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Abstract: We consider a class of angular Gaussian distributions that al-
lows different degrees of isotropy for directional random variables of arbi-
trary dimension. To incorporate constraints imposed on the original model
parameters, we propose a new parameterization of the distribution so that
all new model parameters are free of constraints. Via the new parameteriza-
tion, we translate the original problem of maximum likelihood estimation
subject to complex constraints to a routine optimization problem free of
constraints, which in turn leads to theoretically sound and numerically sta-
ble procedures for drawing likelihood-based inference. Byproducts from the
likelihood-based inference are used to develop graphical and numerical di-
agnostic tools for assessing goodness of fit of this distribution in a data
application. Simulation study and application to data from a hydrogeol-
ogy study are used to demonstrate implementation and performance of the
inference procedures and diagnostics methods.
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1. Introduction

Directional data are ubiquitous in many scientific fields. For example, wave di-
rections are directional data studied in oceanography [30], wind directions are of
interest in meteorology [1], and protein backbone structures are directional data
researchers study in biology [16]. These exemplify directional data of dimension
no higher than three. Other examples of low dimensional direction data include
migratory movements of animals, and measurements on a periodic scale, such
as weekdays and hours. Directional data of higher dimensions arise in bioinfor-
matics and hydrogeology, among many other fields of research. For example,
gene expression data associated with a large number of genes for each experi-
mental unit are often standardized to preserve directional characteristics when
studying the fluctuation of gene expressions over cell cycles [8]. By transforming
the original gene expression data on a high dimensional Euclidean space to a
unit hypersphere, one ignores absolute expression levels and can obtain better

301

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/23-EJS2210
mailto:zehaoy@email.sc.edu
mailto:huang@stat.sc.edu


302 Z. Yu and X. Huang

clustering of genes that are functionally related [4]. Although not on a spheri-
cal space, compositional data on a simplex [22, 2] can be easily transformed to
become directional data. For instance, microbiome data are often summarized
as the composition of bacterial taxa so that one can focus on the microbial
relative abundances as opposed to absolute abundances in microbiome analysis
[28]. A compositional data point is a vector with non-negative components that
sum to one, hence a component-wise square-root transformation of this vector
yields a vector on a unit hypersphere [26].

Each of the above examples of directional data can be viewed as realiza-
tions of a random variable supported on a unit-radius d-dimensional spherical
space defined by S

d−1 = {y ∈ R
d : ‖y‖ = 1}, for d ≥ 2, where ‖y‖ is the

L2-norm of y. [14] provided a brief survey of statistical methods for analyzing
circular data, i.e., directional data with d = 2. Two general strategies for con-
structing a circular distribution are highlighted in this review paper: one uses a
“wrapped” circular version of a random variable supported on R to formulate
a circular distribution; the other deduces a circular distribution via projecting
a univariate random variable on R or a bivariate random variable on R

2 onto
the circle. Both strategies have been generalized and used to formulate direc-
tional distributions on S

d−1 for d > 2. With the Gaussian distribution playing
an important role in statistics, it is not surprising that directional distributions
originating from a Gaussian distribution have been most studied and adopted
in practice, including the so-called wrapped normal distribution and projected
normal distribution, with more attention on the latter in recent literature. In
particular, [23] used a projected multivariate normal distribution to construct a
regression model for a circular response and linear predictors, and employed the
maximum likelihood method to infer unknown parameters. [32] incorporated
projected normal distributions to develop Bayesian hierarchical models for an-
alyzing circular data. [11] proposed Bayesian inferential method for directional
data of arbitrary dimension, again modelled by projected normal distributions.

Projected normal distributions are also referred to as angular Gaussian distri-
butions. Different angular Gaussian distributions are created by imposing differ-
ent constraints on the parameter space associated with a multivariate Gaussian
distribution in order to resolve the non-identifiability issue that arises when the
support of a random variable changes from a Euclidean space to a spherical
space. [20] imposed constraints on the mean vector and variance-covariance ma-
trix of a Gaussian distribution so that the resultant angular Gaussian distribu-
tion is identifiable and, more interestingly, elliptically symmetric. The authors
thus coined their proposed distribution as the elliptically symmetric angular
Gaussian distribution, ESAG for short. [21] further developed regression mod-
els for directional data assuming an ESAG distribution for the response given
covariates. Both works on ESAG focus on directional data with d ≤ 3. More
recently, [27] proposed a new directional distribution, called scaled von Mises-
Fisher distribution, using grouped transformations of the von Mises-Fisher dis-
tribution to achieve elliptical symmetry. The authors used this new distribution
to model archeomagnetic data that can be converted to directional data with
d = 3. The feature of elliptical symmetry of a distribution makes capturing cer-
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tain anisotropic pattern of directional data possible. An added benefit of ESAG
is that the normalization constant in its probability density function is much
easier to compute compared to many existing directional distributions, such as
the Kent distribution [13]. This makes maximum likelihood estimation under
the ESAG model for directional data more straightforward.

To incorporate the constraints imposed on the mean vector and variance-
covariance matrix of a Gaussian distribution when formulating ESAG, [20] de-
signed a parameterization of ESAG when d = 3, which allows one to bypass the
complicated problem of optimization with constraints when finding the maxi-
mum likelihood estimators of the induced parameters. But their parameteriza-
tion cannot be easily generalized to cases with d > 3. This limits the use of
ESAG in applications where directional data of higher dimension are observed.
The first contribution of our study presented in this paper is a novel parameter-
ization of ESAG of arbitrary dimension that allows one to bypass optimization
subject to complicated constraints on model parameters in maximum likeli-
hood estimation. This new parameterization of ESAG for d ≥ 3 is presented
in Section 2. Under the new parameterization, maximum likelihood estimation
translates to a routine numerical problem of optimization without constraints,
as we describe in Section 3. A legitimate concern in any parametric modelling
is potential violations of certain model assumptions in a given application. To
address this concern, we propose model diagnostics methods that exploit direc-
tional residuals in Section 4, which constitutes a second major contribution of
our study. Operating characteristics of the proposed model diagnostics methods
are demonstrated in simulation study in Section 5. In Section 6, we entertain
data from hydrogeological research, where we fit ESAG to transformed com-
positional data from different geographic locations. Section 7 summarizes the
contributions of the study and outlines the follow-up research agenda.

2. The ESAG distribution

2.1. Constraints on parameters

Let X be a d-dimensional Gaussian variable with mean μ and variance-covari-
ance V, i.e., X ∼ Nd(μ,V). Then the normalized variable, Y = X/‖X‖, follows
an angular Gaussian distribution, AG(μ,V), supported on S

d−1. Parameters in
μ and V associated with AG(μ,V) are not identifiable because X/‖X‖ and
cX/‖cX‖ are equal for c > 0, and thus they follow the same angular distribution,
even though X and cX have different mean or/and variance-covariace when
c �= 1. To construct an identifiable angular Gaussian distribution, [20] impose
the following two sets of constraints on μ and V, where det(·) refers to the
determinant of a matrix,

Vμ = μ, (2.1)
det(V) = 1, (2.2)
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Fig 1. Four random samples from ESAG2(μ,V) with μ and V specified by (a)–(d) in Sec-
tion 2.1.

leading to the ESAG distribution, with the probability density function given
by

f(y|μ,V) = (2π)−(d−1)/2

(yTV−1y)d/2
exp
[
1
2

{
(yTμ)2

yTV−1y
− μTμ

}]
Md−1

{
yTμ

(yTV−1y)1/2

}
,

(2.3)
where Md−1(t) = (2π)−1/2 ∫∞

0 xd−1 exp{−(x − t)2/2}dx. Henceforth, we say
that Y follows a (d − 1)-dimensional ESAG, or Y ∼ ESAGd−1(μ,V), if Y
follows a distribution specified by the density in (2.3) with constraints in (2.1)
and (2.2).

Figure 1 presents four random samples scattering on 3-dimensional spheres,
generated from ESAG2(μ,V) with the following parameters specifications,
where 1d is a vector of d ones and Id is d-dimensional identity matrix:

(a) μ = 2 × 13, V = I3;
(c) μ = 2 × 13,

V =

⎡⎣ 1.57 −0.08 −0.50
−0.08 0.74 0.34
−0.50 0.34 1.16

⎤⎦;

(b) μ = 4 × 13, V = I3;
(d) μ = 2 × 13,

V =

⎡⎣ 0.74 −0.08 0.34
−0.08 1.57 −0.50
0.34 −0.50 1.16

⎤⎦.
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Comparing the four data clouds depicted in Figure 1, one can see that a
larger ‖μ‖ leads to less variability in a random sample (e.g., contrasting (a)
with (b)); and V also influences the orientation of the data cloud (e.g., compar-
ing (a), (c), and (d)). In other words, ‖μ‖ controls the overall concentration,
with a higher concentration (i.e., a larger ‖μ‖) indicating a lower overall vari-
ability, whereas V dictates orientation of dispersion in different subspaces on
the hypersphere.

Because the dimension of the parameter space associated with Nd(μ,V) is
d(d+3)/2, and there are d+1 constraints imposed by (2.1) and (2.2), there are
at most p = (d − 1)(d + 2)/2 identifiable parameters for ESAGd−1(μ,V). Let
Ω be the p × 1 parameter vector that specifies ESAGd−1(μ,V). To facilitate
likelihood-based inference, it is desirable to formulate Ω so that the parameter
space is R

p. For this purpose, we define Ω = (μT,γT)T, where, clearly, μ =
(μ1, . . . , μd)T ∈ R

d, and thus γ ∈ R
(d−2)(d+1)/2 includes parameters needed to

specify V that satisfies (2.1) and (2.2) after μ is given.
The parameterization leading to γ starts from the spectral decomposition

of V,

V =
d∑

j=1
λjξjξ

T
j , (2.4)

where λ1, . . . , λd ∈ (0, +∞) � R+ are eigenvalues of V, and ξ1, . . . , ξd are the
corresponding orthonormal eigenvectors. According to (2.1), one of the eigen-
values of V is equal to 1, with μ being the corresponding (non-zero) eigen-
vector. Without loss of generality, we set λd = 1 and ξd = μ/‖μ‖. To this
end, once μ is given, one needs to formulate γ so that it can be mapped to
λ1, . . . , λd−1 and ξ1, . . . , ξd−1, through which V is determined via (2.4). In what
follows, we present the derivations leading to γ in three steps: (i) parameteriz-
ing λ1, . . . , λd−1; (ii) parameterizing ξ1, . . . , ξd−1; (iii) grouping new parameters
from Steps (i) and (ii), then relating each group of new parameters to entries
in γ.

2.2. Step (i): parameterization for eigenvalues of V

Now that we set λd = 1, and by the constraint
∏d−1

j=1 λj = 1 implied by (2.2),
we only need d − 2 parameters to specify the first d − 1 eigenvalues. Without
loss of generality, we let λ1 ≤ · · · ≤ λd−1, then write λj = (rj−1 +1)λj−1, where
rj−1 ≥ 0, for j = 2, . . . , d− 1. Using the constraint

∏d−1
j=1 λj = 1, one can show

that

λ1 =

⎧⎨⎩
d−2∏
j=1

(rj + 1)d−(j+1)

⎫⎬⎭
−1/(d−1)

and λj =λ1

j−1∏
k=1

(rk+1), for j=2, . . . , d− 1.

(2.5)
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In effect, we parameterize the first d − 1 eigenvalues of V using d − 2 non-
negative new parameters, r1, . . . , rd−2. We call these new parameters radial pa-
rameters for a reason to become clear in Step (iii).

2.3. Step (ii): parameterization for eigenvectors of V

With ξd = μ/‖μ‖ as the eigenvector corresponding to the eigenvalue λd = 1,
we now parameterize the remaining d− 1 eigenvectors {ξj}d−1

j=1 . We first define
an orthonormal basis of Rd, (ξ̃1, . . . , ξ̃d), with ξ̃j = uj/‖uj‖, for j = 1, . . . , d,
and

uj =

⎧⎨⎩
(−μ2, μ1, 0, . . . , 0)T, for j = 1,
(μ1μj+1, . . . , μjμj+1, −

∑j
k=1 μ

2
k, 0, . . . , 0)T, for j = 2, . . . , d− 1,

μ for j = d.
(2.6)

If (2.6) yields uj = 0d, for j ∈ {1, . . . , d− 1}, then we set uj = ej , i.e., the unit
vector with 1 at the j-th entry. This yields an orthonormal basis (ξ̃1, . . . , ξ̃d)
uniquely determined by μ, and thus no new parameters are introduced in for-
mulating this basis.

By (2.6), ξd = ξ̃d. Then we let (ξ1, . . . , ξd−1) = (ξ̃1, . . . , ξ̃d−1)Rd−1, where
Rd−1 is a (d− 1)-dimensional rotation matrix that depends on (d− 2)(d− 1)/2
new parameters introduced next. According to [18], Rd−1 can be expressed as a
product of (d− 2)(d− 1)/2 plane rotation matrices, for d > 3, with each plane
rotation matrix depending on a longitude angle in [−π, π) or a latitude angle in
[0, π]. More specifically,

Rd−1 =
[

d−3∏
m=1

{
R∗

12(θd−m−1)
d−m−2∏
j=1

R∗
j+1,j+2(φ1−j+(d−m−1)(d−m−2)/2)

}]
×R∗

12(θ1), (2.7)

where θ1, . . . , θd−2 ∈ [−π, π) are longitude angles, φ1, . . . , φ(d−2)(d−3)/2 ∈ [0, π]
are latitude angles, and R∗

jk(·) is a (d − 1)-dimensional plane rotation matrix
resulting from replacing the (j, j), (j, k), (k, j), and (k, k) entries of Id−1 by
cos(·), − sin(·), sin(·), and cos(·), respectively. [26] exploited the same formu-
lation of a rotation matrix to parameterize the Kent distribution. Since rotat-
ing a set of orthonormal vectors yields another set of orthonormal vectors, we
have (ξ1, . . . , ξd−1) as d− 1 orthonormal eigenvectors of V that are orthogonal
to ξd.

To recap, we introduce (d− 2)(d− 1)/2 angles in (2.7) as new parameters in
Step (ii) to parameterize the first d − 1 eigenvectors of V after μ is given. We
call these angles orientation parameters in the sequel.
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Table 1

Transformations linking radial and orientation parameters in Ω̃ to γ ∈ R9 when d = 5.
3 groups of
parameters
in Ω̃

Spherical coordinates Cartesian coordinates
⇓ ⇓
Cartesian coordinates Spherical coordinates

r1, θ1

{
γ1,1 = r1 cos θ1,
γ1,2 = r1 sin θ1

{
r1 = ‖γ̃1‖,
θ1 = atan2(γ1,2, γ1,1)

→ γ̃1 = (γ1,1, γ1,2)T → (r1, θ1)

r2, θ2, φ1

⎧⎪⎨⎪⎩
γ2,1 = r2 cosφ1,

γ2,2 = r2 sinφ1 cos θ2,
γ2,3 = r2 sinφ1 sin θ2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r2 = ‖γ̃2‖,
θ2 = sign(γ2,3) arccos

γ2,2√
γ2
2,2 + γ2

2,3

,

φ1 = arccos
γ2,1

‖γ̃2‖
� φ̃2,1

→ γ̃2 = (γ2,1, γ2,2, γ2,3)T → (r2, θ2, φ1) = (r2, θ2, φ̃2,1)

r3, θ3, φ2, φ3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ3,1 = r3 cosφ2,

γ3,2 = r3 sinφ2 cosφ3,

γ3,3 = r3 sinφ2 sinφ3 cos θ3,
γ3,4 = r3 sinφ2 sinφ3 sin θ3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r3 = ‖γ̃3‖,
θ3 = sign(γ3,3) arccos

γ3,3√
γ2
3,3 + γ2

3,4

,

φ2 = arccos
γ3,1

‖γ̃3‖
� φ̃3,1,

φ3 = arccos
γ3,2√

γ2
3,2 + γ2

3,3 + γ2
3,4

� φ̃3,2

→ γ̃3 = (γ3,1, γ3,2, γ3,3, γ3,4)T → (r3, θ3, φ2, φ3) = (r3, θ3, φ̃
T
3 ),

where φ̃3 = (φ̃3,1, φ̃3,2)T

γ = (γ̃T
1 , γ̃

T
2 , γ̃

T
3 )T Ω̃ = (r1, r2, r3, θ1, θ2, θ3, φ̃2,1, φ̃

T
3 )T

2.4. Step (iii): relating spherical coordinates to Cartesian
coordinates

Gathering the new parameters introduced above, including the radial param-
eters from Step (i) and the orientation parameters from Step (ii), we define
Ω̃ = (r1, . . . , rd−2, θ1, . . . , θd−2, φ1, . . . , φ(d−2)(d−3)/2)T. We now partition Ω̃
into d − 2 groups such that each group of parameters can be viewed as coor-
dinates under a spherical coordinate system of certain dimension, consisting of
one radial parameter, one longitude angle ranging over [−π, π), and, for a spher-
ical coordinate system of dimension higher than one, latitude angle(s) ranging
over [0, π]. Following this partition of Ω̃, we exploit the connection between a
spherical coordinate system and the corresponding Cartesian coordinate system
[5] to transform each group of radial and orientation parameters to a group of
parameters in γ.

For illustration purposes, we use a four dimensional ESAG (thus d = 5)
as an example to demonstration the grouping and transformations linking Ω̃
to γ. Now with d = 5, we need radial and orientation parameters in Ω̃ =
(r1, r2, r3, θ1, θ2, θ3, φ1, φ2, φ3)T to specify V given μ. Table 1 shows in the
first column 3(= d − 2) groups of parameters forming a partition of Ω̃. Rec-
ollecting the composition of a set of spherical coordinates, one can see that the
three groups of parameters correspond to coordinates under a circular coor-
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dinate system (i.e., one-dimensional spherical coordinate system), coordinates
under a two-dimensional spherical coordinate system, and those under a three-
dimensional spherical coordinate system, respectively. The transformations from
each set of spherical coordinates to the corresponding set of Cartesian coordi-
nates are shown in the second column of Table 1. Each set of Cartesian coordi-
nates is viewed as a group of parameters in γ. Lastly, the inverse transformations
that map each set of Cartesian coordinates (as entries of γ) back to the corre-
sponding spherical coordinates (as entries of Ω̃) are given in the third column of
Table 1, where all denominators appearing in the transformations are assumed
nonzero for simplicity. To signify the grouping of the latitude angles in Ω̃, we
re-define (φ1, φ2, φ3) as (φ̃2,1, φ̃3,1, φ̃3,2) in Table 1, with the first subscript in
φ̃j,k being the group index. These new notations with a double subscript for
the latitude angles will replace the original notations with a single subscript
henceforth.

Focusing on the first group of parameters, (r1, θ1), in Ω̃ in Table 1 allows a
closer comparison between our parameterization and that in [20, Section 2.3] for
ESAG2 (thus d = 3). Like our new unrestricted parameters in γ̃1 = (γ1,1, γ1,2)T,
they also defined two unrestricted parameters, γ1 and γ2 in their notations, as
new model parameters of ESAG2. But their new model parameters are formu-
lated as functions of λ1 and an orientation parameter falling in (0, π]. Even
though their strategy leads to a simple and interesting expression for V−1 [see
Lemma 1 in 20], the formulation of their γ1 and γ2 cannot be easily general-
ized to higher dimentions. In contrast, writing our new parameters as functions
of (r1, θ1) amounts to transforming circular coordinates to Cartesian coordi-
nates in R

2, the kind of transformation that can be easily generalized to higher
dimensions as demonstrated in Table 1.

In general, for d ≥ 3, we divide (d− 2)(d + 1)/2 parameters in Ω̃ into d− 2
groups, with the first group being (r1, θ1), and (if d > 3), for j = 2, . . . , d −
2, the j-th group being (rj , θj , φ̃j), where φ̃j = (φ̃j,1, . . . , φ̃j,j−1)T. To adapt
to the grouping for Ω̃, we also define γ as d − 2 groups of parameters, γ =
(γ̃T

1 , . . . , γ̃
T
d−2)T, where γ̃j = (γj,1, . . . , γj,j+1)T ∈ R

j+1, for j = 1, . . . , d−2. The
first group γ̃1 consists of γ1,1 = r1 cos θ1 and γ1,2 = r1 sin θ1; for j = 2, . . . , d−2,
the j-th group γ̃j consists of entries given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γj,1 = rj cos φ̃j,1,

γj,2 = rj sin φ̃j,1 cos φ̃j,2,
...
γj,j = rj sin φ̃j,1 sin φ̃j,2 · · · sin φ̃j,j−1 cos θj ,
γj,j+1 = rj sin φ̃j,1 sin φ̃j,2 · · · sin φ̃j,j−1 sin θj .

(2.8)

This completes the derivations leading to γ for specifying V in ESAGd−1(μ,V)
after μ is given.

Looking back, one can see that parameters introduced in Steps (i) and (ii)
collected in Ω̃ are transitional parameters that connect V subject to ESAG
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constraints and the unrestricted γ. Figure 2 gives a recap of the proposed pa-
rameterization and highlights the transitional nature of Ω̃. Viewing (2.8) as a
set of Cartesian coordinates γ̃j in the (j+1)-dimensional Euclidean space when
d > 3, for j = 2, . . . , d− 2, one can transform γ̃j to the corresponding spherical
coordinates in the j-dimensional spherical space given by

rj = ‖γ̃j‖,

θj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if γ2
j,j + γ2

j,j+1 = 0,
arccos γj,j√

γ2
j,j + γ2

j,j+1

, if γj,j+1 ≥ 0 and γ2
j,j + γ2

j,j+1 �= 0,

−arccos γj,j√
γ2
j,j + γ2

j,j+1

, if γi,i+1 < 0,

φ̃j,k =

⎧⎪⎨⎪⎩
0, if

∑j+1
�=k γ

2
j,� = 0, for k = 1, . . . , j − 1,

arccos γj,k√∑j+1
�=k γ

2
j,�

, otherwise, for k = 1, . . . , j − 1,

(2.9)

producing the j-th group of parameters in Ω̃; and the first group contains r1 =
‖γ̃1‖ and θ1 = atan2(γ1,2, γ1,1). In (2.9), we do not assume the denominators
appearing in the transformations are always nonzero as we do in Table 1.

This completes the reparameterization of ESAGd−1(μ,V) using Ω =
(μT,γT)T for any d ≥ 3. Having the parameter space being R

p without any
constraints greatly simplifies the implementation of maximum likelihood esti-
mation for Ω.

3. Maximum likelihood estimation

Using the parameterization of ESAG developed in Section 2, one can easily
derive the likelihood function of a sample from ESAG, following which one can
maximize the logarithm of it with respect to Ω over Rp to obtain the maximum
likelihood estimator (MLE) of Ω. Because all new parameters we bring in for the
proposed parameterization are in γ, we zoom in on γ next for its interpretations
and implications on inferences for V.

3.1. Interpretations of parameters

Because rj = ‖γ̃j‖, for j = 1, . . . , d− 2, and by (2.5), γ = 0 implies λj = 1, for
j = 1, . . . , d, and thus V = Id, leading to an isotropic hyperspherical distribution
[15]. If Y ∼ ESAGd−1(μ, Id), then, for any orthogonal matrix P such that
Pμ = μ, we have PY ∼ ESAGd−1(μ, Id), i.e., PY = Y in distribution, or,
PY L= Y in short. In addition, if γ̃j = 0, then rj = 0, and thus λj+1 =
(rj + 1)λj = λj , in which case we say that the distribution is isotropic in
the subspace spanned by {ξj , ξj+1}, or partially isotropic. That is, given any
orthogonal matrix P such that Pμ = μ and Pξk = ξk, for k �= j, j +1, we have



310 Z. Yu and X. Huang

Fig 2. A pictorial illustration of the proposed parameterization of ESAGd−1(μ,V) via the
unconstrained Ω. The radial and orientation parameters in Ω̃ are in the gray ellipses. The
eigenvalues and eigenvectors of V are in the clear ellipses.

PY L= Y. Practically speaking, this means that rotating data from an isotropic
(a partially isotropic) ESAG via certain orthogonal matrix that rotates the
mean direction to itself (and rotates certain eigenvectors of V to themselves)
does not change the distribution of the data. From the modelling point of view,
any level of isotropy of ESAG implies a reduced model. Hence, testing whether
or not a data set can be modelled by a reduced, thus more parsimonious, ESAG
amounts to testing hypotheses regarding parameters in γ. For example, testing
V = Id is equivalent to testing γ = 0, which is the same for the unrestricted
parameters (also called γ) introduced in [20] when d = 3. Certainly, when d = 3,
the concept of partially isotropic is irrelevant because γ only contains one group
of parameters, γ̃1, in this case.

As one can see in (2.4), if ξj is an eigenvector of V corresponding to the
eigenvalue λj , then so is −ξj . This suggests that there exist γ �= γ′ (corre-
sponding to eigenvectors different by a sign) yet both γ and γ′ lead to the
same V given μ. When this happens, we say that γ and γ′ are equivalent. We
show in Appendix A that, if γ and γ′ are equivalent, then ‖γ̃j‖ = ‖γ̃′

j‖, for
j = 1, . . . , d − 2, which in turn suggests that the interpretations of γ and γ′

relevant to isotropy of ESAG are the same. A theoretical implication of the
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existence of equivalent γ and γ′ is that, although one cannot claim consistency
of the MLE of γ (since the MLE may consistently estimate γ or γ′), the con-
sistency of the MLE of V is guaranteed by the invariance property of MLE
[Theorem 7.2.10, 6]. A numerical implication of the existence of equivalent γ
and γ′ is that maximum likelihood estimation of Ω tends to be very forgiving
in terms of the starting value for Ω, especially when the focal point of inference
lies in μ and V. In other words, even though optimizing the log-likelihood under
the new parameterization may lead to different members of an equivalent class
due to different choices of starting values, these members all lead to the same
estimation for μ and V. We provide empirical evidence of these implications in
a simulation experiment in Section 3.2.

With our focal point of inference resting on μ and V now fully specified
by Ω, parameters in Ω̃ are not of direct interest. Nevertheless, a noteworthy
phenomenon similar to that discussed in [26, see remarks following Theorem 4]
is that some orientation parameters in Ω̃ are not identifiable when the truth
of Ω̃ falls in a subspace of the boundary of the parameter space. A detailed
discussion of this issue is given in Appendix B, where we also provide empirical
evidence indicating that finite-sample inferences for μ and V are practically
not affected whether or not some orientation parameters in Ω̃ are identifiable.
Asymptotic properties of MLEs of some model parameters however are expected
to be affected (e.g., slower convergence or non-Gaussian limiting distribution),
which we plan to address systematically in our follow-up research on ESAG
regression models.

3.2. Empirical evidence

Using the proposed parameterization, we generate a random sample of size
n ∈ {20, 50, 100} from ESAG3(μ,V), where μ = (2, −5, 3, 5)T, and V is deter-
mined via μ and γ = (γ1,1, γ1,2, γ2,1, γ2,2, γ2,3)T = (3, 5, −3, −4, 2)T. We then
maximize the log-likelihood function of this random sample to find the MLE of
Ω, denoted by Ω̂, using two different starting values of Ω: one coincides with the
truth, the other is given by μ0 = 14 and γ0 = 0. This produces two estimates
of Ω. We repeat this experiment 1000 times. In all 1000 Monte Carlo replicates,
we employ the Broyden-Fletcher-Goldfarb-Shanno algorithm [9] to find a max-
imizer of the log-likelihood function. In fact, we find that most commonly used
optimization algorithms work well in maximizing the objective function despite
the choice of starting values, partly thanks to the fact that transformations in-
volved in the parameterization derivations in Section 2 are mostly smooth and
simple enough.

Figure 3 presents graphical summaries of 1000 realizations of a subset of
Ω̂ = (μ̂T, γ̂T)T, (μ̂1, γ̂1,1, γ̂2,1), corresponding to each choice of starting value
at each level of the sample size n. In particular, for each parameter, a kernel
density estimate based on 1000 realizations of its MLE is depicted in Figure 3.
The top panels of Figure 3, which present results from using the truth of Ω to
start the optimization algorithm, provide empirical evidence suggesting that the
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Fig 3. Estimated distributions of estimators for three selected parameters in Ω based on
1000 realizations of each parameter estimator when the true parameter values are used as the
starting value (upper panels) and when μ0 and γ0 not equal to the truth are used as starting
values (lower panels) in search for a maximizer of the log-likelihood as n varies: n = 20 (blue
dotted lines), n = 50 (green dashed lines), n = 100 (red solid lines). Vertical lines mark the
true values of the corresponding parameters.

usual asymptotic properties of an MLE, including consistency and asymptotic
normality, are expected to hold for Ω̂ when one uses a starting value in a neigh-
borhood of the truth. The bottom panels of Figure 3, which show results from
using a starting value that has little resemblance with the truth, indicate that μ̂
still behaves like a regular MLE that is consistent and asymptotically normally
distributed, but γ̂ appears to follow a bimodal distribution. The two modes of
the distribution of γ̂ are expected to be the true value of γ and another value
γ′ that is equivalent to γ.

Despite the potential bimodality of γ̂ when a less carefully chosen starting
value of Ω is used to find Ω̂, the resultant estimate of V, V̂, is similar, if not
identical, to the estimate one obtains when using the truth as the starting value.
Figure 4 shows boxplots of the Frobenius norm of V− V̂ corresponding to 1000
realizations of V̂ resulting from each choice of the starting value at each level
of n. From there one can see that V̂ is virtually unaffected by the choice of
starting values.

Although the robustness of μ̂ and V̂ to the choice of starting value is re-
assuring, one should not treat γ̂ as a conventional MLE due to its behavior
observed in Figure 3. Consequently, the usual Fisher information matrix or the
sandwich variance may not serve well for estimating the variance of Ω̂. We thus
recommend use of bootstrap for the uncertainty assessment of μ̂ and V̂, after
mapping γ̂ to V̂ given μ̂.
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Fig 4. Boxplots of the Frobenius norm of V − V̂ as sample size n varies when the true
parameter values are used as the starting value (in the left panel) and when μ0 and γ0 not
equal to the truth are used as starting values (in the right panel) in search for a maximizer
of the log-likelihood.

3.3. Composition estimation

When the original data are compositional data, a follow-up task after model
parameters in ESAGd−1(μ,V) for the transformed data are estimated is the
estimation of the mean composition of each component. This amounts to es-
timating E(Y2), where Y2 is the element-wise quantity squared of the direc-
tional vector Y. We show in Appendix C that, if Y ∼ ESAGd−1(μ,V), then
E(Y2) = Ξ2E(K2), where Ξ = [ξd | ξd−1 | . . . | ξ1], K = ΞTY, and both Ξ2

and K2 refer to the element-wise quantity squared of the matrix/vector. This
motivates an estimator of E(Y2) based on a random sample {Yi}ni=1 given
by Ξ̂

2∑n
i=1 K̂2

i /n, where K̂i = Ξ̂
T
Yi, for i = 1, . . . , n, and Ξ̂ is the MLE

of Ξ.

4. Model diagnostics

Even though the ESAG family accommodates certain anisotropic feature of a
distribution and thus offers some flexibility in modelling, it remains fully para-
metric and thus is subject to model misspecification in a given application. In
this section, we develop residual-based model diagnostics tools that data ana-
lysts can use to assess whether or not an ESAG distribution provides adequate
fit for their directional data, either as a marginal distribution, or a conditional
distribution of the directional response given covariates W as in a regression
setting.
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4.1. Residuals

Denote by {Yi}ni=1 the observed directional data of size n, where Y1, . . . ,Yn

are independent with Yi ∼ ESAGd−1(μi,Vi), for i = 1, . . . , n. The subscript
i attached to μ and V can be dropped if one aims to assess the goodness of
fit (GOF) for the observed data using an ESAG as the marginal distribution.
Otherwise the subscript implies covariate-dependent model parameters in ESAG
as in a regression model for Y.

In a non-regression or regression setting, after one obtains the MLE of all
unknown parameters in the model, one has the MLEs μ̂i and V̂i, following
which a prediction can be made by Ŷi = μ̂i/‖μ̂i‖, for i = 1, . . . , n. Similar to a
directional residual defined in [12], we define residuals as

r̂i =
(
Id − ŶiŶT

i

)
Yi, for i = 1, . . . , n. (4.1)

In (4.1), ŶiŶT
i can be viewed as the projection onto the space spanned by

μ̂i, and thus Id − ŶiŶT
i is the projection onto the space orthogonal to the

space spanned by μ̂i. Equivalently, by the orthogonality of eigenvectors of V̂i,
Id − ŶiŶT

i is the projection onto the space spanned by the d − 1 eigenvectors
of V̂i that are orthogonal to μ̂i, denote by {ξ̂i,j}d−1

j=1 . Hence (4.1) can be re-
expressed as r̂i = P̂−dP̂T

−dYi, where P̂−d = [ξ̂i,1 | . . . | ξ̂i,d−1], that is, P̂−d

is the d × (d − 1) matrix with the j-th column being ξ̂i,j , for j = 1, . . . , d − 1.
The potential dependence P̂−d on covariates via the subscript i is suppressed
for simplicity.

For model diagnostic purposes, we use the following quadratic form of resid-
uals,

Q̂i = r̂T
i V̂−1

i r̂i, for i = 1, . . . , n. (4.2)

With consistent estimation of μi, along with consistent estimation of γi or an
equivalent γ′

i, we have r̂i = P̂−dP̂T
−dYi converge to ri = P−dPT

−dYi in distri-
bution, where P−d results from excluding the d-th column of the d× d matrix
P = [ξ1 | . . . | ξd−1 | ξd], and P−dPT

−d = Id−μiμ
T
i /‖μi‖2. Additionally, V̂i con-

verges to Vi in probability as n → ∞. Thus, (4.2) converges to Qi = rT
i V

−1
i ri

in distribution as n → ∞. In what follows, we investigate the distribution of Qi

to gain insight on the asymptotic distribution of (4.2). The subscript i as the
data point index is suppressed in this investigation.

For Y ∼ ESAGd−1(μ,V), the random variable can be expressed as Y =
X/‖X‖ = (V1/2Z + μ)/‖X‖, where Z ∼ Nd(0, Id). Hence, r = P−dPT

−dY =
P−dPT

−dV1/2Z/‖X‖, following which we show in Appendix D that

Q = rTV−1r = ‖U−d‖2

‖X‖2 , (4.3)

where U−d results from replacing the d-th entry of U = PTZ with zero. Since
P is an orthogonal matrix, U = PTZ ∼ Nd(0, Id), and thus ‖U−d‖2 ∼ χ2

d−1.
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Now we see that Q relates to the quotient of norms of Gaussian vectors, the
distribution of which was studied in [17], following which one can derive the
distribution of Q analytically. One then can see that Q is not a pivotal quantity
and its distribution is not of a form familiar or easy enough for direct use for
model diagnosis. We next construct a transformation of Q aiming at attaining
an approximate pivotal quantity for the purpose of model diagnostics.

4.2. Graphical model diagnostic

[20] showed that, if Y = (Y1, . . . , Yd)T ∼ ESAGd−1(μ,V), then ‖μ‖(Y1, . . . ,

Yd−1)T converges in distribution to Nd−1(0,
∑d−1

j=1 λ
−1
j ξjξ

T
j ) as ‖μ‖ → ∞. [21]

defined model-based residuals motivated by this result, and proposed to inspect
a scatter plot of such residuals to detect model inadequacy when fitting a re-
gression model that assumes ESAG errors. Following this finding, one also has
that T0 = ‖μ‖2Q = (‖μ‖2/‖X‖2)‖U−d‖2 converges in distribution to χ2

d−1 for
ESAG, and thus is a pivot in limit as ‖μ‖ → ∞ (instead of n → ∞). One may
thus assess adequacy of a posited ESAG model for a data set by checking if
{T̂0,i}ni=1 = {‖μ̂i‖2Q̂i}ni=1 approximately come from χ2

d−1. As seen in Figure 1,
a larger ‖μ‖ implies that the distribution has a higher concentration and thus
less variability in data. This diagnostic strategy based on T0 is thus intuitively
well motivated since, with ‖μ‖ large, ‖μ‖2/‖X‖2 is expected to be close to
one, making T0 close to ‖U−d‖2 ∼ χ2

d−1. However, empirical evidence from our
extensive simulation study suggest that a practically unreasonably large ‖μ‖
is needed to make χ2

d−1 a reasonably good approximation of the distribution
of T0. Consequently, this strategy based on T0 is of little practical value since
data observed in most applications can rarely have low enough variability to
make this approximation satisfactory.

Motivated by the fact that E(‖X‖2) = ‖μ‖2 +
∑d

j=1 λj [Theorem 5.2.1, 24],
we propose the following random quantity for diagnostics purposes,

T1 =

⎛⎝‖μ‖2 +
d∑

j=1
λj

⎞⎠Q, (4.4)

which follows χ2
d−1 approximately when ‖μ‖ is large, with the approximation

improves much faster than that for T0 as ‖μ‖ increases, and thus is more like
a pivot than T0 is. Figure 5 presents kernel density estimates of the distri-
butions of T0 and T1 based on random samples of these random quantities,
each of size 500, generated based on Monte Carlo replicates from ESAG3(μ,V).
More specifically, we set ‖μ‖ = 4.24, which is not large enough to make the
χ2-approximation for T0 satisfactory, and

∑d
j=1 λj = 11.1. As one can see in

this figure, the variability of T0 is way too low to make χ2
d−1 approximate its

distribution well, and T1 greatly improves over T0 in its proximity to χ2
d−1. In

general, T1 only requires a moderate ‖μ‖ to make the χ2-approximation prac-
tically useful.
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Fig 5. Kernel density estimates of T0 (dashed line) and T1 (dotted line) comparing with the
density of χ2

3 (solid line).

Following maximum likelihood estimation of all unknown parameters, one can
exploit an empirical version of T1, {T̂1,i}ni=1, where T̂1,i = (‖μ̂i‖2+

∑d
j=1 λ̂i,j)Q̂i,

for i = 1, . . . , n, and check if {T̂1,i}ni=1 can be reasonably well modeled by χ2
d−1.

It can be a graphical check via a quantile-quantile (QQ) plot, for example, to
see if there exists any clear signal of this sample deviating from χ2

d−1. Such
graphical check is easy to implement following parameter estimation, and can
provide visual warning signs when ESAG is a grossly inadequate model for the
observed data {Yi}ni=1. Certainly, in a given application, the quality of χ2-
approximation for T1 is unknown with its true distribution yet to be estimated.
We next propose a bootstrap procedure to facilitate a quantitative test for model
misspecification, which leads to another graphical diagnostic tool as a byproduct
that does not rely on a χ2-approximation for T1.

4.3. Goodness of fit test

Consider testing the null hypothesis that Y follows an ESAG. Although T1 de-
fined in (4.4) approximately follows χ2

d−1 under the null hypothesis, a testing
procedure based on T1 that does not acknowledge its exact null distribution
can lead to misleading conclusion, e.g., an inflated Type I error for the test.
Instead of estimating the exact null distribution of T1, we use a random sample
of T1 induced from an ESAG as a reference sample, and quantify the dissimi-
larity between this reference sample and the observed empirical version of T1,
{T̂1,i}ni=1. One may use a nonparametric test for testing if two data sets come
from the same distribution, such as the Kolmogorov–Smirnov (KS) test [7] and
the Cramér-von Mises test [3], to compare {T̂1,i}ni=1 and the reference sample
induced from an ESAG. We employ the KS test in all presented simulation study
in this article. A smaller p-value from the test indicates a larger distance be-
tween the underlying distribution of {T̂1,i}ni=1 and that of the reference sample,
with the latter approximately representing what one expects for T1 under the
null hypothesis. Here, the ultimate test statistic for testing the null hypothesis
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Algorithm 1 Goodness-of-Fit Test Procedure
1: procedure Compare observed empirical version of T1 with a reference sample

2: Given data {Yi}ni=1 for a non-regression setting or {(Yi,Wi)}ni=1 for a regression
setting, find the MLE μ̂i and γ̂i, for i = 1, . . . , n, assuming an ESAG model for Yi or Yi

conditioning on Wi.
3: Compute V̂i and {λ̂i,j}d−1

j=1 based on μ̂i and γ̂i, for i = 1, . . . , n.
4: Compute T̂1,i = (‖μ̂i‖2 +

∑d−1
j=1 λ̂i,j)Q̂i, for i = 1, . . . , n.

5: Generate {Ỹi}ni=1, where Ỹi ∼ ESAG(μ̂i, V̂i), for i = 1, . . . , n.
6: Compute T̃1,i = (‖μ̂i‖2 +

∑d−1
j=1 λ̂i,j)Q̃i, where Q̃i = r̃T

i V̂−1
i r̃i and r̃i = P̂−dP̂T

−dỸi,
for i = 1, . . . , n.

7: Use the KS test to test if {T̂1,i}ni=1 and {T̃1,i}ni=1 arise from the same distribution.
Denote by KSp the resultant p-value of the KS test.

8: end procedure
9: procedure Bootstrap procedure to estimate the null distribution of KSp

10: Set B = number of bootstraps
11: Initiate s = 0
12: for b in 1, . . . , B do
13: Generate the b-th bootstrap sample {Y(b)

i }ni=1, where Y(b)
i ∼ ESAG(μ̂i, V̂i) for

i = 1, . . . , n.
14: Repeat steps 2–7 using data {Y(b)

i }ni=1 for a non-regression setting or
{(Y(b)

i ,Wi)}ni=1 for a regression setting. Denote the p-value of the KS test as KS(b)
p .

15: if KS(b)
p < KSp then s = s + 1

16: end for
17: Define an estimated p-value for this GOF test as s/B.
18: end procedure

is a p-value from the KS test. Denote this test statistic as KSp. Alternatively,
one may use the Kolmogorov-Smirnov statistic (as the largest distance between
two estimated distribution functions) as a test statistic. We adopt KSp instead
of the distance statistic mainly due to the bounded support of the former. Even
when data are from an ESAG, it is analytically unclear what KSp should be be-
cause the ESAG from which the reference sample is induced is not exactly the
true ESAG (as to be seen next). We thus use parametric bootstrap to estimate
the null distribution of KSp to obtain an approximate p-value to compare with
a preset nominal level, such as 0.05, according to which we conclude to reject or
fail to reject the null at the chosen nominal level. Algorithm 1 above presents a
detailed algorithm for this hypothesis testing procedure.

Several remarks are in order for this algorithm. First, in Step 5, ESAG(μ̂i, V̂i),
from which we induce a data point T̃1,i in the reference sample {T̃1,i}ni=1, can
be viewed as the member of the ESAG family that is closest to the distribution
that characterizes the true data generating process producing Yi, where the
closeness between two distributions is quantified by the Kullback-Leibler diver-
gence [33]. Hence, Ỹi generated from ESAG(μ̂i, V̂i) at this step is expected
to resemble Yi if the null hypothesis is true, with μ̂i and V̂i consistently es-
timating μi and Vi, respectively. Second, in Step 6, T̃1,i is constructed in a
way that closely mimics T1 instead of T̂1,i. In particular, just like T1 where
all population parameters are used in its construction, such as μ, {λj}dj=1, as
well as V and P−d that Q depends on, computing T̃1,i (upon completing Steps
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2–5) requires no parameter estimation although it depends on μ̂i, {λ̂i,j}dj=1,
V̂i and P̂−d, which are viewed as population parameters associated with Ỹi.
One may certainly construct in Step 6 a random quantity closely mimicking T̂1,i
instead, but that would involve another round of parameters estimation based
on {Ỹi}ni=1 and thus is computationally unattractive. Third, we acknowledge
that, even under the null hypothesis, ESAG(μ̂i, V̂i) is not the true distribution
of Yi, with MLEs in place of the true model parameters. Hence, even when
the null hypothesis is true, {T̂1,i}ni=1 do not come from the same distribution as
that of the reference sample {T̃1,i}ni=1, but the two distributions are expected
to be closer than when the null hypothesis is severely violated. The bootstrap
procedure is designed to estimate the null distribution of the distance between
these two distributions that is quantified by KSp, with a smaller value of KSp

indicating a larger distance and thus stronger evidence against the null. As to
be seen in the upcoming simulation study, this bootstrap procedure is capable
of approximating the null distribution of KSp well enough to yield an empirical
size of the test matching closely with any given nominal level.

In the absence of model misspecification, the distribution of {T̃1,i}ni=1 approx-
imates the distribution of T1, with the accuracy of the approximation depends
less on ‖μ‖ than the χ2-approximation does. Therefore, a more reliable graphi-
cal diagnostic device than the aforementioned QQ plot using χ2

d−1 as a reference
distribution is a QQ plot based on {T̂1,i}ni=1 and {T̃1,i}ni=1, as we demonstrate
in the upcoming empirical study.

5. Simulation study

5.1. Design of simulation

To demonstrate operating characteristics of the diagnostics methods proposed
in Section 4, we apply them to data {Yi}ni=1 generated according to four data
generating processes specified as follows:

(M1) An ESAG model, ESAG3(μ,V), with μ = (2, −2, 3, −3)T and V defined
via μ and γ = (2, 3, 5, 8, 2)T.

(M2) A mixture of ESAG and angular Cauchy, with a mixing proportion of 1−α
on ESAG3(μ,V) specified in (M1), where a random vector from an angular
Cauchy is generated by normalizing a random vector from a multivariate
Cauchy with mean μ. This creates a scenario where (1−α)× 100% of the
data arise from ESAG but the rest of the data deviate from ESAG, where
α ∈ {0.05, 0.1, 0.2}.

(M3) An angular Gaussian distribution, AG(μ, Ṽ), where det(Ṽ) = α �= 1,
which creates a scenario where the constraint in (2.2) is violated. More
specifically, when formulating (M1), one has the eigenvalues {λj}d−1

j=1 and
the corresponding eigenvectors {ξj}d−1

j=1 of V, besides λd = 1 and ξd =
μ/‖μ‖. Using these quantities from (M1), we define Ṽ =

∑d
j=1 λ̃jξjξ

T
j ,

where λ̃j = α1/(d−1)λj , for j = 1, . . . , d − 1, and λ̃d = 1, with α ∈
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{0.05, 0.1, 5, 10}. Because Ṽμ = μ, the constraint in (2.1) for ESAG is
satisfied for this angular Gaussian distribution.

(M4) Similar to (M3) but λ̃j = α−1/(d−1)λj , for j = 1, . . . , d− 1, and λ̃d = α ∈
{0.1, 0.5, 2.5, 5}. This leads to Ṽμ = αμ and thus violates constraint (2.1).
Because now det(Ṽ) = 1, the constraint in (2.2) for ESAG is satisfied for
this angular Gaussian distribution.

We generate random samples of size n ∈ {250, 500, 1000} following each data
generating process. The proportions of data sets across 300 Monte Carlo repli-
cates for which the GOF test rejects the null hypothesis at various significance
levels are recorded for each simulation setting. This rejection rate estimates the
size of the test under (M1), and sheds light on how sensitive the proposed di-
agnostic methods are to various forms and severity of deviations from ESAG
exhibited in (M2)–(M4). We set B = 200 in the bootstrap algorithm.

5.2. Simulation results

Under (M1), Figure 6 shows the rejection rate versus the nominal level when
the null hypothesis stating that Y ∼ ESAG is true. This figure suggests that
the null distribution of the test statistic KSp is approximated well enough over
a wide range of nominal levels based on merely B = 200 bootstrap samples,
especially at the lower tail so that the size of the test is close to a low nominal
level such as 0.05.

Table 2 presents rejection rates of the GOF test at nominal level 0.05 under
the remaining three data generating processes (M2)–(M4). Under (M2), when
α×100% of the observed data are not from ESAG, the power of the test steadily
increases as α increases. A larger sample size also boosts the power of detecting
violation of the null. Under (M3), when data are from AG(μ, Ṽ) that does
not satisfy constraint (2.2) due to det(Ṽ) = α(�= 1), one can see from Table 2
that, depending on the severity of the violation of (2.2) that is controlled by
the deviation of α from 1, the proposed test has a moderate power to detect
this particular violation of ESAG, with a higher power at a larger sample size.
Under (M4), when data are from AG(μ, Ṽ) with constraint (2.1) violated due
to Ṽμ = αμ, one can see from Table 2 that, as α deviates from 1 from either
direction, the proposed test possesses moderate to high power to detect violation
of the null hypothesis, with the power increasing quickly as n grows larger.

Besides the quantitative GOF test that performs satisfactorily according
to the above empirical evidence, one can also inspect the QQ plot based on
{T̂1,i}ni=1 and the bootstrap sample {T̃1,i}ni=1 to graphically check ESAG as-
sumptions. Figure 7 shows a collection of such plots based on a randomly cho-
sen Monte Carlo replicate from each of the four considered data generating
processes. As evidenced in Figure 7, violation of the ESAG assumptions as de-
signed in (M2)–(M4) causes a QQ plot deviating from a straight-line pattern,
a pattern more or less observed in the absence of model misspecification as in
(M1). The similarity between the three QQ plots under (M2)–(M4) suggests
that {T̂1,i}ni=1 are not informative in distinguishing different forms of ESAG
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Fig 6. Rejection rates of the GOF test versus nominal levels under (M1) when n = 250
(dashed line), 500 (dotted line), and 1000 (dash-dotted line). The solid line is the 45◦ reference
line.

Table 2

Rejection rates of the GOF test under (M2)–(M4) at nominal level 0.05

n (M2) (M3) (M4)
{α} 0.05 0.1 0.2 0.05 0.1 5 10 0.1 0.5 2.5 5
250 0.10 0.27 0.65 0.27 0.17 0.14 0.17 0.47 0.16 0.75 1.00
500 0.17 0.42 0.89 0.38 0.30 0.22 0.33 0.73 0.26 0.98 1.00
1000 0.26 0.69 0.99 0.60 0.46 0.30 0.52 0.96 0.42 1.00 1.00

Fig 7. QQ plots based on {T̂1,i}ni=1 and the bootstrap sample {T̃1,i}ni=1 under (M1) (top-left
panel), (M2) with α = 0.2 (top-right panel), (M3) with α = 0.05 (bottom-left panel), and
(M4) with α = 2.5 (bottom-right panel), respectively. Solid lines are 45◦ reference lines.
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violations. Regardless, such QQ plot provides a graphical check on the overall
goodness of fit that is convenient to create because the full B-round bootstrap
procedure in the above algorithm is not needed to make the plot.

6. Application to hydrochemical data

In this section, we analyze the hydrochemical data containing 14 molarities
measured monthly at different stations along the Llobregat River and its trib-
utaries in northeastern Spain between the summer of 1997 and the spring of
1999 [19]. The complete data are available in the R package, compositions [31].
For illustration purposes, we focus on the compositional data recording relative
abundance of two major ions, K+ and Na+, and two minor ions, Ca2+ and
Mg2+. Taking the square-root transformation of the compostional data gives
directional data with d = 4. The four considered ions are mostly from potash
mine tailing, which is one of the major sources of anthropogenic pollution in the
Llobregat Basin [29].

We first assume that the transformed composition of (K+,Na+,Ca2+,Mg2+)
in tributaries of Anoia, one of the two main tributaries of the Llobregat River,
follows an ESAG distribution. Fitting 67 records collected from stations placed
along tributaries of Anoia to ESAG3(μ,V), we obtain estimates of μ and V as

μ̂A =

⎡⎢⎢⎣
1.99
5.74
7.95
4.59

⎤⎥⎥⎦ , V̂A =

⎡⎢⎢⎣
0.93 1.15 −0.76 −0.09
1.15 2.77 −1.41 −0.27
−0.76 −1.41 1.99 0.38
−0.09 −0.27 0.38 0.73

⎤⎥⎥⎦ .
The GOF test yields an estimated p-value of 0.66, suggesting that the estimated
ESAG distribution may provide an adequate fit for the data. The QQ plot in Fig-
ure 8 (see the left panel) may indicate some disagreement in the upper tail when
it comes to the distribution of T̂1 and its bootstrap counterpart induced from an
ESAG distribution, but otherwise mostly resemble each other in distribution.
Using the estimated model parameters and applying the method in Section 3.3,
we obtain an estimate of the mean composition of (K+, Na+, Ca2+, Mg2+) to
be (0.04, 0.28, 0.51, 0.17).

We repeat the above exercise for another compositional data of size 43 col-
lected from stations placed along tributaries of the lower Llobregat course, and
obtain estimates for μ and V given by

μ̂L =

⎡⎢⎢⎣
3.27
8.56
9.01
5.78

⎤⎥⎥⎦ , V̂L =

⎡⎢⎢⎣
0.63 1.50 −0.71 −0.90
1.50 5.36 −2.66 −3.17
−0.71 −2.66 2.43 2.10
−0.90 −3.17 2.10 2.91

⎤⎥⎥⎦ .
The estimated p-value from the GOF test is 0.55 in this case. This, along with the
QQ plot in Figure 8 (see the middle panel), also implies that the inferred ESAG
distribution fits the data reasonably well. The estimated mean composition of
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Fig 8. QQ plots from the GOF test applied to compositional data from tributaries of Anoia
(left panel), those from tributaries of the lower Llobregat course (middle panel), and the data
that combine the previous two data sets (right panel).

(K+, Na+, Ca2+, Mg2+) is (0.06, 0.37, 0.40, 0.17), which shares some similarity
with the estimated mean composition associated with Anoia tributaries in terms
of Mg2+, and also in that Ca2+ and Na+ are the two dominating components
among the four, and K+ is the minority.

The two estimates for V, V̂A and V̂L, also share some implications in com-
mon: the two major ions, K+ and Na+, are positively correlated, so are the
two minor ions, Ca2+ and Mg2+; but a major ion is negatively correlated with
a minor ion in composition. Diagonal entries of V̂A and V̂L should not be in-
terpreted or compared here in the same way as if data were not directional
because the variability of ESAG(μ, V) depends on both μ and V. For the
compositional vector as a whole, with ‖μ̂A‖ ≈ 11.00 < ‖μ̂L‖ ≈ 14.10, we have
data evidence suggesting that the transformed compositional data (as direc-
tional data) from Anoia tributaries are less concentrated around its mean direc-
tion, and thus more variable, than those from tributaries of the lower Llobregat
course. When zooming in on one component at a time in the compositional
vector, one can compare variability between two ESAG distributions based on
V/‖μ‖2. For instance, even though V̂A[3, 3] = 1.99 < V̂L[3, 3] = 2.43, we
would not jump to the conclusion that the composition of Ca2+ is less variable
in Anoia tributaries than that in the other set of locations. Instead, because
V̂A[3, 3]/‖μ̂2

A‖ = 0.18 > V̂L[3, 3]/‖μ̂2
L‖ = 0.17, we conclude that the compo-

sition of Ca2+ is similar in variability between the two sets of locations, but
tributaries of Anoia may be subject to slightly higher variability in this regard.
This conclusion is also consistent with the comparison of the sample standard
deviation of the composition of Ca2+ between the two data sets.

Moreover, estimates for the other set of parameters of ESAG arising in the
new parameterization, γ, also provide statistically interesting insights on the
underlying distributions. Denote by γ̂A the estimate based on data from Anoia
tributaries, and by γ̂L the estimate based on data from tributaries of the lower
Llobregat course. We find that ‖γ̂A‖ = 6.24 < ‖γ̂L‖ = 17.03, indicating that
neither of the two ESAG distributions is isotropic, with the second ESAG deviat-
ing from isotropy further. To check partial isotropy, we look into the estimated
eigenvalues associated with V̂A and V̂L. With one eigenvalue fixed at 1, the
three estimated eigenvalues associated with V̂A are 0.37 (0.05), 0.62 (0.10), and
4.44 (0.64), with the estimated standard errors in parentheses obtained based
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Fig 9. Kernel density estimates associated with each of the four considered components,
K+, Na+, Ca2+, and Mg2+, based on the square-root transformed compositional data (red
dashed lines) from tributaries of Anoia (upper panels) and those from tributaries of the lower
Llobregat course (lower panels), contrasting with the counterpart kernel density estimates
based on data generated from the estimated ESAG distribution (black solid lines).

on 300 bootstrap data sets, each of the same size as the raw data sampled from
the raw data with replacement. Similarly, we have the three estimated eigen-
values associated with V̂L given by 0.19 (0.04), 0.54 (0.29), and 9.61 (1.84).
Taking the estimated standard errors into consideration, with the large discrep-
ancy between the estimated (and fixed) eigenvalues, neither of the two data sets
provides sufficient evidence indicating partial isotropy.

For each component in (K+, Na+, Ca2+, Mg2+) at each of the two con-
sidered collections of locations, Figure 9 shows two estimated probability den-
sity functions: a kernel density estimate based on the transformed composi-
tions, and a kernel density estimate based on data generated from the esti-
mated ESAG distribution for that collection of locations. Marginally, the dis-
tribution of some components deduced from the estimated ESAG distribution,
such as K+ along tributaries of the lower Llobregat course and Mg2+ along
Anoia tributaries, matches closely with the counterpart estimated distribution
based on the transformed composition data; but some local features of cer-
tain components indicated by the density estimate based on the transformed
raw data are not captured by the marginal distributions indicated by the es-
timated ESAG, such as the bimodality of Na+ composition. Such mismatch
between the two estimated marginal densities does not necessarily suggest that
the marginal distribution induced from the estimated ESAG fits the data for
that component poorly. After all, the exhibited local features may be due to
the kernel density estimate overfitting the transformed composition data, espe-
cially when the sample size is as small as 43 for the second set of locations.
On the other hand, because the square-root transformed compositional data
only lie on the non-negative hyperoctant of the support of ESAG, fitting an
ESAG to such data is practically more adequate when the mean direction is
further away from the boundary of the non-negative hyperoctant, but can raise
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concern otherwise as one may perceive from the estimated marginal densities.
Most of the estimated densities in Figure 9, although supported on R, do tail
off quickly at the lower tails stretching towards zero from above, and thus using
a marginal distribution supported on the entire real line to model non-negative
data is practically acceptable in most cases in this particular application. How-
ever, for K+ from Anoia tributaries that has the lowest composition among all
considered components and locations, the estimated densities have lower tails
relatively heavy and extending further into the negative half of the real line.
A band-aid solution that may alleviate the concern is to transform the direc-
tion data again so that, after a second transformation, the mean direction is
further away from the boundary of the non-negative hyperoctant of the unit
hypersphere. An example of such transformation is outlined in equation (1)
in [27], which involves re-scaling then re-normalizing Y. To address this con-
cern more formally from the modelling point of view, one may consider using
a truncated ESAG supported on the non-negative hyperoctant of the unit hy-
persphere to model the square-root transformed compositional data. A compli-
cation in this solution is the normalization constant defined by a d-dimensional
integral in the density of a truncated ESAG. Indeed, modelling compositional
data using the directional data point of view deserves a systematic investiga-
tion to adequately address unique data features such as nearly zero or zero-
inflated compositions that can often arise especially when d is large. We rele-
gate this investigation to a separate study considering the length of the current
manuscript.

Between the two collections of locations, the estimated marginal distributions
of certain component appear to be substantially different, e.g., for Ca2+. In
fact, when we fit the ESAG model to the 110 records across these two sets
of locations, we obtain an estimated p-value of 0.02 from the GOF test, with
the corresponding QQ plot clearly deviating from a straight line (see the right
panel in Figure 8). We thus conclude that an ESAG distribution is inadequate
for modeling the data that mix compositional data from Anoia tributaries and
those from tributaries of the lower Llobregat course. This lack of fit is not
surprising because Anoia mostly passes through vineyards and industrialized
zones, whereas the Llobergat lower course also flows through densely populated
areas with high demands of water besides agricultural and industrial areas.
This explains the vastly different patterns and sources of anthorpogenic and
geological pollution between Anoia and the lower Llobregat course [10], which
create substantial heterogeneity in the mixed compositional data that an ESAG
model is unlikely to capture.

7. Discussion

Given the wide range of applications where directional data are of scientific inter-
est and typically of dimension higher than three, an important first step towards
sound statistical analysis of such data is the formulation of a directional distri-
bution of arbitrary dimension. We adopt the initial formulation of the ESAG
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distribution proposed by [20], and take it to the next level via a sequence of
reparameterizations leading to a distribution family indexed by unconstrained
parameters. The resultant parametric family for directional data avoids pitfalls
that many existing directional distributions suffer so that, unlike the Kent dis-
tribution for instance, there is no hard-to-compute normalization constant in
the density function, and it is easy to simulate data from an ESAG of any di-
mension. More importantly, the proposed parameterization of ESAG lends itself
to straightforward maximum likelihood inference procedures that are numeri-
cally stable and less dependent on “good” starting values for parameter esti-
mation. New parameters introduced along the way of reparameterization have
statistically meaningful interpretations, which facilitate formulating hypothesis
testing where one compares a reduced ESAG model, such as an isotropic or
a partially isotropic model, with a saturated ESAG model. In summary, the
proposed ESAG family of arbitrary dimension sets the stage for carrying out a
full range of likelihood-based inference for directional data, including parameter
estimation, uncertainty assessment, and hypothesis testing.

To ease the concerns of model misspecification when assuming a parametric
family in a given application, we develop graphical and quantitative diagnostics
methods that utilize directional residuals. Maximum likelihood estimation and
the proposed diagnostics methods for ESAG can be easily implemented using
the R code developed and maintained by the first author, available at https://
github.com/Zehaoyu217/ESAG/blob/main/ESAG.R.

An immediate follow-up step is to consider regression models for directional
data, which is well motivated by the lack of fit of a marginal ESAG distribu-
tion for the mixed compositional data entertained in Section 6. We conjecture
that, conditioning on covariates relating to geological features of considered
tributaries and covariates reflecting human activities developed in regions these
tributaries running through, the mixed compositioinal data can be better mod-
elled by an ESAG distribution with covariate-dependent μ and γ. With μ and γ
ranging over the entire real space of adequate dimensions, the proposed ESAG
family prepares itself well for regression analysis of directional data without
using complicated link functions to introduce dependence of model parameters
on covariates W. For example, one may consider a fully parametric regression
model as simple as Y|W ∼ ESAG(μ(W),V(W)), where μ(W) is a linear func-
tion of covariates W, and V(W) is determined by μ(W) and γ(W), with the
latter also a linear function of covariates. This is similar to but generalizes the
second type of regression models considered in [21] for arbitrary d ≥ 3. More
flexible dependence structures of μ and γ on covariates are also worthy of con-
sideration in the follow-up research along the line of regression analysis. Once
we enter the realm of regression models, the dimension of the parameter space
grows more quickly as d increases than before considering regression analysis
for directional data. Upon completion of the study presented in this article, we
have embarked on the exciting journey of developing scalable inference proce-
dures suitable for settings with high dimensional parameter space following the
strategies of frequentist penalized maximum likelihood estimation and Bayesian
shrinkage estimation via hierarchical modeling.

https://github.com/Zehaoyu217/ESAG/blob/main/ESAG.R
https://github.com/Zehaoyu217/ESAG/blob/main/ESAG.R
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Appendix A: Implication of γ and γ′ being equivalent

Under the proposed parameterization of ESAGd−1(μ,V), V is determined by
γ after μ is specified. We thus write V as V(γ) in this appendix, and view
quantities related to V as functions of γ, such as the eigenvalues of V and the
radial parameters in (2.5). If γ and γ′ are equivalent, then V(γ) = V(γ′), and
thus V(γ) and V(γ′) share the same eigenvalues. By (2.5), {λj(γ) = λj(γ′)}d−1

j=1
implies that {rj(γ) = rj(γ′)}d−2

j=1 . Lastly, from Section 2.4, rj = ‖γ̃j‖, for j =
1, . . . , d−2. Therefore, if γ and γ′ are equivalent, ‖γ̃j‖ = rj(γ) = rj(γ′) = ‖γ̃′

j‖,
for j = 1, . . . , d− 2.

Appendix B: Identifiability of Ω̃

We provide a detailed discussion on the identifiability of parameters in Ω̃ in
this appendix. Before considering d > 3 in general, we first focus on the case
with d = 5 as in Table 1 with Ω̃ = (r1, r2, r3, θ1, θ2, θ3, φ̃2,1, φ̃3,1, φ̃3,2)T for
ease of exposition. Under our proposed parameterization of ESAG, inference
for the third group of parameters in Ω̃, (r3, θ3, φ̃3,1, φ̃3,2), directly relates to
inference for γ̃3 = (γ3,1, γ3,2, γ3,3, γ3,4)T. But, by the third group of spherical-
to-Cartesian coordinates transformations in Table 1, if φ̃3,1 = 0 (or π), then
γ̃3 = (r3, 0, 0, 0)T (or (−r3, 0, 0, 0)T), for all (θ3, φ̃3,2) ∈ [−π, π) × [0, π]. Hence,
(θ3, φ̃3,2) are not identifiable when φ̃3,1 is on the boundary. In (2.9), we set θ3 = 0
when γ2

3,3 + γ2
3,4 = 0, and set φ̃3,2 = 0 when γ2

3,2 + γ2
3,3 + γ2

3,4 = 0 (i.e., when
φ̃3,1 = 0 or π) for simplicity. In effect, when γ̃3,1 > 0, we map γ̃3 = (γ̃3,1, 0, 0, 0)T

to (r3, θ3, φ̃3,1, φ̃3,2) = (γ̃3,1, 0, 0, 0) following (2.9) despite the fact that, under
the spherical coordinate system, all points in {(r3, θ3, φ̃3,1, φ̃3,2) : r3 = γ̃3,1, θ3 ∈
[−π, π), φ̃3,1 = 0, φ̃3,2 ∈ [0, π]} map to γ̃3 = (γ̃3,1, 0, 0, 0)T according to (2.8).

Generalizing to d > 3, one can see from (2.8) that (θj , φ̃j,2, . . . , φ̃j,j−1) are
non-identifiable when φ̃j,1 = 0 or π, for j ∈ {2, . . . , d − 2}. More generally, for
j ∈ {3, . . . , d− 2} when d > 4, (θj , φ̃j,k+1, . . . , φ̃j,j−1) are non-identifiable when
φ̃j,k = 0 or π, for k ∈ {2, . . . , j − 2}. By convention (https://en.wikipedia.
org/wiki/N-sphere), when φ̃j,k lies on the boundary for some j ∈ {2, . . . , d−2}
and some k ≤ j − 2, we set the corresponding non-identifiable angles at zero in
(2.9). By using (2.8) and (2.9) to relate Ω̃ and γ, we create certain ambiguity
in the mappings that connect these two sets of parameters. Such ambiguity can
be better apprehended using a partition of the parameter space associated with
Ω̃ = (r1, . . . , rd−2, θ1, . . . , θd−2, φ̃

T

1 , . . . , φ̃
T

d−2)T. Denoted by S this parameter
space, that is, S = (R+ ∪ {0})d−2 × [−π, π)d−2 × [0, π](d−2)(d−3)/2.

Define SB as a subspace of S that includes all points with φ̃j,k lying on the
boundary for some j ∈ {2, . . . , d− 2} and some k ≤ j − 2. That is,

SB = {Ω̃ : φ̃j,k = 0 or π, for some j ∈ {2, . . . , d− 2} and some k ≤ j − 2}.

We further define a subset of SB ,

SB1 = {Ω̃ : φ̃j,k = 0 or π, for some j ∈ {2, . . . , d− 2} and some k ≤ j − 2,

https://en.wikipedia.org/wiki/N-sphere
https://en.wikipedia.org/wiki/N-sphere
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and θj = φ̃j,k+1 = · · · = φ̃j,j−1 = 0},

then define SB2 = SB \ SB1, where \ is the set subtraction operator. Lastly, let
SI = S \ SB . Now we have a partition of S, SI ∪ SB1 ∪ SB2. A partition of the
parameter space associated with γ is GI ∪ GB , where GI = {T (Ω̃) : Ω̃ ∈ SI},
GB = R

(d−2)(d+1)/2 \GI , and the mapping T : S → R
(d−2)(d+1)/2 is specified by

the transformations in (2.8). There is no ambiguity when limiting to the mapping
T : SI → GI , which is bijective, and thus the inverse transformation T −1(γ) is
well-defined. Hence, when Ω̃ ∈ SI , all orientation parameters are identifiable.
But the mapping T : SB → GB is surjective (i.e., many-to-one) as suggested
by our earlier remarks about non-identifiable angles when Ω̃ ∈ SB , and this
is where the ambiguity in terms of inverse mapping arises. We circumvent this
ambiguity in (2.9) by letting T −1 map from GB to (only) SB1.

In the context of inferring ESAG(μ,V), a direct consequence of the treatment
in (2.9) to avoid ambiguity of T −1 is that, if V = V0 is specified by μ0 and
Ω̃0 ∈ SB2, then there exists no point in the parameter space of γ such that
V0 can be formulated by this point of γ along with μ0. However, one can
show that one can formulate a sequence of points in GI , {γt : t = 1, 2, . . .},
such that limt→∞ T −1(γt) = Ω̃0. This hints at the possibility of achieving
consistent estimation of V even when there is no point in the parameter space Rp

associated with Ω = (μT,γT)T that leads to V0. A simulation study presented
next provides some empirical confirmation of this possibility.

In the simulation study, random samples of size n from ESAG3(μ,V) are gen-
erated, with μ = (2,−5, 3, 5)T and V specified by this chosen μ and three choices
of Ω̃: (r1, r2, θ1, θ2, φ̃2,1) = (5.8, 5.4, π/3, 6π/7, π/3) ∈ SI , (3, 3, 0, 0, 0) ∈ SB1,
and (3, 3, 0, π/4, 0) ∈ SB2. The last setting of Ω̃ is where θ2 is non-identifiable
and thus the corresponding V cannot be formulated by any point in the param-
eter space of Ω. Regardless, Figure B.1 provides empirical evidence, based on
1000 Monte Carlo replicates for each simulation setting as n varies, suggesting
that the non-identifiabilty issue with the orientation parameter does not affect
finite sample performance of the MLE for V when comparing with settings
where all parameters in Ω̃ are identifiable.

Appendix C: Expectations of compositions

Here, we show that, if Y ∼ ESAGd−1(μ,V), then

E(Y2) = Ξ2E(K2), (C.1)

where K = ΞTY, and Ξ = [ξd | ξd−1 | . . . | ξ1], that is, the columns of Ξ are the
eigenvectors of V, with ξd = μ/‖μ‖, corresponding to eigenvalues in the diag-
onal matrix Λ = diag(λd, λd−1, . . . , λ1), with λd = 1 and 0 < λ1 ≤ · · · ≤ λd−1.
This result is directly deduced from Proposition 1 in [25], which is applicable
once the following three properties of K = (K1, . . . ,Kd)T are established:

(i) E(K1) ≥ 0;
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Fig B.1. Boxplots of the Frobenius norm of V− V̂ as sample size n varies when the truth of
Ω̃ is in SB2 (left panel, the case with a non-identifiable angle), SB1 (middle panel), and SI

(right panel), respectively.

(ii) E(K2
2 ) ≥ · · · ≥ E(K2

d);
(iii) g(K)=g(HK), where g(·) is the density of K, and H=diag(1,±1, . . . ,±1).

In other words, to prove (C.1), it suffices to show that (i)–(iii) hold for K = ΞTY.
With Y ∼ ESAGd−1(μ,V), we may rewrite Y = X/‖X‖, where X = V 1

2 Z+
μ and Z ∼ Nd(0, Id). By the spectral decomposition theorem, V = ΞΛΞT,
hence

K = ΞTY
= (ΞTV1/2Z + ΞTμ)/‖X‖
= (ΞTΞΛ1/2ΞTZ + ΞTμ)/‖X‖
= (Λ1/2U + ‖μ‖e1)/‖X‖, where U = (U1, . . . , Ud)T = ΞTZ ∼ Nd(0, Id),

(C.2)

and therefore

K1 = (U1 + ‖μ‖)/‖X‖, (C.3)
Kj =

√
λd−j+1Uj/‖X‖, for j = 2, . . . , d. (C.4)
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Similarly, using V1/2 = ΞΛ1/2ΞT, one can show that

‖X‖ =

√√√√ d∑
j=2

λd−j+1U2
j + (U1 + ‖μ‖)2. (C.5)

Now we are ready to prove property (i). For a random variable A that can
be multivariate in general, we use FA(a) to denote the cumulative distribution
function of A evaluated at a. By (C.3) and (C.5),

E(K1)

= E

⎧⎨⎩ U1 + ‖μ‖√∑d
j=2 λd−j+1U2

j + (U1 + ‖μ‖)2

⎫⎬⎭
=
∫
Rd−1

∫
R

u1 + ‖μ‖√∑d
j=2 λd−j+1u2

j + (u1 + ‖μ‖)2
dFU1(u1)dFU2,...,Ud

(u2, . . . , ud)

=
∫
Rd−1

∫ −‖μ‖

−∞

u1 + ‖μ‖√∑d
j=2 λd−j+1u2

j + (u1 + ‖μ‖)2
dFU1(u1)dFU2,...,Ud

(u2, . . . , ud)

+
∫
Rd−1

∫ ∞

−‖μ‖

u1 + ‖μ‖√∑d
j=2 λd−j+1u2

j +(u1+‖μ‖)2
dFU1(u1)dFU2,...,Ud

(u2, . . . , ud)

=
∫
Rd−1

∫ 0

−∞

a√∑d
j=2 λd−j+1u2

j + a2
dFA(a)dFU2,...,Ud

(u2, . . . , ud) (C.6)

+
∫
Rd−1

∫ ∞

0

a√∑d
j=2 λj−d+1u2

j + a2
dFA(a)dFU2,...,Ud

(u2, . . . , ud), (C.7)

where we apply change of variable in (C.6) and (C.7) by letting a = u1 + ‖μ‖.
Because A = U1 + ‖μ‖ ∼ N(‖μ‖, 1), the inner integral in (C.6) is∫ 0

−∞

a√∑d
j=2 λd−j+1u2

j + a2
dFA(a)

=
∫ 0

−∞

a√∑d
j=2 λd−j+1u2

j + a2
× 1√

2π
exp
{
− (a− ‖μ‖)2

2

}
da

= −
∫ ∞

0

a√∑d
j=2 λd−j+1u2

j + a2
× 1√

2π
exp
{
− (a + ‖μ‖)2

2

}
da.

Combining this result for (C.6) with a similar elaboration of (C.7) gives

E(K1) =
∫
Rd−1

∫ ∞

0

a√∑d
j=2 λd−j+1u2

j + a2

1
2π

[
exp
{
− (a− ‖μ‖)2

2

}



330 Z. Yu and X. Huang

− exp
{
− (a + ‖μ‖)2

2

}]
da dFU2,...,Ud

(u2, . . . , ud),

which is non-negative because exp{−(a−‖μ‖)2/2}− exp{−(a+ ‖μ‖)2/2} ≥ 0,
∀a > 0. This completes the proof of (i).

Next we prove property (ii) that states E(K2
j −K2

� ) ≥ 0, for 2 ≤ j < 	 ≤ d.
By (C.4) and (C.5),

E(K2
j −K2

� ) = E

{
λd−j+1U

2
j − λd−�+1U

2
�∑d

k=2 λd−k+1U2
k + (U1 + ‖μ‖)2

}

=
∫
R+

∫
R2

a2 − b2

a2 + b2 + c
dFA,B(a, b)dFC(c), (C.8)

where we view A = λ
1/2
d−j+1Uj , B = λ

1/2
d−�+1U�, C =

∑
k �=1,j,� λd−k+1U

2
k + (U1 +

‖μ‖)2, and C is a non-negative random variable by construction. Because A ∼
N(0, λd−j+1), B ∼ N(0, λd−�+1), and A ⊥ B, the inner integral in (C.8) is equal
to ∫

R2

a2 − b2

a2 + b2 + c
dFA(a)dFB(b)

=
∫
R2

a2 − b2

a2 + b2 + c
× 1

2π
√

λd−j+1λd−�+1
exp
(
−λd−�+1a

2 + λd−j+1b
2

2λd−j+1λd−�+1

)
dadb

=
∫
{(a,b)∈R2: a2<b2}

a2 − b2

a2 + b2 + c
× 1

2π
√
λd−j+1λd−�+1

× exp
(
−λd−�+1a

2 + λd−j+1b
2

2λd−j+1λd−�+1

)
dadb

+
∫
{(a,b)∈R2: a2≥b2}

a2 − b2

a2 + b2 + c
× 1

2π
√

λd−j+1λd−�+1

× exp
(
−λd−�+1a

2 + λd−j+1b
2

2λd−j+1λd−�+1

)
dadb.

For the first integral above, we apply change of variables by letting (s, t) = (b, a)
to re-express the first integral as∫

{(s,t)∈R2: s2>t2}

t2 − s2

t2 + s2 + c
× 1

2π
√
λd−j+1λd−�+1

× exp
(
−λd−�+1t

2 + λd−j+1s
2

2λd−j+1λd−�+1

)
dsdt

= −
∫
{(a,b)∈R2: a2>b2}

a2 − b2

a2 + b2 + c
× 1

2π
√

λd−j+1λd−�+1

× exp
(
−λd−j+1a

2 + λd−�+1b
2

2λd−j+1λd−�+1

)
dadb.
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Combining this expression for the first integral with the second integral yields∫
R2

a2 − b2

a2 + b2 + c
dFA(a)dFB(b)

=
∫
{(a,b)∈R2: a2≥b2}

a2 − b2

a2 + b2 + c
× 1

2π
√

λd−j+1λd−�+1

×
{

exp
(
−λd−�+1a

2 + λd−j+1b
2

2λd−j+1λd−�+1

)
− exp

(
−λd−j+1a

2 + λd−�+1b
2

2λd−j+1λd−�+1

)}
dadb,

which is non-negative because (λd−�+1a
2+λd−j+1b

2)−(λd−j+1a
2+λd−�+1b

2) =
(λd−�+1 − λd−j+1)(a2 − b2) ≤ 0 when a2 ≥ b2 since λd−j+1 ≥ λd−�+1, for
2 ≤ j < 	 ≤ d. Using this result for the inner integral in (C.8) shows that
E(K2

j −K2
� ) ≥ 0, for 2 ≤ j < 	 ≤ d. This completes the proof of (ii).

Lastly, we show property (iii) stating that K L= HK for H = diag(1,±1, . . . ,
±1). By (C.2),

HK = (HΛ1/2U + ‖μ‖He1)/‖X‖
= (HΛ1/2U + ‖μ‖e1)/‖X‖
L= (Λ1/2U + ‖μ‖e1)/‖X‖
= K,

where the second to last equation is by the fact that Λ1/2U ∼ Nd(0, Λ) and
thus HΛ1/2U ∼ Nd(0, Λ) since HΛH = Λ. This completes the proof of (iii).

With properties (i)–(iii) established for K, by Proposition 1 in [25], we now
have E(YYT) = Ξ diag(K2

1 , . . . ,K
2
d)ΞT, which implies (C.1).

Appendix D: Proof of equation (4.3)

By the spectral decomposition theorem, Vα = PDαPT, where Dα =
diag(λα

1 , . . . , λ
α
d ) and P = [ξ1 | . . . | ξd]. Let P−d = [ξ1 | . . . | ξd−1]. Using

this decomposition with α = −1 and 1/2, we have

Q = rTV−1r

= ZT

‖X‖V1/2P−dPT
−d × V−1 × P−dPT

−dV1/2 Z
‖X‖

= ZT

‖X‖2 PD1/2PTP−dPT
−d × PD−1PT × P−dPT

−dPD1/2PTZ,

where
PTP−d =

[
PT

−d

ξT
d

]
P−d =

[
Id−1
0T

]
,

and thus
PTP−dPT

−dP =
[
Id−1 0
0T 0

]
� Ĩd.
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It follows that

Q = 1
‖X‖2 ZTPD1/2ĨdD−1ĨdD1/2PTZ

= 1
‖X‖2 ZTPĨdD1/2D−1D1/2ĨdPTZ

= 1
‖X‖2 UTĨdĨdU, where U = PTZ,

= 1
‖X‖2 UT

−dU−d, where U−d = ĨdU,

which gives (4.3).
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