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ABSTRACT
We propose local polynomial estimators for the conditional mean of
a continuous responsewhenonlypooled responsedata are collected
under different pooling designs. Asymptotic properties of these esti-
mators are investigated and compared. Extensive simulation studies
are carried out to compare finite sample performance of the pro-
posed estimators under various model settings and pooling strate-
gies. We apply the proposed local polynomial regressionmethods to
two real-life applications to illustrate practical implementation and
performance of the estimators for the mean function.
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1. Introduction

Instead of measuring individual specimens to collect data for biomarkers or analytes of
interest, collecting such data on pools of specimens has become increasingly common
in epidemiological studies (Kendziorski, Zhang, Lan, and Attie 2003; Shih et al. 2004)
and environmental studies (Kärrman et al. 2006; Kato et al. 2009; Heffernan et al. 2016;
Mosites, Rodriguez, Caudill, Hennessy, and Berner 2020). Collecting pooled data can
reduce information loss when there is a detecting limit and offer a more timely man-
ner to gather information, in addition to the obvious benefit of reducing cost of lab-
oratory assays and preserving irreplaceable specimens. In some econometrics applica-
tions, pooled data are all that is available to researchers, such as data aggregated by
family or by region (Martinez-Espineira 2003; Fukuda 2006; Jiang, Manchanda, and
Rossi 2009). In these applications, data of other attributes at the individual level are
often also recorded, and researchers are interested in associations between quantities
at the individual level even though some data are collected at the pool level. Our
study is motivated by these research questions that require methodologies for regres-
sion analysis based on pooled continuous response data and individual-level covariate
data.
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Traditional regression methodology applicable to individual response data cannot be
directly used to analyse pooled response data, and there exist some research on regression
analysis for pooled continuous responses. Under the parametric framework, Malinovsky,
Albert, and Schisterman (2012) considered Gaussian random effects models for pooled
repeated measures and studied inference for variance components under different pool-
ing strategies. Mitchell et al. (2014) proposed a Monte Carlo expectation maximisation
algorithm to carry out regression analyses of pooled biomarker assessments assuming that
the biomarker follows a log-normal distribution given covariates. McMahan,McLain, Gal-
lagher, and Schisterman (2016) developed methods to infer receiver-operating character-
istic curves using pooled biomarker measurements. Liu, McMahan, and Gallagher (2017)
provided a general strategy based onMonteCarlomaximum likelihood for regression anal-
ysis of pooled data under generic parametric models assumed for the individual response
given covariates. Under the semiparametric framework, Mitchell et al. (2015) proposed
a semiparametric method for regression analysis of a right-skewed and positive response
when data for the response are taken from pooled specimens. Without imposing para-
metric assumptions on the biomarker distribution, Lin and Wang (2018) developed a
semiparametric approach for analysing pooled biomarker measurements originating from
a single-index model for the individual response. Different from these works, we develop
nonparametric estimationmethodswithout imposing a functional form for the conditional
mean of the response or a distribution family on the response given covariates. The esti-
mation methods proposed in this article are thus more generally applicable, even though
prediction based on a nonparametrically estimated mean response is less convenient than
when one employs a parametric estimationmethod. Also under the nonparametric frame-
work, Linton andWhang (2002) proposed a kernel-based estimator for regression function
for pooled data when covariate data are also aggregated, with both aggregated response
data and covariate data subject to additive measurement error. Instead of the framework of
kernel regression adopted in their work, we consider in this study local polynomial regres-
sion with kernel weights that has been shown to have advantages both asymptotically and
in finite sample performance over kernel regression (Fan, Heckman, and Wand 1995).

Among the existing works on regression analysis of pooled response data, many con-
sider various pooling designs. For example, Ma, Vexler, Schisterman, and Tian (2011)
compared two pooling designs in the context of linear regression analysis for a pooled
continuous response and aggregated covariates, one being random pooling where pools
are randomly formed without taking into account covariate information, and the other
termed as optimal pooling by the authors, where pools are formed by gathering speci-
mens corresponding to similar covariate values. This latter strategy is better known as
homogeneous pooling in the pool/group testing literature (Shu and Burn 2003; Bilder
and Tebbs 2009; Deckert, Brnighausen, and Kyei 2020), and many researchers have shown
efficiency gain in prediction and covariate effects estimation when homogeneous pooled
data are used than when random pooled data are used (Vansteelandt, Goetghebeur, and
Verstraeten 2000; Ma et al. 2011). Mitchell et al. (2014) developed a regression method-
ology for log-normal response data subject to a special form of homogeneous pooling
where covariate values within a pool are identical. Like the regression analysis discussed
inMa et al. (2011), Mitchell et al. (2014) also regressed the pooled continuous response on
aggregated covariates to infer the association between the response and covariates at the
individual level.
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In this article, we propose local polynomial estimators for the mean of a continuous
response given covariates using pooled response data and individual-level covariate data.
More specifically, the proposed estimators are for themean functionm(x) = E(Y |X = x),
where Y is a continuous response of an experimental unit, X is the covariate that can
be vector-valued and relate to attributes of the experimental unit or individual. For ease
of exposition, we consider a scalar covariate in this article. Observed data available for
inferringm(x) include pooled responses from J groups of individuals, Z = (Z1, . . . , ZJ)T,
where Zj = c−1

j
∑cj

k=1 Yjk, in which cj is the number of individuals in pool j, and Yjk is
the unobserved response of individual k in that pool, for j = 1, . . . , J, k = 1, . . . , cj. Also
observed are covariate data X = {X̃j, j = 1, . . . , J}, where X̃j = (Xj1, . . . ,Xj,cj)

T, with Xjk
being the covariate associated with individual k in pool j, for k = 1, . . . , cj and j = 1, . . . , J.
Three proposed local polynomial estimators form(x) based on data (Z,X) are presented in
Section 2 next, where we assume that data arise from random pooling. Section 3 presents
local polynomial estimators based on homogeneous pooled data. Asymptotic properties of
these estimators are investigated and compared in Section 4 under each of the two pooling
designs. Section 5 describes bandwidth selection methods tailored for the proposed esti-
mators. Section 6 presents a simulation studywherewe compare finite sample performance
of the proposed estimators under different model settings and various pooling designs.We
further illustrate the implementation and performance of the proposed methods in two
real-life applications in Section 7. Finally, in Section 8, we summarise contributions of our
study and discuss follow-up research directions.

2. Local polynomial estimators under random pooling

Local polynomial regression has been a well-received and widely applicable nonparamet-
ric strategy for estimatingm(x) when individual data are available (Fan and Gijbels 1996).
To estimate the regression function m(x) based on individual data {(Yjk,Xjk), k =
1, . . . , cj}Jj=1, this strategy exploits the weighted least squares method to construct an
objective function following a pth-order Taylor expansion of m(s) around x, m(s) ≈∑p

�=0{m(�)(x)/�!}(s − x)�, with m(�)(x) equal to (∂�/∂s�)m(s) evaluated at s = x. In
particular, the objective function is given by

Q0(β) =
J∑

j=1

cj∑
k=1

{
Yjk −

p∑
�=0

β�(Xjk − x)�
}2

Kh(Xjk − x), (1)

where Kh(t) = K(t/h)/h, K(t) is a symmetric kernel, h is a bandwidth, β� = m(�)(x)/�!,
for � = 0, 1, . . . , p, and β = (β0,β1, . . . ,βp)

T. Minimising Q0(β) with respect to β yields
an estimate of m(x)(= β0), along with estimates of m(�)(x)(= �!β�), for � = 1, . . . , p.
Denote by m̂0(x) the so-obtained estimator form(x).

In what follows, we reviseQ0(β) to construct new objective functions to adapt the local
polynomial regression strategy to pooled response data from random pooling. Despite
the pooling design considered, it is assumed that the individual data, {(Yjk,Xjk), k =
1, . . . , cj}Jj=1, consist of N = ∑J

j=1 cj independent copies multivariate random variable
(Y ,X) from a common distribution.
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2.1. The average-weighted estimator

Now that individual responses {Yjk, k = 1, . . . , cj}Jj=1 in (1) are unobserved but pooled
responses {Zj}Jj=1 are instead, it is natural to switch attention from E(Yi |Xi) to E(Zj | X̃j) =
c−1
j

∑cj
k=1m(Xjk), as if one were regressing Z on the accompanying covariates in a pool

collectively. This motivates the following weighted least squares objective function,

Q1(β) =
J∑

j=1

{
Zj −

p∑
�=0

β�c−1
j

cj∑
k=1

(Xjk − x)�
}2 {

c−1
j

cj∑
k=1

Kh(Xjk − x)

}
. (2)

In (1), the weight function Kh(Xi − x) quantifies the proximity of the ith covariate data
point to x, producing a larger weight for an individual whose covariate value is closer to x.
In (2), the average of such proximity measures associated with cj covariate data points in
pool j is used to assess the overall closeness of this collection of covariate values to x.

Minimising Q1(β) with respect to β and extracting the first element of the resultant
minimiser gives a pth-order local polynomial estimator for m(x). This estimator can be
explicitly expressed as m̂1(x) = eT1 S

−1
1 (x)T1(x), where eT1 = (1, 0, . . . , 0)1×(p+1), S1(x) =

D1(x)TK1(x)D1(x), and T1(x) = D1(x)TK1(x)Z, in which, D1(x) is a J × (p + 1) matrix
with D1(x)[j, � + 1] = c−1

j
∑cj

k=1(Xjk − x)�, for j = 1, . . . , J, � = 0, 1, . . . , p, and K1(x) =
diag{c−1

1
∑c1

k=1 Kh(X1k − x), . . . , c−1
J

∑cJ
k=1 Kh(XJk − x)}. Elaborated expressions of

entries in S1(x) and T1(x) are given in Appendix A of the supplementary materials. To
highlight the weight function construction in (2), m̂1(x) is referred to as the average-
weighted estimator in this article.

2.2. The product-weighted estimator

Instead of averaging individual-level weights to construct a weight function as in Q1(β),
one may view X̃j as a multivariate covariate resulting from stacking the cj individual-level
covariates in pool j on top of each other, and an alternative weight function can be for-
mulated to measure the nearness of this multivariate covariate to x1cj , where 1cj denotes
the cj × 1 vector of one’s. Mimicking the product kernel used in multivariate kernel den-
sity estimation, we propose the following weighted least squares objective function with a
different weight function,

Q2(β) =
J∑

j=1

{
Zj −

p∑
�=0

β�c−1
j

cj∑
k=1

(Xjk − x)�
}2 { cj∏

k=1

Kh(Xjk − x)

}
. (3)

More succinctly, the estimator for m(x) resulting from minimising Q2(β) is given by
m̂2(x) = eT1S

−1
2 (x)T2(x), where S2(x) = D1(x)TK2(x)D1(x) and T2(x) = D1(x)TK2(x)Z,

in which K2(x) = diag{∏c1
k=1 Kh(X1k − x), . . . ,

∏cJ
k=1 Kh(XJk − x)}. Detailed expressions

of entries in S2(x) and T2(x) are provided in Appendix B in the supplementary materials.
Due to the construction of the weight function in (3), we call m̂2(x) the product-weighted
estimator in the sequel.
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2.3. Themarginal-integration estimator

The first two estimators are motivated by the mean of Zj given all covariate data in pool j.
The third estimator is inspired by themean of cjZj given one arbitrary individual’s covariate
in pool j derived next under the assumption that Yjk′ ⊥ Xjk for k′ �= k and the pools are
formed randomly independent of covariate information. By the definition of Zj, we have

E(cjZj |Xjk = x) =
cj∑

k′=1,k′ �=k

E(Yjk′ |Xjk = x) + E(Yjk |Xjk = x)

=
cj∑

k′=1,k′ �=k

E(Yjk′) + m(x) = (cj − 1)μ + m(x),

where μ = E(Yjk′) for k′ = 1, . . . , cj and j = 1, . . . , J. Hence,

E{cjZj − (cj − 1)μ |Xjk = x} = m(x). (4)

If one views cjZj − (cj − 1)μ as a pseudo response, (4) is reminiscent of the conditional
mean model for individual-level data, E(Yi |Xi = x) = m(x), except for the dependence
of the pseudo response on the unknown parameter μ. Since μ is the marginal mean of
Y, one may use the overall sample mean response, μ̂ = N−1 ∑J

j=1 cjZj, to estimateμ. This
yields a surrogate of the pseudo response defined byRj = cjZj − (cj − 1)μ̂, for j = 1, . . . , J.
However,E(Rj |Xjk = x) �= m(x) due to the estimation ofμ inRj. In fact, one can show that
E(Rj |Xjk = x) = m(x) + {μ − m(x)}(cj − 1)/N. Suggested by an anonymous referee, in
each Rj, we replace μ̂ by μ̂j = ∑J

s�=j,s=1 csZs/(N − cj) and define Ŷjk = cjZj − (cj − 1)μ̂j.
One can view Ŷjk as a bias-corrected version of Rj and also as an ‘estimator’ for Yjk that
satisfies E(Ŷjk |Xjk = x) = m(x).

Using the surrogate of the pseudo response and (4), we formulate the followingweighted
least squares objective function,

Q3(β) =
J∑

j=1

cj∑
k=1

{
Ŷjk −

p∑
�=0

β�(Xjk − x)�
}2

Kh(Xjk − x). (5)

MinimisingQ3(β) with respect to β yields our third proposed pth-order local polynomial
estimator for m(x), denoted by m̂3(x). As one can see from the elaborated expression of
it given in Appendix C of the supplementary materials that m̂3(x) is simply m̂0(x) with
Yjk replaced by Ŷjk, for j = 1, . . . , J, k = 1, . . . , cj. The construction of m̂3(x) stems from
the marginal integration result (4). For this reason, we refer to m̂3(x) as the marginal-
integration estimator henceforth. Using marginal integration is not new in the pooling
literature. Lin and Wang (2018) used it to estimate a single-index model with a focus on
the parametric part of their model. The asymptotic properties of m̂3(x) in Section 4 do not
follow their derivation directly, and additionally, they used Rj while we use Ŷjk to correct
the bias induced by Rj.

All three estimators reduce to m̂0(x) when cj = 1 for j = 1, . . . , J but are otherwise typ-
ically very different from each other. In-depth comparisons between the three estimators
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that go beyond their formulations demand more systematic investigation on their theoret-
ical properties. This is the content of Section 4, where we look into the asymptotic bias and
variance of these estimators under each of the two considered pooling designs.

3. Local polynomial estimators under homogeneous pooling

When pooled data result from homogeneous pooling, it is no longer sensible to consider
the mean of cjZj given one ‘arbitrary’ covariate data point in pool j as we just did to con-
struct m̂3(x), since individuals’ covariates within a pool are not that ‘arbitrary’ now after all,
and E(Yjk′ |Xjk = x) is typically not equal to E(Yjk′) for k′ �= k. But it is still meaningful to
consider the mean of Zj given all covariate data in pool j as we did under random pooling
that leads to m̂1(x) and m̂2(x).

To be more concrete, consider the homogeneous pooling design following which
pools of individuals are created according to the sorted covariate data in X. This
yields covariate data associated with pool j given by X̃(j) = (X(j1), . . . ,X(jcj))

T, for
j = 1, . . . , J, where X(11) ≤ X(12) ≤ . . . ≤ X(1c1) ≤ X(21) ≤ . . . ≤ X(2c2) ≤ . . . ≤ X(J1) ≤
. . . ≤ X(JcJ). Even though the response data are not sorted, we use Z(j) = c−1

j
∑cj

k=1 Y(jk)
to denote the corresponding pooled response, where Y(jk) is the response of the individual
whose covariate value is X(jk), for k = 1, . . . , cj, and j = 1, . . . , J. Evaluating the objective
functions in (2) and (3) at {(Z(j), X̃(j))}Jj=1 give the following objective functions one max-
imises with respect to β in order to obtain the average-weighted estimator, m̂1(x), and the
product-weighted estimator, m̂2(x), respectively, under homogeneous pooling,

Q1(β) =
J∑

j=1

{
Z(j) −

p∑
�=0

β�c−1
j

cj∑
k=1

(X(jk) − x)�
}2 {

c−1
j

cj∑
k=1

Kh(X(jk) − x)

}
,

Q2(β) =
J∑

j=1

{
Z(j) −

p∑
�=0

β�c−1
j

cj∑
k=1

(X(jk) − x)�
}2 { cj∏

k=1

Kh(X(jk) − x)

}
.

4. Comparisons between different estimators

4.1. Asymptotic properties

Under certain regularity conditions listed in the supplementary materials, we derive
asymptotic means and variances of the proposed estimators for β as J → ∞ with
max1≤j≤J cj bounded. Conditions listed there relate tom(x), the variance function σ 2(x) =
Var(Y |X = x), the density function of X, fX(x), and the kernel K(t), which are mostly
common conditions seen in the context of local polynomial regression using individual-
level data. In what follows, we summarise findings from these derivations (with details
provided in the supplementary materials) in two theorems that highlight some interesting
contrasts between different estimators for m(x) when pools are of equal size with cj = c,
for j = 1, . . . , J, with additional conditions imposed in each theoremwhen needed. Several
quantities appearing in these theorems are defined next for ease of reference:

μ∗
� = (μ�,μ�+1, . . . ,μ�+p)

T, μ̃� = [μ�1+�2+�]�1,�2=0,1,...,p,
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ν̃0 = [ν�1+�2]�1,�2=0,1,...,p, R∗
p = (R0,p(x),R1,p(x), . . . ,Rp,p(x))T,

�∗
0(x) = (1, δ1(x), . . . , δp(x))T, �̃0(x) = [δ�1+�2(x)]�1,�2=0,1,...,p, (6)

where R�,p(x) = E[(X − x)�{m(X) − ∑p
�=0 β�(X − x)�}] and δ�(x) = E{(X − x)�}, for

� = 0, 1, . . . , 2p.
The first theorem concerns the three estimators under random pooling. Appendices

A, B, and C in the supplementary materials provide the proof for the three parts of this
theorem that allow unequal pool sizes.

Theorem 4.1: As J → ∞ and h → 0, one has the following results regarding the difference
between an estimator for m(x) and m(x).

(i) If the �-th moment of X exists, for � = 1, . . . , 2p, then

m̂1(x) − m(x) = eT1M
−1
0 (x)

{
L0(x) − hf−1

X (x)f ′X(x)M1(x)M−1
0 (x)L0(x)

+O
(
h2

)} + √
c × OP

(
1√
Nh

)
, (7)

where

L0(x) = c − 1
c2

{
R0,p(x)e1 + R∗

p(x)
}

+ (c − 1)(c − 2)+
c2

R0,p(x)�∗
0(x),

M0(x) = μ̃0
c2

+ c − 1
c2

{
�̃0(x) + �∗

0(x)μ
∗T
0 + μ∗

0�
∗T
0 (x)

}

+ (c − 1)(c − 2)+
c2

�∗
0(x)�

∗T
0 (x),

M1(x) = μ̃1
c2

+ c − 1
c2

{
�∗

0(x)μ
∗T
1 + μ∗

1�
∗T
0 (x)

}
,

in which (t)+ = max(t, 0).
(ii) If m(x) is (p + 3)th-order continuously differentiable, then

m̂2(x) − m(x)

= eT1h
p+1

{
βp+1

{
μ̃0 + (c − 1)μ∗

0μ
∗T
0

}−1 {
μ∗
p+1 + (c − 1)μp+1μ

∗
0

}

+ hf−1
X (x)

[{
βp+2fX(x) + βp+1f ′X(x)

} {
μ̃0 + (c − 1)μ∗

0μ
∗T
0

}−1

×
{
μ∗
p+2 + (c − 1)μp+2μ

∗
0

}
− βp+1f ′X(x)

{
μ̃0 + (c − 1)μ∗

0μ
∗T
0

}−1

×
{
μ̃1 + (c − 1)

(
μ∗
0μ

∗T
1 + μ∗

1μ
∗T
0

)} {
μ̃0 + (c − 1)μ∗

0μ
∗T
0

}−1

×
{
μ∗
p+1 + (c − 1)μp+1μ

∗
0

}]
+ O(h2)

}
+ √

c × OP

(
1√
Nhc

)
.

(iii) Let σ̄ 2 = E{σ 2(X)}. If Var(Y) exists, then

m̂3(x) − m(x) = eT1h
p+1

{
βp+1μ̃

−1
0 μ∗

p+1 + hf−1
X (x)

[{
βp+2fX(x)
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+βp+1f ′X(x)
}
μ̃−1
0 μ∗

p+2 − βp+1f ′X(x)μ̃−1
0 μ̃1μ̃

−1
0 μ∗

p+1

]

+O(h2)
} +

√
σ 2(x) + (c − 1)σ̄ 2 × OP

(
1√
Nh

)
. (8)

Theorem 4.1-(i) indicates that m̂1(x) is an inconsistent estimator for m(x), with the
dominating bias given by eT1M

−1
0 (x)L0(x) that does not depend on h, and thus does not

diminish as h → 0, but it does vanish when c = 1. Considering a local constant estimator
by setting p = 0 in (7), we show in Appendix A in the supplementary material that

m̂1(x) − m(x)

= c − 1
c

E{m(X) − m(x)} + h2μ2

c

{
β1

f ′X(x)
fX(x)

+ β2

}
+ O(h4) + OP

(
1√
Jh

)
, (9)

of which the second term (of order h2) is c−1 times the dominating bias of the Nadaraya-
Watson estimator based on individual-level data. Observing that the dominating bias in (9)
is equal to c−1(c − 1){μ − m(x)}, one can easily derive an improved local constant estima-
tor by correcting m̂1(x) for this dominating bias. This leads to a consistent local constant
estimator given by cm̂1(x) − (c − 1)μ̂, of which the bias is of orderOP(h2). For p>0, cor-
recting m̂1(x) for its dominating bias requires estimating functionals ofm(x)more involved
than μ = E{m(X)} that appear in R∗

p in (6).
Theorem 4.1-(ii) suggests that m̂2(x) is a consistent estimator form(x) with the asymp-

totic variance of orderO{1/(Jhc)}, which inflates quickly as c increases. It is worth pointing
out that, Q2(β) in (3) is essentially a special form of the objective function associated
with the regular multivariate local polynomial estimator for the c-variate conditional mean
m∗(x1, . . . , xc) � c−1 ∑c

k=1m(xk) based on individual-level multivariate covariate data of
c dimensional. Hence, following Masry (1996) and Gu, Li, and Yang (2015), under the
same set of regularity conditions listed in the supplementary materials, m̂∗(x1c) = m̂2(x)
is asymptotically normal when Jhc+2p → ∞ and Jhc+2p+6 → 0 as J → ∞.

Comparing Theorem 4.1-(ii) and (iii) reveals that m̂2(x) and m̂3(x) typically do not
share the samedominating bias exceptwhen c = 1, and m̂3(x) exhibits the same asymptotic
bias as that of m̂0(x) regardless of the pool size. The variability of m̂3(x) is understandably
higher than that of m̂0(x), but it only grows linearly in c and thus is much less inflated than
the variance of m̂2(x). More specifically, (8) implies that the amount of variance inflation
of m̂3(x) depends linearly on the pool size and σ̄ 2.

Summarising the above remarks on Theorem 4.1, we conclude that the marginal-
integration estimator m̂3(x) is the preferred estimator among the three proposed under
random pooling. It outperforms the average-weighted estimator m̂1(x) for its consistency,
and it surpasses the product-weighted estimator m̂2(x) for its much less inflated variance
when compared with m̂0(x). In practice, we recommend using the local linear version of
m̂3(x) which corresponds to p = 1. For this case, Theorem 4.1-(iii) yields that

Bias{m̂3(x) | X} =
{
1
2
m′′(x)μ2h2 + √

c − 1OP

(
1√
Nh

)}
{1 + oP(1)},

Var{m̂3(x) | X} = ν0

Nh
σ 2(x) + σ̄ 2(c − 1)

fX(x)
{1 + oP(1)}.
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Thus the mean squared error of m̂3(x) is OP(h4 + 1/Nh) which attains the optimal non-
parametric rate OP(N−4/5) when h = O(N−1/5) is used. Furthermore, if there exists
η > 0 such that E{|cZj − m(x) − (c − 1)μ|2+η |Xj1 = x1, . . . ,Xjc = xc} is bounded for
all x1, . . . , xc, then we have [m̂3(x) − m(x) − Bias{m̂3(x)}]/

√
Var{m̂3(x)} converges in

distribution to N(0, 1) as N goes to infinity.
Despite these virtues of m̂3(x), it is no longer well justified under homogeneous pooling

as pointed out in Section 3. The following theorem is regarding the average-weighted esti-
mator and the product-weighted estimator applied to data from the homogeneous pooling
design. Appendix D in the supplementary material provides the proof for this theorem.

Theorem 4.2: Assume that x is an interior point of a compact and nondegenerate interval I ,
the pdf of X, fX(·), is bounded away fromzero on an intervalJ , whereI ⊂ J , andK(|t|) = 0
for |t| > 1, with K′(t) bounded. Then, as J → ∞, h → 0, and Jh4 → ∞,

m̂1(x) − m(x) = Bias(m̂1(x)|X) + OP(
√
Var

{
m̂1(x)|X

}
)

Bias(m̂1(x) | X)

= eT1h
p+1

{
βp+1μ̃

−1
0 μ∗

p+1 + hf−1
X (x)

[{
βp+2fX(x) + βp+1f ′X(x)

}
μ̃−1
0 μ∗

p+2

−βp+1f ′X(x)μ̃−1
0 μ̃1μ̃

−1
0 μ∗

p+1

]
+ O(h2)

}
, (10)

and

Var
{
m̂1(x) | X} = σ 2(x)

NhfX(x)
eT1 μ̃−1

0 ν̃0μ̃
−1
0 {1 + oP(1)} . (11)

If Condition (C5) is satisfied for the kernel defined by K†(t) = Kc(t), then

m̂2(x) − m(x) = Bias(m̂2(x) | X) + OP(
√
Var

{
m̂2(x) | X}

)

Bias(m̂2(x) | X)

= eT1h
p+1

{
βp+1μ̃

−1
†,0μ

∗
†,p+1 + hf−1

X (x)
[{

βp+2fX(x) + βp+1f ′X(x)
}
μ̃−1

†,0μ
∗
†,p+2

−βp+1f ′X(x)μ̃−1
†,0μ̃†,1μ̃

−1
†,0μ

∗
†,p+1

]
+ O(h2)

}
, (12)

and

Var
{
m̂2(x) | X} = σ 2(x)

NhfX(x)
eT1 μ̃−1

†,0 ν̃†,0μ̃
−1
†,0 {1 + oP(1)} , (13)

where μ∗
†,�, μ̃†,�, and ν̃†,0 are the counterparts of μ∗

� , μ̃�, and ν̃0, respectively, with K(t)
replaced by K†(t).

Among the additional assumptions imposed in Theorem 4.2, the one on x and the
assumption on K(t) are similar to Conditions (T1) and (T5) in Delaigle and Hall (2012),
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respectively. Theorem 4.2 indicates that both m̂1(x) and m̂2(x) are consistent estimators
form(x) under homogeneous pooling, with the former sharing the same dominating bias
as that of m̂0(x), and the latter exhibiting the same form of dominating bias with a re-
defined kernel that depends on c. Moreover, the asymptotic variances of both estimators
are of the same order as that of m̂0(x) despite the pool size. The practical implication of
Theorem 4.2 is that, if one uses homogeneous pooled data to infer m(x) via either one
of the two proposed local polynomial estimators, one only needs J assays without losing
accuracy or efficiency asymptotically compared with when un-pooled data are used that
require N = cJ assays.

In practice, we recommend using m̂1(x) or m̂2(x) with p = 1. For m̂1(x) when p = 1,
Theorem 4.2 implies that

Bias{m̂1(x) | X} = 1
2
m′′(x)μ2h2{1 + oP(1)},

Var{m̂1(x) | X} = ν0

Nh
σ 2(x)
fX(x)

{1 + oP(1)}.

The mean squared error of m̂1(x) is also OP(h4 + 1/Nh) which attains the optimal non-
parametric rateOP(N−4/5)when h = O(N−1/5) is used. Furthermore, if there exists η > 0
such that E{|Yjk − m(x)|2+η |Xjk = x} is bounded for all x, we have [m̂1(x) − m(x) −
Bias{m̂1(x)}]/

√
Var{m̂1(x)} converges in distribution toN(0, 1) asN → ∞. Similar prop-

erties hold for m̂2(x).

4.2. Further remarks

We are now in the position to reflect on the findings in Theorems 4.1 and 4.2 to gain a
deeper understanding of the three proposed estimators form(x) using pooled data.

The stark contrast between properties of the average-weighted estimator under the two
pooling designs may seem peculiar at first glance. As natural as it initially appears to be,
the use of average weights is the root cause for the persistent bias of m̂1(x) under ran-
dom pooling. For ease of exposition, assume for the time being cj = 2, for j = 1, . . . , J.
The objective function Q1(β) in (2) associated with m̂1(x) is essentially constructed for
estimatingm∗(x1, x2) � {m(x1) + m(x2)}/2 evaluated at (x1, x2) = x12. The sameweight,
{Kh(Xj1 − x) + Kh(Xj2 − x)}/2, is assigned to both individuals in pool j whose covariate
values are X̃j = (Xj1,Xj2)

T. This can yield misleading weight when, for example, Xj1 is
close to x but Xj2 is far away from x, which can often happen under random pooling. In
contrast, the product weight inQ2(β) in (3) associated with m̂2(x) avoids such misleading
weighting scheme becauseKh(Xj1 − x)Kh(Xj2 − x) is small if either one of the two individ-
ual weights is small, and thus X̃j will only contribute more in estimatingm∗(x, x) = m(x)
when both Xj1 and Xj2 are closer to x. In particular, when K(t) is the Gaussian kernel, the
product weight function amounts to evaluating the bivariate Gaussian density function at
the Euclidean distance between X̃j and x12, whereas the average weight function lacks such
connection with a meaningful distance measure between the two points in R

2.
Even though m̂2(x) exploits a more sensible weight function when comparing with

m̂1(x) under random pooling, downplaying Xj1 even when it is close to x simply because
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the covariate value of the other individual in the same pool is far away from x is not an effi-
cient use of data. And such waste of data information is more severe when the pool size is
bigger, which is essentially the curse-of-dimensionality when one estimates the multivari-
ate function m∗(x1c) based on a response along with a c-dimensional covariate. It is such
inefficient use of data that causes the much inflated variance concluded in Theorem 4.1 for
m̂2(x). Figure 1 illustrates the average weight function and the product weight function (in
bottom panels) under random pooling when c = 2 and K(t) is the Epanechnikov kernel.
Also shown in Figure 1 (see the top-left panel) are individual-level data generated accord-
ing to themodel specified in (D1) described in Section 6, overlaidwith the pseudo response
data from random pooling, which are used for the construction of m̂3(x). From there one
can see that the pseudo data, {(Ŷjk,Xjk), k = 1, 2}Jj=1, aremuchmore variable than the orig-
inal data used to obtain m̂0(x), and thus the increased variance of m̂3(x) is expected when

Figure 1. Plots under random pooling. Top-left panel: Individual-level data {(Yjk , Xjk), k = 1, 2}Jj=1 as

circles, pseudo individual-level responses and covariate data {(Ŷjk , Xjk), k = 1, 2}Jj=1 as triangles, over-
laid with the true m(x) as the curve running through circles. Top-right panel: the bivariate func-
tion m∗(x1, x2) = {m(x1) + m(x2)}/2 as the curved surface, with its value evaluated at (x, x), i.e.
m∗(x, x) = m(x), highlighted as the curve running through the surface, overlaid with the pool-level
data {(Xj1, Xj2, Zj)}Jj=1 as circles. Bottom-left panel: the shape of the average kernel weights {[K({Xj1 −
x}/h) + K({Xj2 − x}/h)]/2}Jj=1 when x = 0, along withm∗(x, x) and the pool-level data. Bottom-right

panel: the shape of the product kernel weights {[K({Xj1 − x}/h)K({Xj2 − x}/h)]/2}Jj=1 when x = 0,
along withm∗(x, x) and the pool-level data.
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compared with m̂0(x). Despite the higher variability, the pseudo data cloud does preserve
the overall pattern of the original data cloud, which explains the common dominating bias
shared between m̂3(x) and m̂0(x). Unlike Q1(β) and Q2(β), the construction of Q3(β)

in (5) is directly designed for estimating the univariate function m(x) instead of m∗(x1c),
and thus m̂3(x) overcomes the pitfall of misleading weight assignment in m̂1(x), as well as
the curse-of-dimensionality that m̂2(x) suffers.

Figure 2 is the counterpart of Figure 1 under homogeneous pooling. Now one can see
(in the top-left panel) in Figure 2 that the pseudo data, {(Ŷ(jk),X(jk)), k = 1, 2}Nj=1, clearly
distort the original data pattern, and thus are inappropriate for estimatingm(x).With indi-
viduals sharing similar covariates values gathering in the same pool, the concern relating
to m̂1(x) of assigning inadequate weight no longer exists, neither does the concern relating
to m̂2(x) of inefficient use of data. The bottom panels of Figure 2 depict the average weight

Figure 2. Plots under homogeneous pooling. Top-left panel: Individual-level data {(Y(jk), X(jk)), k =
1, 2}Jj=1 as circles, pseudo individual-level responses and covariate data {(Ŷ(jk), X(jk)), k = 1, 2}Jj=1 as
triangles, overlaid with the true m(x) as the curve running through circles. Top-right panel: the bivari-
ate function m∗(x1, x2) = {m(x1) + m(x2)}/2 as the curved surface, with its value evaluated at (x, x),
i.e. m∗(x, x) = m(x), highlighted as the curve running through the surface, overlaid with pool-level
data {(Xj1, Xj2, Zj)}Jj=1 as circles. Bottom-left panel: the shape of the average kernel weights {[K({Xj1 −
x}/h) + K({Xj2 − x}/h)]/2}Jj=1 when x = 0, along withm∗(x, x) and the pool-level data. Bottom-right

panel: the shape of the product kernel weights {[K({Xj1 − x}/h)K({Xj2 − x}/h)]/2}Jj=1 when x = 0,
along withm∗(x, x) and the pool-level data.
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function and the product weight function, both are reminiscent of some symmetric kernel
function.

5. Bandwidth selection

The choice of bandwidths in local polynomial estimators plays a key role in the per-
formance of these estimators. Besides the usual challenges encountered in bandwidth
selection in local polynomial regression, a unique complication we face here is the lack
of individual-level response data, which makes loss functions used for bandwidth selec-
tion that are based on individual-level residuals (or prediction errors) inapplicable in our
context. Next we develop leave-one-pool-out cross-validation (CV) procedures to choose
bandwidths in three proposed local polynomial estimators form(x) using random pooled
data.

For the average-weighted estimator, m̂1(x), we choose the bandwidth h that minimises
the following pool-level residual sum of squares,

RSS1(h) =
J∑

j=1

cj∑
k=1

{
Zj − c−1

j

cj∑
k=1

m̂(−j)
1,h (Xjk)

}2

, (14)

where m̂(−j)
1,h (Xjk) is the realisation of m̂1(Xjk) based on the observed data (Z,X) excluding

data from pool j, (Zj, X̃j), with the bandwidth set at h. The bandwidth in the product-
weighted estimator, m̂2(x), is chosen by minimising a CV criterion similarly defined
as (14),

RSS2(h) =
J∑

j=1

cj∑
k=1

{
Zj − c−1

j

cj∑
k=1

m̂(−j)
2,h (Xjk)

}2

. (15)

Admittedly, CV criteria or loss functions constructed based on prediction errors at the pool
level may not be sensitive to the influence of h on prediction power at the individual level
and thusmay not serve as effectivemodel criteria for the purpose for choosing bandwidths.

Given (14) and (15), one can easily envision a similar CV criterion, denoted by RSS3(h),
defined for choosing h in m̂3(x). We however take into account the close tie between m̂3(x)
and local polynomial estimators designed for individual-level data and propose a new and
more effective CV criterion. This new criterion tailored for m̂3(x) is mostly thanks to the
pseudo individual-level observations, {(Ŷjk,Xjk), k = 1, . . . , c}Jj=1, used in m̂3(x). In par-
ticular, we choose h used in m̂3(x) that minimises the following pseudo (individual-level)
residual sum of squares,

PRSS3(h) =
J∑

j=1

cj∑
k=1

{Ŷjk − m̂(−j)
3,h (Xjk)}2, (16)

where m̂(−j)
3,h (Xjk) is the realisation of m̂3(Xjk) based on the pseudo individual-level data

excluding data from pool j, (Zj,Xj1, . . . ,Xjcj), with bandwidth set at h. Empirical evi-
dence suggest that PRSS3(h) is a more effective CV criterion for bandwidth selection than
RSS3(h).
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6. Simulation study

6.1. Design of simulation experiments

To compare different estimators of m(x) in regard to their finite sample performance and
to explore other factors that may influence the estimation, we carry out an empirical study
using synthetic data. More specifically, we adopt the following data generating processes
reported in Delaigle, Fan, and Carroll (2009) to generate individual-level response data:

(D1) m(x) = x3 exp(x4/1000) cos x, ε ∼ N(0, 0.62), X ∼ 0.8X1 + 0.2X2, where X1 fol-
lows a distribution with pdf given by 0.1875x2I(−2 ≤ x ≤ 2) and X2 ∼ uniform
(−1, 1);

(D2) m(x) = 2x exp(−10x4/81), ε ∼ (0, 0.22), X ∼ 0.8X1 + 0.2X2, where the distribu-
tions of X1 and X2 are as those specified in (D1);

(D3) m(x) = x3, ε ∼ N(0, 1.22), X ∼ N(0, 1);
(D4) m(x) = x4, ε ∼ N(0, 42), X ∼ N(0, 1).

Under each generating process, we generate individual-level data, {(Yi,Xi) : i =
1, . . . ,N}, whereN ∈ {600, 1200}. Given an individual-level data set, we create pooled data,
first using randompooling and then using homogeneous pooling, with a commonpool size
c = 2, 3, 4, 5, 6 across all J pools. Given each pooled data set, we obtain three local linear
estimates for the mean function, m̂1(x), m̂2(x), and m̂3(x). In addition, we also compute
the local linear estimate using individual-level data, m̂0(x), as a benchmark estimate. In all
four estimators, we set K(t) as the Epanechnikov kernel. The empirical integrated squared
error (ISE) is the metric we use to assess the overall quality of an estimated mean function,
defined by ISE = N−1 ∑J

j=1
∑c

k=1{m(Xjk) − m̂(Xjk)}2 for an estimator m̂(·). Addition-
ally, we monitor in the simulation the pointwise empirical bias and standard error of each
estimate form(·).

6.2. Simulation results

We summarise in this section simulation results when individual-level data are generated
according to (D2) withN = 600. Counterparts results relating to (D1), (D3), and (D4) are
provided in Appendix E in the supplementary materials.

More specifically, Figure 3 shows boxplots of 500 realisations of ISE associated with the
two proposed consistent estimators based on random pooling data, m̂2(x) and m̂3(x), and
those corresponding to the two proposed consistent estimators based on homogeneous
pooling data, m̂1(x) and m̂2(x), at each considered pool size, all comparing with ISEs of
m̂0(x). Evidently, when homogeneous pooling data are used, the overall performances of
the two proposed estimators are similar to the benchmark estimator based on individual-
level data, m̂0(x). In contrast, when random pooling data are used, albeit consistent, both
m̂1(x) and m̂2(x) exhibit much higher ISE than m̂0(x) does, especially when the pool size
is larger.

Instead of the overall performance of a consistent estimator over a range of covaraite
values, Figures 4 and 5 depict the pointwise performance of all four estimators, m̂0(x),
m̂1(x), m̂2(x), and m̂3(x), in regard to bias, variance, and mean squared error (MSE),
when c = 2 and c = 5, respectively. Under random pooling (see upper panels of Figures 4
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Figure 3. Boxplots of 500 ISEs associated with each of the consistent local linear estimators for m(x)
based on random pooling data (upper panels) and those based on homogeneous pooling data (lower
panels) under (D2) at each pool size configuration, all comparing with boxplots of ISEs associated with
the local linear estimator based on individual-level data (IT). Consistent estimators based on random
pooling data include the product-weighted estimator, m̂2(x), and the marginal-integration estima-
tor, m̂3(x). Consistent estimators based on homogeneous pooling data include the average-weight
estimator, m̂1(x), and m̂2(x).
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Figure 4. Four estimates form(x) under (D2) when c = 2: the local linear estimate based on individual-
level data (the first column), m̂0(x), the average-weighted estimate (the second column), m̂1(x), the
product-weighted estimate (the third column), m̂2(x), and themarginal-integration estimate (the fourth
column), m̂3(x). The latter three estimates are based on randompooled data in the upper panels, and are
based on homogeneous pooled data in the lower panels. Within each panel, the dot-dashed curve is the
true functionm(x), the blue curve is the pointwisemean curve based on the 500 function estimates, the
grey band is constructed by themean curve plus andminus 1.96 times the pointwise standard deviation
curve, and the dotted lines provides a comparison of the pointwise mean squared error curve across
different estimates plotted with respect to the right axis of each subfigure.
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Figure 5. Four estimates form(x) under (D2) when c = 5: the local linear estimate based on individual-
level data (the first column), m̂0(x), the average-weighted estimate (the second column), m̂1(x), the
product-weighted estimate (the third column), m̂2(x), and themarginal-integration estimate (the fourth
column), m̂3(x). The latter three estimates are based on randompooled data in the upper panels, and are
based on homogeneous pooled data in the lower panels. Within each panel, the dot-dashed curve is the
true functionm(x), the blue curve is the pointwisemean curve based on the 500 function estimates, the
grey band is constructed by themean curve plus andminus 1.96 times the pointwise standard deviation
curve, and the dotted lines provides a comparison of the pointwise mean squared error curve across
different estimates plotted with respect to the right axis of each subfigure.
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and 5), the average-weighted estimator m̂1(x) is unable to capture the shape ofm(x), and it
fails more miserably around regions with more curvature. The product-weighted estima-
tor m̂2(x) is able to recover the overall shape ofm(x), although more variable than m̂0(x),
especially around the inflection points ofm(x). With c = 2 (as in Figure 4), the marginal-
integration estimator m̂3(x) performs similarly as m̂2(x). When c = 5 (as in Figure 5),
m̂3(x) outperforms m̂2(x) substantially in every regard. This is in line with the implication
of Theorem 4.1 that the variance of m̂2(x) inflates faster as the pool size increases than
the variance of m̂3(x) does. Under homogeneous pooling (see lower panels of Figures 4
and 5), the marginal-integration estimator m̂3(x) distorts the functional form of m(x),
whereas both m̂1(x) and m̂2(x) perform similarly as m̂0(x), in regard to both accuracy
and precision.

7. Real-life applications

In this section, we analyse data from two real-life applications to illustrate the proposed
local linear estimators for a conditional mean function. The individual-level observations
are available in both applications, making it feasible to compute the local linear estimate
based on individual-level data, m̂0(x), which we compare our proposed estimates based on
pooled data with. In all considered estimators, we set K(t) as the Epanechnikov kernel.

Example 7.1 (Perfluorinated chemicals): The first data set is from the National Health
and Nutrition Examination Survey, relating to a study of the bioaccumulation of perfluori-
nated chemicals (PFCs) in human bodies. PFCs are widely used in the coating of industrial
products, such as food packaging foams and non-stick cookware surfaces, many of which
are toxic and accumulate in human bodies. Kärrman et al. (2006) studied the relationship
between the concentration levels of PFCs in an individual’s blood and one’s age, gender,
and geographic region using pooled serum samples of individuals in Australia. The par-
ticular data we entertain here include concentration levels of multiple PFCs in the serum
samples of 1904 residents in the United States between 2011 and 2012, along with their
demographic information. The goal of our analysis is to infer the relationship between the
concentration level of one particular type of PFCs, perfluorohexane sulfonic acid (PFHxS,
Y), in an individual’s blood and his/her age (X).

To assess the uncertainty of each estimation procedure, we generate 500 bootstrap sam-
ples from the raw individual-level data. Based on each bootstrap version of the individual-
level data, we compute the local linear estimate, m̂0(x), for the mean concentration level of
PFHxS given one’s age. Additionally, using the original data, we randomly create 952 pools,
each of size two, producing a set of random pooled data; and we also create 952 pools of
equal size based on the sorted data for age, producing a set of homogeneous pooled data.
With the pool composition under each pooling design fixed, 500 bootstrap versions of ran-
dom pooled data, and 500 bootstrap versions of homogeneous pooled data are generated
by resampling pools with replacement. Using each pooled data set, we compute m̂1(x),
m̂2(x), and m̂3(x), resulting in 500 realisations of each estimator.

Figure 6 depicts the average of each estimate across 500 bootstrap samples and two
quantiles of selected estimates. When random pooled data are used, the marginal-
integration estimate m̂3(x) matches closely with the benchmark estimate based on
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individual-level data, m̂0(x), both indicating a relatively stable level of PFHxS with a slight
decrease as one approaches age 40, and then a steep increase of the concentration level
once one passes around age 50. This pattern can be explained by the fact that PFHxS can
be partly eliminated from the humanbody via, for instance, gastrointestinal activities,men-
strual bleeding, and breast feeding (Genuis, Curtis, and Birkholz 2013), but many of these
pathways of PFCs elimination become less proactive or are completely lost (such as due
to menopause) after one reaches certain age. In contrast, the average-weighted estimate,
m̂1(x), and the product-weighted estimate, m̂2(x), suggest amuch slower and nearly a con-
stant increase in the concentration level as one gets older across the entire observed age

Figure 6. Results from Example 7.1 (Perfluorinated chemicals). Top panels depict the average of each
considered estimate across 500bootstraps. Theblack dots are individual observations,with observations
far larger than 4 omitted. Within each panel, the solid black line corresponds to the local linear estimate
based on individual-level data, m̂0(x); the solid red, blue, and green lines correspond to the average-
weight estimate m̂1(x), the product-weighted estimate m̂2(x), and the marginal-integration estimate
m̂3(x), respectively. Bottom panels show two quantiles of the estimates across 500 bootstraps. The
dashed black, red, and green lines are 5% and 95% quantiles of m̂0(x), m̂1(x), and m̂3(x), respectively.
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range. We believe that this is one case where m̂1(x) fails to capture the underlying pattern
ofm(x) due to its inherent inconsistency in estimation, and m̂2(x) also misses this pattern
due to its high uncertainty in estimation. In conclusion, when only randompooled data are
available, m̂3(x) provides a more reliable estimate for the underlying relationship between
one’s PFHxS level in blood and age than the other two proposed estimates, although its
variability is slightly higher than that of m̂0(x) according to the bootstrap quantiles of the
two estimates.

When homogeneous pooled data are used (see the top-right panel of Figure 6), m̂3(x)
appears to exaggerate the curvature of the conditional mean function, resulting in a much
faster increase in the concentration level once one passes age 50, compared to the rate of
increase indicated by the same estimate under random pooling. Despite the use of pooled
data, m̂1(x) and m̂2(x) are nearly indistinguishable from m̂0(x), and these three estimates
mostly preserve the earlier estimated pattern of m(x) that can be justified on scientific
grounds. Moreover, the variability of m̂1(x) is comparable with that of m̂0(x) according to
the comparison of the bootstrap quantiles associated with these two estimates. In conclu-
sion, the marginal-integration estimate m̂3(x) based on homogeneous pooled data leads to
misleading inference for the underlying truth, whereas the other two estimates based on
pooled data provide inference similar to those from the estimate based on individual-level
data without noticeable efficiency loss.

Example 7.2 (Chemokines): The second data set we use to illustrate local linear estima-
tion using different types of data is from the Collaborative Perinatal Project (CPP), which
is a long-standing, collaborative project on maternal and child health in the United States.
More specifically, this data include chemokine levels collected from 388 pregnant females
recruited in CPP, with measurements taken at the individual level as well as the pool level,
with 194 non-overlapping pools of size two randomly formed. Chemokines are a fam-
ily of small proteins related to the homeostatic and inflammatory process in the human
body. Medical researchers have studied extensively the role that chemokines play in the
immune system. For example, regarding to two particular chemokines, MCP-3 and GRO-
α, Dhawan and Richmond (2002) investigated the role of the former in tumorigenesis, and
Tsou et al. (2007) studied the latter in monocyte mobilisation.

Based on the observed individual-level data and the random pooled data available in
CPP, we infer the conditional mean concentration of GRO-α (Y) given MCP-3 (X). For
illustration purpose, we generate another pooled data set, with a common pool size of
two, following the homogeneous pooling design based on sorted MCP-3 levels. To assess
the uncertainty of each estimation method, we generate 500 bootstrap samples for each of
the three data types, individual-level data, random pooled data, and homogeneous pooled
data, following the same resampling process described in the first example. Figure 7 shows
the average of each considered estimate across 500 bootstrap samples and two quantiles of
selected estimates.

Similar to the phenomena in the first example, the marginal-integration estimate m̂3(x)
yields a similar estimate for themean concentration level of GRO-α given the level ofMCP-
3 as that of m̂0(x) when random pooled data are used; but it grossly deviates from this
benchmark estimate when homogeneous pooled data are used. In contrast, the other two
proposed local linear estimates based on random pooled data go through an obviously
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Figure 7. Results from Example 7.2 (Chemokines). Top panels depict the average of each considered
estimate across 500 bootstraps. The black dots are individual observations. Within each panel, the solid
black line corresponds to the local linear estimate based on individual-level data, m̂0(x); the solid red,
blue, and green lines correspond to the average-weight estimate m̂1(x), the product-weighted estimate
m̂2(x), and themarginal-integration estimate m̂3(x), respectively. Bottom panels show two quantiles of
the estimates across 500 bootstraps. The dashed black, red, and green lines are 5% and 95% quantiles of
m̂0(x), m̂1(x), and m̂3(x), respectively.

uninteresting region of the observed data, yet both estimates applied to homogeneous
pooled data follow closely the benchmark estimate m̂0(x), and they only show slight
discrepancy from it around the region where data are relatively scarce.

8. Discussion

We present in this article methods for estimating the mean of a continuous response given
covariates via local polynomial regression when only pooled response data are observed
along with individual-level covariates. Two commonly adopted pooling designs in prac-
tice are considered when formulating the local polynomial estimators, and properties of
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the proposed estimators are compared under each of the pooling designs. We use two
real-life applications to illustrate the implementation and performance of the proposed
estimators in comparison with their counterpart estimator when individual response data
are available. Findings from the two applications are in line with observations on their
finite sample performance using synthetic data from the simulation study, which agree
with the theoretical implications of the large-sample properties derived for the proposed
estimators.

In summary, the marginal-integration estimator m̂3(x) is the winner among the three
proposed when pooled data are from a random pooling design, but it fails when pools
are not formed randomly; the average-weighted estimator m̂1(x) performs the best when
homogeneous pooled data are used, but it is an inconsistent estimator for the mean
function when pools are formed randomly; the product-weighted estimator m̂2(x) is a
consistent estimator under both pooling designs but is subject to high variability under
random pooling. Between the two winners, i.e. m̂3(x) under random pooling and m̂1(x)
under homogeneous pooling, they share the same bias asymptotically. A closer look at
their asymptotic variances (see Appendix C in the supplementary materials) reveals that
the asymptotic variance of the former is 1 + (c − 1)σ̄ 2/σ 2(x) times that of the latter, indi-
cating that the former tends to be more variable than the latter given a fixedN and c. These
patterns of comparisons between the two winning estimators (based on different pooling
designs) are also observed in the numerical examples (e.g. Figures 4– 7). Based on our
discussions in Section 4.2, we believe that there is still room for improvement by more
carefully/selectively incorporating individual covariate information within a pool to relate
to the pooled response of that pool, as opposed to either using all covariate information (as
in m̂1(x) and m̂2(x)) or using one individual’s covariate information (as in m̂3(x)). Follow-
ing this more selective incorporation of covariate information for each pool, an alternative
construction of the weight function in the objective functionmay be needed accordingly to
exploit a more sensible measure of distance between selected individuals’ covariate infor-
mation and x, the value at which the mean function is of interest. We are hopeful that this
more refined strategy for constructing the objective function can lead to a local polynomial
estimator that outperforms all three estimators proposed in the current study despite the
pooling design.

Another follow-up research is motivated by the fact that, in many applications, covari-
ates of interest cannot be measured precisely or observed directly. It is of interest then
to carry out local polynomial regression to infer m(x) using pooled response data and
individual-level covariate data that are prone to measurement error.
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