates our choice 
among many existing and well-accepted model criteria that may be used here (Mills and Prasad, 1992; Claeskens, 2016). To 
set the notations, denote by Di the ith data point, and by D−i the data set with Di removed, for i = 1, . . . , n. Let Li(·|	) be 
the likelihood contribution based on Di .

The first model criterion is the deviance information criterion (DIC, Spiegelhalter et al., 2002), which is a generalization 
of the Akaike information criterion (AIC, Akaike, 1998), and commonly used for comparing complex hierarchical models for 
which the asymptotic justification of AIC is not appropriate. The DIC is defined as

DIC = −2 log L(D|	̂) + 2pD ,

where

pD = 2

{
log L(D|	̂) − 1

L

L∑
l=1

log L(D|	(l))

}
is referred to as the effective number of parameters measuring the model complexity. Similar to AIC, a smaller value of DIC 
indicates a better fit of the model.

The second model criterion is the Watanabe-Akaike information criterion (WAIC, Watanabe, 2010) that has gained pop-
ularity in recent years due to its stability compared to DIC (Gelman et al., 2014; Vehtari and Gelman, 2014). The WAIC is 
defined as

WAIC = −2
n∑

i=1

log

{
1

L

L∑
l=1

Li(Di |	(l))

}
+ 2pW ,

where

pW =
n∑

i=1

⎡⎣ 1

L− 1

L∑
l=1

{
log Li(Di |	(l)) − 1

L

L∑
k=1

log Li(Di |	(k))

}2⎤⎦
is the effective number of parameters. A smaller value of WAIC indicates a better fit of the model.

The third model criterion is the log pseudo marginal likelihood (LPML, Geisser and Eddy, 1979). The definition of LPML 
is based on the conditional predictive ordinate (CPO) statistic, which is defined by, for data point Di ,

CPOi = f (Di |D−i) =
∫

Li(Di |	)ppost(	|D−i)d	,

where ppost(·|D−i) is the posterior density of 	 give D−i . The data points with relative low CPO values indicate that they 
are not well fitted by the model. Therefore, it can be used to detect potential outliers given the model (Congdon, 2005). As 
noted by Gelfand and Dey (1994), one can use importance sampling to estimate CPOi by{

1

L

L∑
l=1

1

Li(Di |	(l))

}−1

.

However, these estimates may be unstable since the weights ωi,l = 1/Li(Di |	(l)) can have infinite variance (Epifani et al., 
2008), depending on the tail behavior of ppost(	|D−i) relative to Li(Di |	) as a function of 	. To stabilize the weights, 
Vehtari and Gelman (2014) suggest replacing ωi,l with ω̃i,l = min{ωi,l, 

√
Lω̄i}, where ω̄i = ∑L

l=1 ωi,l/L, leading to the 
stabilized CPO statistic given by
6



H. Zhou and X. Huang Computational Statistics and Data Analysis 167 (2022) 107345
ĈPOi =
∑L

l=1 Li(Di |	(l))ω̃i,l∑L
l=1 ω̃i,l

.

Finally, the LPML is defined as

LPML =
n∑

i=1

log ĈPOi .

A larger value of LPML suggests a better fit. Among the three model criteria, DIC and WAIC place emphasis on the relative 
quality of model fitting, while LPML focuses on the predictive performance of a model.

Another important issue to consider in any parametric regression analysis is model diagnostics. To address this issue, 
we employ the Cox-Snell plots for a general residual (Cox and Snell, 1968) defined by ri(	) = − log{1 − Fxi (yi; 	)}, for i =
1, . . . , n, where Fxi (yi; 	) is the cumulative distribution function of yi given xi . Although Cox-Snell residuals had primarily 
used in survival models in the literature, they were originally proposed as a general definition of residuals for various 
regression models such as linear models with non-normal errors and Poisson models (Cox and Snell, 1968). Alternatively, 
the deviance residuals and standardized ordinary residuals used for the (0, 1)-supported beta mean regression model in 
Ferrari and Cribari-Neto (2004) can also be defined for the beta4 models. We choose Cox-Snell residuals mainly because 
they allow us to assess uncertainty based on a posterior sample of residuals ri(	) as described below.

By the probability integral transform, when evaluated at the cumulative distribution function with the true 	 that char-
acterizes the data generating process, ri(	) follows a standard exponential distribution. Therefore, if the model is “correct,” 
the residuals ri ’s are expected to behave like a random sample from the standard exponential distribution, and thus the 
curve for 
(t|	) = − log{1 − n−1 ∑n

i=1 I(ri(	) ≤ t)} versus t should be approximately straight with a slope equal to one. As 
a function of t , 
(t|	) is unknown but can be estimated by 
(t|	̂), where 	̂ is an estimate of 	. We use 	̂ = ∑L

l=1 	(l)/L
in our study, where {	(1), . . . , 	(L)} (e.g. L = 5, 000) are random draws from posterior distribution [	|D] at the conver-
gence of the MCMC algorithm in Section 2.3. Instead of plotting the single curve of 
(t|	̂) as in a typical Cox-Snell plot, our 
version of the plot incorporates c curves in {
(t|	(l)), l = 1, . . . , c <L}, along with the equal-tailed 95% point-wise credible 
intervals based on the whole posterior sample {
(t|	(1)), . . . , 
(t|	(L))}, contrasting with a 45◦ reference line, where the 
equal-tailed credible interval is chosen so that the percentage of posterior sample below the interval is the same as the per-
centage above it. We set c = 30, which is large enough to allow visual assessment of the uncertainty due to estimating 	, 
but not too large such that the plot becomes overly crowded. The 95% credible intervals that severely deviate from the 45◦
line provide evidence of an overall lack-of-fit of the model. As evidenced in the simulation study in Section 4.3, Cox-Snell 
residuals are sometimes conservative in that they may almost lie on a straight line when the assumed model departures 
from the true model as described in Baltazar-Aban and Pena (1995) and O’Quigley and Xu (2005).

4. Simulation studies

We design three simulation experiments to illustrate the implementation of the proposed regression methodology, to 
demonstrate the performance of the posterior inference, and to evaluate the effectiveness of model selection via DIC, WAIC, 
and LPML, and the graphical diagnostic method.

4.1. Simulation I: parameter estimation

The first simulation study aims to inspect posterior inference for 	 in the beta4 mean and mode models from the MCMC 
algorithm described in Section 2.3, implemented using the R package betaBayes available on CRAN.

To generate a random sample from a regression model, we first simulate xi1
iid∼ N(0, 1) independent of xi2

iid∼
Bernoulli(0.5) to create covariates xi = (1, xi1, xi2)

′ , for i = 1, . . . , n, where “iid” stands for “independent and identically 
distributed.” Given a sample of covariates, we follow the beta4 mean model in (2) or the beta4 mode model in (3) to gen-
erate responses supported on (θ1, θ2) = (0, 2), with regression coefficients β = (β0, β1, β2)

′ = (1, 1, 1)′ , and the link function 
h(t) = log{t/(1 − t)}. In addition, we consider two samples sizes, n = 100, 500, and two conditional precision parameters, 
φ = 10, 50, yielding four cases in total under each regression model. Under the current model settings, response data near 
the lower bound of the support are much more scarce than those near the upper bound, as one can see from scatter plots 
under each regression model with φ = 10 and φ = 50 in supplementary Figure S1. Later in this subsection, we consider 
a smaller sample size at n = 67, along with other model settings, such as that for the covariates distribution, to create 
scenarios similar to a data set considered in a real-life application presented in Section 5.

Under each simulation setting, 300 Monte Carlo (MC) replicate data sets are generated. We fit the regression models 
using the default priors introduced in Section 2.2. For each MCMC run, 2000 scans are thinned from 10000 after a burn-in 
period of 5000 iterations, which we confirm by convergence diagnostics to be more than adequate. Table 1 summarizes 
results regarding estimation of β , φ, θ1 and θ2, including the MC averages of the posterior mean point estimate and the 
posterior standard deviation (PSD) of each point estimate, the standard deviation (across 300 MC replicates) of the point 
estimate, and the coverage probability of the 95% credible interval. All credible intervals are equal-tailed in this article. 
When the underlying beta distribution is less variable (with φ set at 50 as opposed to 10), with a moderate sample size at 
7
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Table 1
Results from Simulation I. These include averaged posterior mean point estimate (Est) and pos-
terior standard deviation (PSD) of each point estimate, the standard deviation (across 300 MC 
replicates) of the point estimate (SD-Est), and the coverage probability (CP) of the 95% credible 
interval under the beta4 mean model (in the upper half of the table) and those under the beta4 
mode model (in the lower half of the table).

Parameter Est PSD SD-Est CP Est PSD SD-Est CP

For the beta4 mean model

n = 100 n = 500

β0 = 1 0.965 0.179 0.164 0.987 1.014 0.086 0.084 0.950
β1 = 1 0.999 0.093 0.087 0.960 0.997 0.041 0.040 0.943
β2 = 1 1.008 0.155 0.148 0.967 0.996 0.068 0.069 0.937
φ = 10 10.056 2.070 1.980 0.957 10.104 0.953 0.946 0.940
θ1 = 0 0.001 0.185 0.180 0.950 −0.024 0.094 0.089 0.953
θ2 = 2 2.000 0.001 0.001 0.950 2.000 0.000 0.000 0.953

n = 100 n = 500

β0 = 1 0.943 0.121 0.147 0.880 1.005 0.066 0.067 0.947
β1 = 1 1.013 0.070 0.071 0.937 0.999 0.029 0.029 0.953
β2 = 1 1.022 0.093 0.090 0.957 0.998 0.039 0.039 0.943
φ = 50 50.469 10.260 11.624 0.897 50.353 4.466 4.386 0.963
θ1 = 0 0.037 0.142 0.174 0.860 −0.014 0.083 0.082 0.953
θ2 = 2 2.002 0.011 0.010 0.940 2.000 0.002 0.002 0.950

For the beta4 mode model

n = 100 n = 500

β0 = 1 0.914 0.214 0.227 0.927 1.002 0.110 0.113 0.940
β1 = 1 1.071 0.202 0.195 0.957 1.008 0.083 0.084 0.953
β2 = 1 1.070 0.267 0.248 0.970 1.008 0.107 0.113 0.923
φ = 10 9.521 2.706 2.815 0.927 10.084 1.476 1.346 0.967
θ1 = 0 0.071 0.172 0.184 0.933 −0.022 0.123 0.118 0.947
θ2 = 2 2.005 0.026 0.020 0.947 2.001 0.006 0.006 0.947

n = 100 n = 500

β0 = 1 0.919 0.126 0.151 0.847 1.008 0.069 0.070 0.950
β1 = 1 1.041 0.095 0.095 0.947 0.995 0.042 0.041 0.940
β2 = 1 1.043 0.116 0.117 0.953 0.992 0.050 0.051 0.933
φ = 50 48.282 10.603 11.355 0.920 51.557 5.538 5.636 0.933
θ1 = 0 0.084 0.141 0.174 0.823 −0.023 0.092 0.092 0.943
θ2 = 2 2.000 0.017 0.017 0.947 2.002 0.006 0.006 0.947

n = 100, we see some under-coverages for estimating β0, φ, and θ1 under both regression models. This can be explained 
by the scarceness of data information to infer the lower bound of the support when the sample is not large enough while 
the underlying distribution is more concentrated around the mode. The deficiency in such data information results in high 
uncertainty in inferring θ1, the uncertainty that is underestimated by the PSD, and thus leads to low coverage probabilities 
of the credible interval for θ1. Due to the inextricable links between the support and location/variability measures of a 
distribution, inferences for β0 and φ are somewhat compromised in this case as domino effects. Fortunately, the ripple 
effects have little impact on the covariate effects estimation. When the sample size is larger, say, n = 500, or when the 
underlying distribution is less concentrated around the mode (by setting φ at 10 in place of 50), point estimates for all 
parameters are greatly improved and are much closer to the truth under each regression model, with PSDs closer to the 
corresponding empirical standard deviations, yielding credible intervals with coverage probabilities matching the nominal 
value more closely.

We carry out additional simulation experiments under settings that more closely mimic those in the real-life data ap-
plications in Section 5. In particular, we generate random samples, each of size n = 67, from the beta4 mean model with 
φ = 50 and from the beta4 mode model with φ = 5. Each model contains p = 5 covariates, whose values are simulated 
from a multivariate normal distribution Np(0, 0.16Rx), where Rx has diagonal entries being 1 and off-diagonal entries being 
0.5. Like seen under earlier simulation settings, our inference procedure produces satisfactory point estimation, standard 
deviation estimation, and interval estimation under these additional settings. Summary statistics of these estimates are in 
supplementary Table S1.

Existing beta regression models that are highly relevant to our proposed regression models include the beta mean model 
considered in Ferrari and Cribari-Neto (2004) and the beta mode model developed by Zhou et al. (2020). Our proposed 
regression models in (2) and (3) differ from theirs in that, first, support parameters are inferred along with other model 
parameters instead of assumed known, and second, our models are formulated for Bayesian regression analysis whereas 
theirs are designed for frequentist approaches. To investigate impacts on inference of using a pre-fixed support within the 
Bayesian framework, we carried out Bayesian regression analysis based on the aforementioned existing beta mean model 
and beta mode model, but with the boundary parameters (θ1, θ2) fixed at (y(1) − sy/

√
n, y(n) + sy/

√
n) following the 
8
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Table 2
Results from Simulation I. These include averaged posterior mean point estimate (Est) and 
posterior standard deviation (PSD) of each point estimate, the standard deviation (across 300 
MC replicates) of the point estimate (SD-Est), and the coverage probability (CP) of the 95% 
credible interval under the beta mean model (in the upper half of the table) and the beta 
mode model (in the lower half of the table) when boundaries (θ1, θ2) are prefixed at (y(1) −
sy/

√
n, y(n) + sy/

√
n) for each MC replicate data set (and thus PSD and CP associated with 

boundary parameters are not available).

Parameter Est PSD SD-Est CP Est PSD SD-Est CP

For the beta4 mean model

n = 100 n = 500

β0 = 1 0.657 0.096 0.162 0.170 0.834 0.042 0.084 0.147
β1 = 1 0.927 0.082 0.081 0.830 0.925 0.036 0.037 0.410
β2 = 1 0.898 0.144 0.137 0.900 0.928 0.063 0.066 0.780
φ = 10 10.127 1.463 2.043 0.833 10.606 0.682 1.009 0.740
θ1 = 0 0.238 NA 0.154 NA 0.105 NA 0.076 NA
θ2 = 2 2.041 NA 0.003 NA 2.019 NA 0.001 NA

n = 100 n = 500

β0 = 1 0.543 0.055 0.198 0.013 0.756 0.022 0.091 0.000
β1 = 1 1.075 0.050 0.074 0.647 1.037 0.020 0.036 0.537
β2 = 1 1.055 0.085 0.100 0.870 1.029 0.035 0.044 0.807
φ = 50 35.019 5.054 8.817 0.300 42.586 2.701 4.800 0.380
θ1 = 0 0.386 NA 0.169 NA 0.226 NA 0.090 NA
θ2 = 2 2.027 NA 0.008 NA 2.015 NA 0.002 NA

For the beta4 mode model

n = 100 n = 500

β0 = 1 0.593 0.157 0.250 0.390 0.808 0.061 0.107 0.273
β1 = 1 1.221 0.169 0.146 0.723 1.093 0.061 0.082 0.597
β2 = 1 1.212 0.259 0.283 0.840 1.076 0.097 0.111 0.857
φ = 10 6.955 1.227 1.648 0.370 8.337 0.627 1.031 0.360
θ1 = 0 0.322 NA 0.150 NA 0.175 NA 0.084 NA
θ2 = 2 2.014 NA 0.017 NA 2.008 NA 0.006 NA

n = 100 n = 500

β0 = 1 0.566 0.066 0.195 0.040 0.763 0.025 0.097 0.013
β1 = 1 1.208 0.065 0.109 0.153 1.103 0.024 0.053 0.127
β2 = 1 1.199 0.105 0.129 0.527 1.090 0.040 0.058 0.420
φ = 50 30.236 4.610 7.665 0.147 38.482 2.542 5.035 0.140
θ1 = 0 0.405 NA 0.150 NA 0.250 NA 0.092 NA
θ2 = 2 2.008 NA 0.016 NA 2.005 NA 0.006 NA

suggestion in Turnbull and Ghosh (2014). Table 2 presents results from this comparative experiment, which clearly suggest 
that all model parameters are poorly estimated if one does not carefully estimate the unknown support (θ1, θ2) along with 
other model parameters.

4.2. Simulation II: model selection

The second simulation experiment is designed to evaluate the performance of the three model criteria defined in Sec-
tion 3. Here, data are generated from each of the two proposed beta regression models, in conjunction with three link 
functions, the logit, probit, and log-log link. These are also the six candidate models from which a model criterion chooses 
the “best” model based on a simulated data set. Configurations for covariates and regression coefficients are the same as 
those described in the second paragraph in Section 4.1, except for that we now focus on the setting with φ = 50 and 
n = 500. For each of 300 MC replicate data sets, despite the true model used to generate the data, we fit all six candidate 
models using the default priors. Table 3 presents the average across 300 MC replicates for each of the three model criteria 
evaluated at a candidate model when data are generated from each of the six true models.

According to the summarized results in Table 3, all three considered model criteria tend to choose the true model as 
the best or the second best model based on a data set generated from the true model. In addition to this pattern, three 
other observations are worth pointing out. First, when evaluated at data generated from the beta4 mean model with the 
probit link, the considered model criteria can often choose the beta4 mean model with the logit link. This is not surprising 
considering the high similarity between the two link functions. Second, when a candidate model disagrees with the true 
model only in the link function, the candidate model that assumes the logit link tends to yield a better fit according to 
the model criteria. Based on this observation, we recommend using a logit link in the proposed beta4 regression models in 
practice, unless a model criterion strongly supports a different link. A third interesting observation is that, when data are 
generated from the beta4 mean model with the probit link, the model criteria suggest substantially worse fit of the beta4 
9
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Table 3
Results from Simulation II. Averages of each of the three model criteria across 300 Monte Carlo replicates 
evaluated at a candidate model based on data from different models. Numbers in parentheses are Monte 
Carlo standard errors associated with the averages. The true models are listed as the row titles: the beta4 
mode model with the logit link (mo-logit), the probit link (mo-probit), and the log-log link (mo-loglog), 
and the beta4 mean model with the logit link (me-logit), the probit link (me-probit), and the log-log 
link (me-loglog). These are also the six candidate models listed as the column titles. Entries in bold in 
each row indicate that their corresponding candidate models outperform all other candidate models.

mo-logit mo-probit mo-loglog me-logit me-probit me-loglog

For negative DIC

mo-logit 890 (2.0) 887 (2.0) 881 (2.0) 887 (2.0) 871 (2.1) 888 (2.1)
mo-probit 1293 (2.5) 1310 (2.5) 1224 (2.6) 1225 (2.7) 1127 (2.8) 1247 (2.8)
mo-loglog 876 (2.0) 856 (2.0) 895 (2.0) 861 (2.1) 823 (2.2) 896 (2.2)
me-logit 934 (2.1) 941 (2.1) 913 (2.0) 950 (2.1) 947 (2.3) 938 (2.2)
me-probit 1516 (3.2) 1618 (3.5) 1372 (3.0) 3958 (19.4) 3962 (19.3) 3816 (18.8)
me-loglog 924 (2.1) 915 (2.1) 936 (2.1) 930 (2.2) 906 (2.3) 981 (3.0)

For negative WAIC

mo-logit 890 (2.0) 887 (2.0) 881 (2.0) 886 (2.0) 869 (2.1) 883 (2.2)
mo-probit 1293 (2.5) 1310 (2.5) 1223 (2.6) 1217 (2.8) 1108 (3.0) 1180 (4.0)
mo-loglog 877 (2.0) 856 (2.0) 895 (2.0) 859 (2.0) 817 (2.2) 872 (2.9)
me-logit 934 (2.1) 941 (2.1) 913 (2.0) 948 (2.1) 934 (2.3) 928 (2.3)
me-probit 1515 (3.2) 1616 (3.5) 1369 (3.0) 3828 (18.2) 3827 (18.1) 3643 (18.9)
me-loglog 925 (2.0) 915 (2.1) 936 (2.1) 926 (2.1) 882 (2.6) 946 (3.4)

For LPML

mo-logit 445 (1.0) 443 (1.0) 440 (1.0) 443 (1.0) 435 (1.0) 442 (1.0)
mo-probit 646 (1.3) 655 (1.3) 612 (1.3) 610 (1.3) 558 (1.4) 611 (1.3)
mo-loglog 438 (1.0) 428 (1.0) 447 (1.0) 430 (1.0) 410 (1.0) 443 (1.0)
me-logit 467 (1.0) 471 (1.0) 456 (1.0) 474 (1.1) 470 (1.1) 466 (1.0)
me-probit 757 (1.6) 808 (1.8) 685 (1.5) 1914 (9.1) 1914 (9.0) 1836 (9.0)
me-loglog 462 (1.0) 458 (1.0) 468 (1.0) 463 (1.1) 447 (1.1) 482 (1.4)

mode model. A closer inspection on such data reveals that, under the current parameter settings in a beta4 mean model, the 
distribution of the response is of J -shaped, a feature that cannot be captured by a unimodal beta distribution one assumes 
in the beta4 mode regression model. This explains the lack of fit reflected in the model criteria. These observations in turn 
suggest the effectiveness of the model criteria in identifying the best model based on observed data.

The third observation above brings up the important issue of drawing statistical inference based on a misspecified model, 
e.g., fitting a beta4 mode regression model to data from a model without a well-defined mode. Well-established results 
regarding inference based on misspecified models, especially likelihood-based frequentist inference (White, 1982), suggest 
that a sensible inference procedure is expected to conclude an inferred model in the misspecified family of models that is 
closest to the true model according to the Kullback-Leibler divergence criterion. With prior information of (misspecified) 
model parameters incorporated in a Bayesian inference procedure, posterior inference can be dominated by these prior 
information when data information severely contradict with the assumed model, e.g., when fitting a unimodal distribution 
to data that exhibit some striking multi-cluster structure. In our context, if one fits the beta4 mode regression model to, 
for instance, multimodal data, posterior inference for the support parameters may still be sensible, thanks to the prior 
formulation for θ1 and θ2. But all posterior inference results should be interpreted with caution when there is little update 
in the posterior inference from the prior distributions for the assumed model parameters.

4.3. Simulation III: model diagnostics

In the third simulation experiment we evaluate the performance of the Cox-Snell residual plot for model diagnostics. 
Here, despite the true model used to generate data D, we fit a beta4 mean model in (2) with h(·) being the logit link, and 
β ′xi = β0 + β1xi1 + β2xi2. Covariate data (xi1, xi2), for i = 1, . . . , n, are generated in the same way as in Simulation I (see 
the second paragraph in Section 4.1). We then generate response data from each of the following beta4 mean models, with 
φ = 50 in (2), that are different in regard to the linear predictor specification or in the link function:

(C1) the model in (2) with β ′xi = 1 + xi1 + xi2, and h(·) being the logit link,
(C2) the model in (2) with β ′xi = 1 + xi1 + xi2 + x2

i1, and h(·) being the logit link,
(C3) the model in (2) with β ′xi = 1 + xi1 + xi2, and h(·) being the probit link,
(C4) the model in (2) with β ′xi = 1 + xi1 + xi2, and h(·) being the log-log link.

Under (C1), the assumed model coincides with the true model. Under (C2), the assumed model misspecifies the linear 
predictor; under (C3) and (C4), the assumed model involves a misspecified link function.
10
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Fig. 1. Results from Simulation III. Cox-Snell residual plots with 95% point-wise credible intervals (thick dashed lines) for data of size n = 500 generated 
from a beta4 mean model. Panels (a)–(d) correspond to cases (C1)–C(4), respectively. A beta4 mean model with a linear predictor and the logit link is fit 
for all cases.

Fig. 1 presents the Cox-Snell residual plots obtained based on one data set of size n = 500 generated from each of 
(C1)–(C4). We can see that the Cox-Snell plot is very sensitive to linear predictor misspecification, but not as sensitive to 
the link misspecification. The same pattern was observed when one assumes a beta4 mode model for data generated from 
beta4 mode models that disagree with the assumed model in the linear predictor specification or in the link function (see 
supplementary Figure S2). In fact, link misspecification in a regression model has been shown to be notoriously difficult 
to detect by many well-accepted goodness-of-fit tests (e.g., Hosmer et al., 1997). Huang (2016) and Yu and Huang (2019)
provided some insight on the reason behind this phenomenon, and proposed diagnostic tools deviating from the residual-
based theme that are more powerful against link misspecification. Besides these frequentist goodness-of-fit tests, one may 
also consider the Bayesian goodness-of-fit test recently proposed by Barrientos and Canale (2021) that produces a Bayes 
factor following estimating the distribution of universal residuals (Brockwell, 2007). Besides fitting the posited regression 
model, that is, a beta4 regression model in our context, this Bayesian testing procedure also requires fitting a mixture 
normal model to the transformed residuals. Without looking into other diagnostics methods, here we recommend using the 
DIC, WAIC and LPML model criteria along with the residual plot in order to avoid less subtle link misspecification, such as 
assuming a logit link when the truth is a log-log link.

5. Real-life data applications

In this section we apply the proposed Bayesian regression methodology to analyze two data sets from real-life applica-
tions. A sample R code for implementing the proposed models using the provided R package betaBayes is available in 
supplementary Appendix A.
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Table 4
Summary statistics of the COVID-19 data.

Variable Minimum Median Mean Maximum

Incidence rate 0.017 0.034 0.039 0.143
Death rate 0.006 0.020 0.021 0.046
MaleP 47.30 49.50 51.37 65.10
BlackP 2.90 11.70 14.54 55.80
Age65plusP 11.40 19.80 21.22 55.60
PovertyP 8.40 15.20 16.59 29.50
RUCC 1 2 3.19 9

Table 5
The values of DIC, WAIC, and LPML associated with four models for the COVID-
19 data. The four considered models are the beta4 mean model (beta4-mean), 
the beta4 mode model (beta4-mode), and the regular beta mean (beta-mean) 
and beta mode (beta-mode) models supported on (0, 1).

Response beta4-mean beta-mean beta4-mode beta-mode

negative DIC

incidence 437 429 436 429
death 466 461 475 461

negative WAIC

incidence 432 424 431 424
death 464 459 475 459

LPML

incidence 216 212 215 212
death 232 229 237 229

5.1. Covid-19 data

To demonstrate the informativeness of inference results from the proposed regression models, we analyze a COVID-19 
data set to examine the association between several county-level characteristics and the cumulative numbers of con-
firmed cases and deaths in the state of Florida. There are n = 67 counties in Florida. For each county, we collect the 
following variables: the cumulative number of confirmed cases and the cumulative number of deaths as of October 13, 
2020, the total population census estimate, the percentage of people who are male (MaleP), the percentage of peo-
ple who are black or African American (BlackP), the percentage of people who are 65 years and over (Age65plusP), the 
percentage of people whose income in the past 12 months is below poverty (PovertyP), and the 2013 Rural–Urban Contin-
uum Code (RUCC). The RUCC varies from 1 to 9 (https://www.ers .usda .gov /data -products /rural -urban -continuum -codes/), 
with a higher value indicating a more rural county. It distinguishes metropolitan counties by the population size of 
their metro area, and differentiates nonmetropolitan counties by the degree of urbanization and adjacency to a metro 
area. Although RUCC is an ordinal variable, it is statistically valid to treat RUCC as a continuous covariate in regres-
sion analysis (Yaghjyan et al., 2019). The COVID-19 case count and the death count are downloaded from https://
usafacts .org /visualizations /coronavirus -covid -19 -spread -map/. Based on these two counts, we define two county-level re-
sponse variables: (1) the incidence rate, as the ratio of the cumulative number of confirmed cases to the total population; 
(2) the death rate, as the ratio of the cumulative number of deaths to the cumulative number of confirmed cases. County-
level covariates listed above are based on the 2018 ACS 5-year estimates available at www.census .gov /data. Table 4 presents 
several summary statistics of the data.

5.1.1. Regression analysis
The two response variables defined above are naturally bounded within (0, 1), assuming that a county has a zero prob-

ability of getting an incidence or death rate equal to zero or one. Without this assumption, one may need to consider a 
zero-inflated or one-inflated model, which is beyond the scope of the current study. For each response variable, we fit the 
beta4 mean model and the beta4 mode model using the default prior values given in Section 2.2, except that we set aθ1 = 0
and bθ2 = 1 to acknowledge the natural bound of (0, 1). For the purpose of comparison, we also fit the regular (0, 1)-
supported beta mean and mode models using the same prior values given in Section 2.2, except that we set aθ1 = bθ1 = 0
and aθ2 = bθ2 = 1 to fix (θ1, θ2) at (0, 1). A logit link is used throughout. For each MCMC run we retain 5,000 scans thinned 
from 500,000 after a burn-in period of 20,000 iterations; convergence diagnostics deem this more than adequate. Table 5
lists values of DIC, WAIC, and LPML associated with all fitted models. Based on these model criteria, we conclude that the 
beta4 mean model outperforms all others when regressing the incidence rate on the considered covariates, and the beta4 
mode model is the best when regressing the death rate on these covariates. Fig. 2 reports the Cox-Snell residual plots un-
der the two best models, where we do not see severe deviation from the 45◦ line, indicating a goodness-of-fit under each 
chosen model.
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Fig. 2. COVID-19 data for Florida. Cox-Snell residual plots from (a) fitting the beta4 mean model for incidence and (b) from fitting the beta4 mode model 
for death rate.

Table 6
Estimates for model parameters based on the COVID-19 data. These include 
the posterior mean of covariate effects, the posterior mean of boundary pa-
rameters, and that of the precision parameter from fitting the beta4 mean 
model for the incidence rate, and all counterparts estimates when fitting the 
beta4 mode model for the death rate. The 95% credible interval associated 
with each parameter is given in parentheses following each posterior mean. 
We use ∗ to highlight a statistically significant covariate effect.

Incidence Death

(Intercept) -4.088 (-6.447, -1.646) -2.041 (-13.16, 9.389)
MaleP 0.035 (-0.008, 0.078) -0.035 (-0.246, 0.158)
BlackP 0.022 ( 0.008, 0.036)∗ -0.013 (-0.070, 0.039)
Age65plusP -0.044 (-0.072, -0.020)∗ 0.155 ( 0.072, 0.258)∗
PovertyP 0.000 (-0.028, 0.028) 0.052 (-0.080, 0.192)
RUCC 0.164 ( 0.070, 0.266)∗ -0.371 (-0.865, 0.064)
θ1 0.016 ( 0.011, 0.017) 0.005 ( 0.003, 0.006)
θ2 0.273 ( 0.173, 0.509) 0.049 ( 0.046, 0.058)
φ 51.12 ( 20.93, 120.6) 4.346 ( 2.286, 7.771)

Table 6 reports the covariate effects and boundary estimates under the beta4 mean model for the incidence rate and the 
beta4 mode model for the death rate. The posterior mean estimate of θ2 indicates that the upper bound of county-level 
incidence rate for Florida is 0.273 with the 95% credible interval being (0.173, 0.509), and the maximum county-level death 
rate for Florida is 0.049 with the 95% credible interval being (0.046, 0.058). These estimates can be helpful information for 
local health officials when it comes to allocating medical supplies and health care professionals across the state. As for the 
covariate effects, we find that counties with a higher percentage of black people, a lower percentage of age 65+ people, and 
less degree of urbanization tend to have higher incidence rates. However, for the death rate, only the covariate Age65plusP is 
statistically significant, indicating that counties with a higher percentage of age 65+ people tend to have higher death rates. 
For example, for every one percent increase in Age65plusP, the quantile-score for the mode position within the true range 
(θ1, θ2) of the county-level death rate will increase by 0.155 on average, holding other covariates constant. These inference 
results regarding covariates effects can provide guidelines for state officials when planning for more targeted mitigation 
measures to control the disease spread and lower the death toll.

5.1.2. Additional analysis
Noting that some covariates are not statistically significant, one may perform variable selection based on posterior in-

ference for covariate effects. Take the covariate MaleP as an example, one may use its posterior mean 0.035 and posterior 
standard deviation 0.022 to construct a score similar to a z-score for testing this covariate effect. One may then compute 
the probability under the normality assumption for the posterior distribution, P (|Z | > |0.035/0.022|) = 0.112, and use it 
like a p-value, along with the so-defined p-values associated with other covariates, to implement backward selection with 
the stopping rule that all p-values associated with the remaining covariates are less than 0.05. By adopting this strategy, 
we end up with a beta4 mean model for the incidence rate with three covariates (BlackP, Age65plusP, and RUCC), and a 
beta4 mode model for the death rate with only two covariates (Age65plusP and RUCC). The updated parameter estimates 
13



H. Zhou and X. Huang Computational Statistics and Data Analysis 167 (2022) 107345
Table 7
Effective sample sizes and running times (in seconds) of two algorithms implemented 
in betaBayes and rstan, respectively, applied to the COVID-19 data. The beta4 
mean model is fit for the incidence rate, and the beta4 mode model is fit for the 
death rate. The MCMC setting for our betaBayes: burn-in=20,000, thinning=100, 
saved=5,000. The MCMC setting for rstan: burn-in=20,000, thinning=1, saved=5,000.

Incidence Death

betaBayes rstan betaBayes rstan

Running time 30.47 161.80 39.80 173.37

(Intercept) 4666 5000 5000 5000
MaleP 4695 5000 5000 5000
BlackP 5000 5000 5000 5000
Age65plusP 4671 5000 4653 5359
PovertyP 5000 5479 4702 5000
RUCC 4769 5000 5000 5000
θ1 3480 4761 4700 5000
θ2 2492 4755 4173 5373
φ 2339 5000 3802 5000

are reported in the supplementary Table S2, along with the DIC, WAIC, and LPML values of these final models, all of which 
indicate improvement over the original models with all five covariates. As a follow-up research direction, one may develop 
more formal Bayesian variable selection procedures in the context of the proposed beta4 regression models by introducing 
a random indicator vector to indicate inclusion/exclusion of covariates, along with a g-prior (Liang et al., 2008; Guan and 
Stephens, 2011; Fisher and Mehta, 2014; Wang et al., 2015) or a spike-and-slab prior (Ročková and George, 2014; Chen et 
al., 2019; Zhang et al., 2021) for β . Currently, the backward selection procedure based on posterior information makes a 
convenient tool data analysts can easily apply to look into other covariates of interest, such as the population density and 
the vaccination rate among adults in a county.

Finally, we compare our MCMC algorithm implemented in betaBayes with the HMC algorithm implemented using 
the software Stan (Stan Development Team, 2021) via the R package rstan (Stan Development Team, 2020). A sample R 
code for fitting a beta4 mean regression model using rstan is given in supplementary Appendix A. Table 7 provides the 
effective sample sizes and running times of these algorithms applied to the COVID-19 data. This comparison reveals that our 
proposed algorithm implemented in betaBayes has much lower effective sample sizes for most parameters than those 
in the HMC algorithm implemented in rstan, especially for (θ1, θ2) and φ. However, fitting a regression model is much 
faster when using betaBayes than when using rstan. Looking more closely at Table 7, one may argue that the choice of 
burn-in = 20, 000 can be conservative and unfair to rstan in terms of running time comparison. To address this concern, 
besides what are presented in Table 7, we also set burn-in = 200 for rstan, which is comparable to the setting with 
burn-in = 20, 000 and thinning = 100. Under this additional setting, the running times of rstan to fit the regression model 
for incidence rate and that for death rate are 53.94 and 43.17 seconds, respectively, both longer than the running times of
betaBayes. Despite these and other differences between the two algorithms, they yield almost identical estimates for all 
model parameters, as one can see from the supplementary Table S3.

5.2. The Australian institute of sport data

Using their proposed regression models for a response assumed to be supported on (0, 1), Bayes et al. (2012) and 
Migliorati et al. (2018) predicted an athlete’s body fat percentage using the lean body mass based on a data set of n = 37
rowing athletes in the Australian Institute of Sport (AIS). Recall that Bayes et al. (2012) used a beta rectangular model 
based on a mixture of a beta distribution and a uniform distribution, and Migliorati et al. (2018) used a flexible beta model 
based on a special mixture of two beta distributions. In both existing works, the authors identified two outliers in the data, 
and inspected robustness of their inference results to the outliers. This is also the aspect of interest here in our analysis 
of the same data set, available in the R package GLMsData (Dunn and Smyth, 2018). Unlike their analyses, we do not 
assume (0, 1) as the support of the body fat percentage as we believe the actual support to be much narrower, although 
unknown.

5.2.1. Impact of outliers on model parameters estimation
To look into sensitivity of model parameters estimation to outliers, we first choose a regression model. Using the same 

prior settings as Section 5.1, we fit the beta4 mean, beta4 mode, beta mean, and beta mode models with the logit link to 
the full data. The DIC values associated with these four models are −155, −156, −136, and −136, respectively, indicating 
that the beta4 models perform much better than the latter two models. Between the former two models, we pick the beta4 
mean model as the final model for further discussions on sensitivity of inference to outliers. The Cox-Snell residual plot 
shown in panel (a) of Fig. 3 indicates an overall goodness-of-fit of this chosen model, with the fitted curve depicted in 
panel (b) of this figure. The left half portion of Table 8 presents the corresponding model parameters estimates.
14
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Fig. 3. Panel (a): Cox-Snell residual plots from fitting the beta4 mean model base on the AIS data with outliers. Panel (b): fitted regression curves for the 
mean of body fat percentage under the beta4 mean (solid) and the beta rectangular (dashed), based on the AIS data with (thick) and without (thin) outliers. 
The two potential outliers are marked as ∗.

Table 8
Estimates for model parameters based on the AIS data with and without out-
liers. The 95% credible interval associated with each parameter is given in 
parentheses following each posterior mean. We use ∗ to highlight a statistically 
significant covariate effect associated with the lean body mass (LBM).

With outliers Without outliers

(Intercept) 5.531 ( 2.920, 7.933) 5.239 ( 1.598, 8.674)
LBM -0.086 (-0.120, -0.051)∗ -0.088 (-0.131, -0.045)∗
θ1 0.064 ( 0.029, 0.070) 0.054 ( 0.008, 0.070)
θ2 0.273 ( 0.252, 0.355) 0.378 ( 0.256, 0.827)
φ 6.853 ( 3.309, 15.63) 36.52 ( 8.403, 140.5)

After fitting the beta4 mean model to the full data, we compute the CPO statistic defined in Section 3 for each data 
point. Two data points stand out with CPO values equal to 0.017 and 0.503, in contrast to other data points’ CPO values 
that range from 4.91 to 33.68. We thus claim these two data points as outliers, marked as ∗ in panel (b) of Fig. 3. They 
are the same two outliers identified in Bayes et al. (2012) and Migliorati et al. (2018) via visual inspection of the scatter 
plot. We then remove the two outliers from the data and refit the beta4 mean model. The resultant parameter estimates 
are provided in the right half portion of Table 8, and the fitted regression curve is shown in panel (b) of Fig. 3.

One can see in Table 8 that the covariate effect estimates before and after removing outliers are very close, with the 
95% credible interval of one estimate containing the other estimate. Hence, in this application, inference on the covariate 
effect based on the beta4 mean model is fairly robust to outliers. Not surprisingly, outliers do have a strong impact on the 
precision parameter estimation. Although less strong, outliers also have a noticeable influence on the boundary parameter 
estimation.

5.2.2. Impact of outliers on overall fit
We now turn to sensitivity to outliers of the overall fit for non-outlier observations based on the proposed regression 

models in comparison with other candidate models. For this purpose, we use the residual sum of squares (RSS) associated 
with the 35 non-outlier observations to assess the overall goodness-of-fit. Under a regression model, denote by 	̂1 the 
estimated model parameters based on the data excluding the two outliers, and by 	̂2 the counterpart estimates based on 
the full data in regression analysis. Following fitting a regression model, we compute RSSk = ∑

i( ŷ(k)
i − yi)

2, where the 
sum is over all non-outlier observations, ŷ(k)

i = E(yi |xi, 	̂k) for the mean regression, and ŷ(k)
i = Mode(yi |xi, 	̂k) for the 

mode regression, for k = 1, 2. If, under a regression model, RSS1 does not change much when comparing with RSS2, then 
we say that the corresponding regression methodology is more robust to outliers in terms of the overall fit for non-outlier 
observations, despite potential non-robustness of parameter estimation to outliers reflected in the comparison between 	̂1
and 	̂2.

Besides the beta4 mean and beta4 mode models, we consider three other candidate models in this sensitivity analysis: 
the beta mean model, the beta mode model, and the beta rectangular model, all assuming the support being (0, 1). To 
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Table 9
Results regarding the residual sum of squares (RSS) based on the AIS data. These include 
the values of RSS under each considered model using the data without outliers (RSS1), 
and the counterpart values when the complete data set is used (RSS2). The % increase 
is defined as (RSS2 − RSS1)/RSS1. The five considered models are the beta4 mean, the 
beta4 mode, the beta rectangular model (beta-rect) proposed in Bayes et al. (2012), and 
the regular beta mean and beta mode models supported on (0, 1).

beta4-mean beta-mean beta-rect beta4-mode beta-mode

RSS1 0.0197 0.0209 0.0234 0.0201 0.0213
RSS2 0.0229 0.0294 0.0391 0.0243 0.0348
% increase 16% 41% 67% 21% 63%

Fig. 4. Boxplots (across 300 MC replicates) of RSS1 (in (a)), RSS2 (in (b)), and % increase in RSS given by (RSS2 − RSS1)/RSS1 (in (c)).

fit the beta rectangular model to the data, we use the statistical software Just Another Gibbs Sampler (JAGS, Plummer, 
2003) via the R package R2jags (Su and Yajima, 2020). Table 9 reports the percent increase in RSS2 relative to RSS1, i.e., 
(RSS2 − RSS1)/RSS1. One can see that the RSS value increases by 67% under the beta rectangular regression model, whereas 
there are merely a 16% and 21% increase under the beta4 mean and mode models, respectively. This indicates that, when 
it comes to goodness-of-fit for non-outlier observations, the proposed beta4 models are more robust to outliers than the 
beta rectangular model. Finally, for each k ∈ {1, 2}, the values of RSSk associated with the beta4 models are the lowest 
among the five candidate models, suggesting better overall fit for the non-outlier observations whether or not outliers are 
excluded when estimating 	. This last observation is reassuring especially given that, as seen in Section 5.2.1, outliers do 
have non-negligible impact on the estimation of some parameters in 	 that are involved in prediction.

5.2.3. A simulation study on sensitivity to outliers
To confirm that the robustness phenomenon of the new regression models to outliers in terms of overall fit is more 

than a coincidence observed in the application to the AIS data, we carry out a simulation study where data are generated 
from the (0, 1)-supported beta mean regression model. In particular, we use the covariate values from the AIS data in the 
beta4 mean model with (θ1, θ2) = (0, 1) to generate response data, with β = (0.837, −0.038)′ and φ = 229.32, which are 
the posterior means of these parameters resulting from fitting a beta mean model to the AIS data after removing outliers. 
We then subtract 0.15 from the two response values corresponding to the lowest covariates to create outliers. Based on each 
of 300 MC replicate data sets, each of size 37, we repeat the sensitivity analysis presented in Section 5.2.2.

Fig. 4 reports the boxplots of 300 realizations of RSS1, RSS2, and the percentage increase of the latter relative to the 
former. As observed in the case study of the AIS data, the beta4 mean model indeed tends to be more robust to outliers 
than the beta mean model and the beta rectangular model in regard to goodness-of-fit for non-outlier observations in this 
simulation experiment. Also consistent with the comparison shown in Table 9, the beta4 mean model offers the best fit 
for non-outlier observations among the three candidate models whether or not outliers are excluded when estimating 	, 
despite the fact that estimation of some parameters in 	 can be sensitive to outliers. Although related to prediction for non-
outlier observations, RSS tends to be overly optimistic in assessing the quality of prediction. Hence, if one aims to assess 
robustness of predictions for non-outlier observations instead of overall fit for these observations, a different criterion, such 
as leave-one-out prediction error, should be used.
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Migliorati et al. (2018) analyzed the same AIS data by fitting a flexible beta mean regression model derived from a special 
mixture of two beta distributions supported on (0, 1). Their DIC values are −219 and −169 for the data without and with 
outliers, respectively, which are smaller than our DIC values of −179 and −155 under the beta4 mean model. This may 
not be surprising given the fact that their flexible beta distribution contains four parameters to characterize a distribution, 
thus offering greater flexibility for capturing various density shapes including bimodal ones. In contrast, the four-parameter 
beta distribution used to formulate our regression models only has two parameters to characterize the density shape, with 
the remaining two parameters used to define the support. As a future direction, it would be interesting to extend their 
flexible beta distribution by replacing the two beta mixture components with four-parameter beta distributions supported 
on (θ1, θ2). One downside of formulating the mixture in this way is that the resultant distribution cannot be easily used to 
perform mode regression.

6. Discussion

We propose a class of four-parameter beta regression models for studying the association between a continuous re-
sponse bounded on an unknown interval and covariates via inferring either the conditional mean or mode of the response. 
Almost all existing approaches for analyzing bounded data assume a prefixed interval, which may not be accurate in many 
applications. To the best of our knowledge, the proposed regression models in this paper are the first regression framework 
allowing for an inference on the support boundaries along with inference for other model parameters. Moreover, this is 
also the first regression framework within which the regression function encompasses two central tendency measures, the 
mean and the mode. Besides offering more flexibility and shedding more light upon the association between a response 
and covariates, the benefit of unifying mean regression and mode regression in one parametric framework is that model 
comparison using likelihood-based model criteria becomes more convenient and meaningful. For each proposed model, we 
have developed efficient block-adaptive MCMC algorithms free of manual tuning for posterior sampling and a graphical 
model diagnostic tool to detect inadequate parametric assumptions. We have also provided a freely available R package
betaBayes for fitting both proposed models and several competing models considered in this study.

We envision four directions of generalizing the proposed regression models upon completion of the current study. First, 
besides allowing the mode or mean parameter to depend on covariates, one may consider covariate-dependent precision 
parameter φ(x) to expand the class of beta4 regression models. Second, a more flexible family of regression models can be 
formulated via mixing a four-parameter beta with a uniform distribution by mimicking the construction of beta rectangular 
distributions (Bayes et al., 2012), or a mixture of two special four-parameter beta distributions similar to the construction of 
the flexible beta distribution (Migliorati et al., 2018). These mixture distributions will allow inclusion of distributions with 
heavier tails than those of four-parameter beta distributions. Third, one may consider a zero-inflated four-parameter beta 
regression model with an known upper bound of the response to account for an excess of zero values in, for example, the 
death rate of COVID-19 across counties in a state. Fourth, also motivated by the case study of COVID-19, one may allow the 
unknown support depend on covariates, such as the population density of a county when modeling the incidence rate. This 
last generalization presents more algorithmic and technical challenges (Chernozhukov and Hong, 2004; Hirano and Porter, 
2003) that we plan to address in our follow-up study.
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