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Abstract We study maximum likelihood estimation of regression parameters in gen-
eralized linear models for a binary response with error-prone covariates when the
distribution of the error-prone covariate or the link function is misspecified. We re-
visit the remeasurement method proposed by Huang, Stefanski, and Davidian (2006)
for detecting latent-variable model misspecification and examine its operating char-
acteristics in the presence of link misspecification. Furthermore, we propose a new
diagnostic method for assessing assumptions on the link function. Combining these
two methods yields informative diagnostic procedures thatcan identify which model
assumption is violated and also reveal the direction in which the true latent-variable
distribution or the true link function deviates from the assumed one.

1 Introduction

Since the seminal paper of Nelder and Wedderburn (1972), theclass of generalized
linear models (GLM) has received wide acceptance in a host ofapplications (Mc-
Cullagh and Nelder, 1989). Studies in these applications often involve covariates
that cannot be measured precisely or directly. For example,in the Framingham Heart
Study (Kannel et al., 1986), a logistic regression model wasused to relate the indica-
tor for the presence of coronary heart disease with covariates such as one’s smoking
status, body mass index, age, serum cholesterol level, and long-term systolic blood
pressure (SBP). Among these covariates, measures of one’s serum cholesterol level
were imprecise, and the actual observed blood pressure of a subject is merely a
noisy surrogate of the long-term SBP, which cannot be measured directly. Taking
the structural model point of view to account for measurement error as opposed to
the functional model point of view (Carroll et al., 2006, Section 2.1), one needs to
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assume a model for the latent true covariates in order to derive the observed data
likelihood function. Together the latent-covariate model, the model that relates the
true covariates with their noisy surrogates, and the GLM as the conditional model
of the response given the true covariates, one has the complete specification of a
structural measurement error model for the observed data. From that point on, one
can draw parametric inference on the regression parametersstraightforwardly.

Like most model-based inference, the validity of inferencederived from the
structure measurement error model relies on the assumed latent-variable model as
well as the posited GLM. In the measurement error community there is a general
concern with imposing models for unobserved covariates, asone can easily make
inappropriate assumptions on unobservable covariates that often lead to misleading
inference (Huang, Stefanski, and Davidian, 2006). The widely entertained GLMs
for a binary response often assume one of the popular links such as logistic, probit,
and complementary log-log. The choice of these popular links is mostly encouraged
by ease of interpretation, the familiarity among practitioners, and its convenient
implementation using standard statistical software. However, for one particular ap-
plication, a link function outside of this popular suite of links may be able to capture
the underlying association between the response and covariates more accurately. Li
and Duan (1989) studied the properties of regression analysis under a misspecified
link function in general regression settings. Czado and Santner (1992) focused on
the effects of link misspecification on regression analysisbased on GLMs for a bi-
nary response. Without considering measurement error in covariates, these authors
provided theoretical and empirical evidence of the adverseeffects of a misspecified
link in GLM on likelihood-based inference. They showed thatthe maximum like-
lihood estimators (MLE) of regression coefficients obtained under an inappropriate
link can be biased and inefficient.

In this article, we address both sources of model misspecification and propose di-
agnostic procedures to assess these model assumptions. There are only a handful of
diagnostic methods available for testing either one of these assumptions (e.g., Preg-
ibon, 1980; Brown, 1982; Stukel, 1988; Huang, Stefanski, and Davidian, 2009),
and most existing tests for GLM, with or without error-pronecovariates, are om-
nibus tests designed for testing overall goodness-of-fit (GOF) rather than assessing
specific assumptions of a hierarchical model (e.g., Tsiatis, 1980; Fowlkes, 1987;
Hosmer and Lemeshow, 1989; le Cessie and van Houwelingen, 1991; Ma et al.,
2011). To the best of our knowledge, there is no existing workthat address the dual
misspecification considered in our study. Huang, Stefanski, and Davidian (2006)
proposed the so-called remeasurement method, referred to as RM henceforth, to
detect latent-variable model misspecification in structural measurement error mod-
els. This method also has successes in testing latent-variable model assumptions in
the bigger class of joint models (Huang, Stefanski, and Davidian, 2009), and was
later improved to adapt to more challenging data structures(Huang, 2009). To de-
tect link misspecification without involving error-prone covariates, Pregibon (1980)
proposed a test derived from linearizing the discrepancy between the assumed link
and the true link. His test was developed under the assumption that the assumed link
and the true link belong to the same family, which can be a stringent assumption.
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Moreover, his test fails easily if the local linear expansion of the true link about the
assumed link is a poor approximation of the true link. For logistic regression mod-
els in the absence of measurement error, Hosmer et al. (1997)compared nine GOF
tests for three types of model misspecification, including link misspecification, and
found none of these tests have satisfactory power to detect link misspecification.

Inspired by the rationale behind RM, we propose a new diagnostic method ini-
tially aiming to detect link misspecification, called the reclassification method, or
RC for short. This new method is described in Section 2, wherewe first define
generic notations in a structural measurement error model,followed by a brief re-
view of RM. Both RM and RC are motivated by theoretical findings on the effects
of either type of misspecification on MLEs. For illustrationpurposes, we focus on
one particular assumed structural measurement error modelthroughout the study
and formulate a class of true flexible models. Under such formulation we present
properties of the MLEs in the presence of one or both sources of misspecification
in Section 3. In Section 4 we report finite-sample simulationstudies to illustrate
the performance of the proposed diagnostic procedures. Tworeal-life data examples
are used to demonstrate the implementation of these methodsin Section 5. Finally,
discussions on our findings and follow-up research directions ensue in Section 6.

2 Models and Two Diagnostic Methods

2.1 Models

Denote byYi the binary response of subjecti, for i = 1, . . . ,n, and the true distribution
of Yi conditioning on covariatesXi is specified by a GLM,

P(Yi = 1|Xi ;β ) = H(β0+β t
1Xi), (1)

whereβ = (β0, β t
1)

t is the vector of regression coefficients, andH(s) is the inverse
link function, assumed to be a nondecreasing and differentiable function ofs. For a
succinct exposition, we assume a scalar error-prone covariateXi in the sequel, and
the observed covariate,Wi , relates toXi via a classical measurement error model
(Carroll et al., 2006, Section 1.2), fori = 1, . . . ,n,

Wi = Xi +Ui , (2)

whereUi ∼ N(0,σ2
u ) is the nondifferential measurement error (Carroll et al., 2006,

Section 2.5). Estimation ofσ2
u is straightforward when replicate measures of each

Xi (i = 1, . . . ,n) are available (Carroll et al., 2006, equation (4.3)). For notational
simplicity, σ2

u is assumed known in the majority of this article. Lastly, suppose that
{Xi}n

i=1 is a random sample from a distribution specified by the probability density

function (pdf) f (t)X (x;τ), indexed by parametersτ. The three component models,

(1), (2), andf (t)X (x;τ), constitute the structural measurement error model, basedon
which one has the correct likelihood function of the observed data for subjecti,
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(Yi ,Wi), given by f (t)Y,W(Yi ,Wi ;Ω (t),σ2
u) =

∫ {H(β0+β1x)}Yi {1−H(β0+β1x)}1−Yi

σ−1
u φ{(Wi − x)/σu} f (t)X (x;τ)dx, whereφ(s) is the pdf of the standard normal dis-

tribution, andΩ (t) = (β t , τ t)t is the vector of all unknown parameters under the
correct model specification.

Suppose that one assumes the link function to beJ(s), which may differ from
H(s) in (1), and one posits a model forXi with pdf give by fX(x;η), indexed by
parametersη . Then one has the assumed likelihood function of the observed data
for subjecti, denoted byfY,W(Yi ,Wi ;Ω ,σ2

u), similarly derived as above, whereΩ =
(β t , η t)t is thep-dimensional vector of all unknown parameters under the assumed
model.

2.2 Remeasurement Method and Reclassification Method

It was shown in Huang, Stefanski, and Davidian (2006) that, when the model for
the true covariate, that is, theX-model, is misspecified, the MLE ofβ is usu-
ally inconsistent with bias depending on the measurement error variance. By ex-
ploiting this dependence, they proposed further contaminating {Wi}n

i=1 to generate
W∗

b,i = Wi +
√

λσuZb,i , for b = 1, . . . ,B, i = 1, . . . ,n, whereλ is a user-specified
positive constant andZb,i ’s are independent pseudo errors fromN(0,1). Note that
the measurement error variance associated with{W∗

b,i ,b = 1, . . . ,B}n
i=1 is equal to

(1+λ )σ2
u . They then constructed a test statistic based on the difference between the

MLE of β , β̂ , computed using the raw data,{(Yi ,Wi)}n
i=1, and the counterpart MLE,

β̂r , obtained from the remeasured data,{(Yi ,W∗
i )}n

i=1, whereW∗
i = (W∗

1,i , . . . ,W
∗

B,i),
for i = 1, . . . ,n. Takeβ1 as an example, the test statistic associated withβ1 is defined
by Tβ1

= (β̂1− β̂1r)/ν̂β1
, whereν̂β1

is an estimator of the standard error ofβ̂1− β̂1r .
Each so-constructed test statistic for a parameter inΩ follows a Student’st distri-
bution withn− p degrees of freedom asymptotically under the null hypothesis that
the two MLEs being compared converge to the same limit asn→ ∞. If the value of
a test statistic deviates significantly from zero, one finds evidence that the assumed
latent-variable model is inappropriate. Derivations of the standard error estimator
and the proof of the null distribution, omitted here, are given in Huang, Stefanski,
and Davidian (2006).

It is assumed in this existing work that all aspects of the structural measurement
error model are correctly specified except for theX-model. But one may legitimately
question the adequacy of the assumed link in the GLM. And if the link is indeed
misspecified, one may wonder if RM can also detect the link misspecification and
how its ability to reveal latent-variable model misspecification is affected by this
additional misspecification. As an important step in RM, pseudo measurement er-
ror are added to the observed covariates{Wi}n

i=1 to produce the remeasured data. A
natural extension of this idea is to add measurement error tothe responses{Yi}n

i=1.
For binary data, measurement error lead to misclassification of the binary responses.
Parallel with adding noise toW to detect latent-variable model misspecification, we
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propose to detect link misspecification by adding noise toY, producing the so-called
reclassified data. Now one may think ofβ̂r as the MLE ofβ obtained from the re-
classified data. Ifβ̂ is biased due to link misspecification, thenβ̂r is usually also
biased. If the bias of̂βr depends on some parameter in the user-specified reclassifi-
cation model according to which the reclassified data are created, thenβ̂r can differ
noticeably fromβ̂ . Such difference can serve as evidence of link misspecification.
And test statistics like those constructed in RM can be used to quantify the signifi-
cance of the difference. We refer to this strategy as the reclassification method, or,
RC for short.

Under regularity conditions, the MLE ofβ follows a normal distribution asymp-
totically, despite the source of model misspecification (White, 1982) and the type
of measurement error. Because both RM and RC rely on the discrepancy between
the MLEs ofβ before and after pseudo measurement error are added (toW or Y),
one important clue to answering the question, “Does RM/RC work?”, is the means
of these asymptotic normal distributions associated with the MLEs from data with
measurement error (inX or Y) in the presence of different model misspecification.
The next section is devoted to studying these asymptotic quantities, i.e., the limiting
MLEs of β .

3 Limiting Maximum Likelihood Estimators

3.1 Estimating Equations

Denote byβm andβc the limiting MLEs ofβ associated with the raw data and the
reclassified data, respectively, asn→ ∞. By the theory of maximum likelihood esti-
mation in the presence of model misspecification (White, 1982), βm andβc uniquely
satisfy the following score equations respectively,

EW

[

EY|W

{

(∂/∂β ) fY,W(Yi ,Wi ;Ω ,σ2
u)|β=βm

}]

= 0, (3)

EW

[

EY∗|W

{

(∂/∂β ) fY∗ ,W(Y
∗
i ,Wi ;Ω ,σ2

u)|β=βc

}]

= 0, (4)

where fY∗ ,W(Y∗
i ,Wi ;Ω ,σ2

u) is the likelihood of the reclassified data for subjecti,
(Y∗

i ,Wi), and the subscripts attached to “E” signify that the expectations are defined
with respect to the relevant true model.

In order to focus on inference forβ , we treat the parameters in the assumedX-
model,η , as known constants in (3) and (4). Although in practice one has to estimate
η along withβ , this seemingly unrealistic treatment ofη does not make the follow-
up theoretical findings less practically valuable ifη can be estimated consistently (in
some sense). Consistent estimation ofη in the presence of model misspecification
is often possible in many scenarios. For example, when both the assumed and the
trueX-models can be fully parameterized via some moments (included inη) up to a
finite order, the interpretation ofη remains meaningful even if the assumedX-model
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differs from the true model, and hence one can still conceptualize the “true” value
of η , which are simply the moments of the trueX-distribution. Moreover, suchη
usually can be consistently estimated, say, using the method of moments based on
{Wi}n

i=1, even in the presence of dual misspecification.
In general, the above estimating equations cannot be solvedexplicitly, thus closed

form expressions of their solutions,βm andβc, are usually unattainable. Without sac-
rificing too much the generality of the theoretical investigation, we next formulate
the assumed model and true models that make these limiting MLEs more transpar-
ent.

3.2 Assumed and True Models

For tractability, we fix the assumed structural measurementerror model at the probit-
normal model, which is one of the favorite toy examples entertained in the measure-
ment error literature. In this model, one posits a probit link in the primary model
(1) and assumesX ∼ N(µx, σ2

x ). As for the true model, we formulate a class of the
so-called mixture-probit-normal models, which contains the probit-normal model
as a special member. In this class of true models, the link functionH(s) is the cdf of
a two-component mixture normal, referred to as the mixture probit. With a mixture
probit link, the primary model is a GLM given by

P(Yi = 1|Xi ;β ) = αΦ
(

β0+β1Xi −µ1

σ1

)

+(1−α)Φ
(

β0+β1Xi −µ2

σ2

)

, (5)

whereα ∈ [0,1], µk andσk > 0 (k = 1, 2) are chosen such that the corresponding
mixture normal,αN(µ1,σ2

1)+(1−α)N(µ2,σ2
2), is of zero mean and unit variance.

The trueX-model in this class is a a mixture normal.
To achieve explicit likelihood for the reclassified data without being overly re-

strictive in the creation of reclassified data, we consider reclassification models of
the formP(Y∗

i = Yi |Wi) = πi , for i = 1, . . . ,n, according to which the reclassified
responses,{Y∗

i }n
i=1, are generated. Combining the assumed raw-data likelihood,

fY,W(Yi ,Wi ;Ω ,σ2
u), and the reclassification model yields the likelihood of(Y∗

i ,Wi)
under the probit-normal model,fY∗ ,W(Y∗

i ,Wi ;Ω ,σ2
u).

Under the formulated assumed and true models, all needed ingredients for
deriving the score equations in (3) and (4) become availablein closed form.
These ingredients include the true mean ofYi and Y∗

i given Wi , the assumed-
model likelihood for the raw data,fY,W(Yi ,Wi ;Ω ,σ2

u), and that for the reclassi-
fied data, fY∗ ,W(Y∗

i ,Wi ;Ω ,σ2
u), the true-model likelihood for both types of data,

f (t)Y,W(Yi ,Wi ;Ω (t),σ2
u ) and f (t)Y∗ ,W(Y

∗
i ,Wi ;Ω (t),σ2

u). The explicit expressions of these
quantities are provided in Appendix A in the Supplementary Materials. Some in-
teresting findings regardingβm andβc are presented next, in which we only con-
sider cases whereβ1 6= 0. The special case withβ1 = 0 is discussed in Appendix
B in the Supplementary Materials, where the expressions ofβm andβc are derived.
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This is a rare case where (3) and (4) can be solved explicitly,and also a rare case
where the MLE ofβ1 is consistent despite the type of model misspecification. When
β1 6= 0, although (3) and (4) cannot be solved explicitly, we are able to make use the
aforementioned intermediate results in Appendix A to studythe limiting MLEs.

3.3 Limiting MLEs from Data with Measurement Error Only inX

Fixing the assumed model at the probit-normal model, we consider combinations
of five true links and five trueX-distributions in the formulation of the true model.
The five true links are, (L0) probit link, and four mixture probit links with the fol-
lowing parameter configurations: (L1)α = 0.3, µ1 = 0.3, σ1 = 0.1; (L2) α = 0.3,
µ1 = −0.3, σ1 = 0.1; (L3) α = 0.7, µ1 = 0.5, σ1 = 0.2; (L4) α = 0.7, µ1 = −0.5,
σ1 = 0.2. The upper panels of Figure 1 depict these five links. For twolink func-
tions,H1(s) andH2(s), we say thatH1(s) andH2(s) are symmetric of each other
if H1(s) = 1−H2(−s). Among the four mixture probit links, (L1) and (L2) are
symmetric of each other, and (L3) and (L4) are symmetric of each other, with the
latter two links deviating from probit more than the former two. The five trueX-
distributions are, (D0)N(0,1), and four mixture normals with mean zero and vari-
ance one formulated by varying the mixing proportionζ , skewnessξ , and excessive
kurtosisκ as follows: (D1)ζ = 0.3, ξ = −1, κ = 2; (D2) ζ = 0.3, ξ = 1, κ = 2;
(D3) ζ = 0.1, ξ =−1.5, κ = 2; (D4) ζ = 0.1, ξ = 1.5, κ = 2. The lower panels of
Figure 1 show the pdf’s of these five distributions. Among thefour mixture normal
distributions, (D1) and (D2) are symmetric of each other, and (D3) and (D4) are
symmetric of each other, with the latter pair deviating fromnormal further than the
former pair. In the true GLM in (5), we setβ0 = 0 andβ1 = 1. For ease of presenta-
tion, we use “f” to connect a trueX-model with a true link to refer to a true model
specification. For example, (D1)f(L3) refers to the true model withX following a
distribution specified by (D1) and the link configured according to (L3).

Under each of the above true model specifications, we numerically solve (3)
for βm. Figure 2 presentsβm under different true models asσ2

u increases from 0
to 1. This range ofσ2

u yields a reliability ratioω that drops from 1 to 0.5, where
ω = σ2

x /(σ2
x +σ2

u ). The top panels of Figure 2, where the trueX-model coincides
with the assumed, show thatβm only changes slightly asσ2

u increases in the presence
of link misspecification. This suggests that, unless information in both the raw data
and the remeasured data are rich enough to allow detection ofthe weak dependence
of βm on σ2

u , RM will have low power to detect link misspecification despite the
amount of bias inβm due to link misspecification. When the trueX-model deviates
from normal (see the middle and the bottom panels of Figure 2), although the de-
pendence ofβ1m on σ2

u is stronger than before,β1m changes noticeably mainly over
a narrow range ofσ2

u . This phenomenon for cases with dual misspecification indi-
cates that, although RM has been shown to be effective in diagnosing latent-variable
model misspecification, its power in this regard can be substantially compromised
by the coexistence of link misspecification.
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Fig. 1 Upper panels give four mixture probit links formulated in Section 3.3, where the upper left
panel gives link (L1) (dashed line) and link (L2) (dot-dashed line), and the upper right panel gives
link (L3) (dashed line) and link (L4) (dot-dashed line). Solidlines are the probit link. Lower panels
show four mixture normal density functions formulated in Section3.3, where the lower left panel
gives distributions (D1) (dashed line) and (D2) (dot-dashed line), and the lower right panel gives
distributions (D3) (dashed line) and (D4) (dot-dashed line). Solid lines are the density function of
N(0, 1).
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u when fixing the trueX-model
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link among the five links: probit (solid lines), (L1) (short dashed lines), (L2) (dotted lines), (L3)
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Besides Figure 2, we show analytically in Appendix C in the Supplementary
Materials that, under certain conditions,β1m is unchanged by a symmetric flip of
either the trueX-distribution or the true link, and onlyβ0m is affected. This property
is stated next.

Proposition 3.1. Let f1(x) and f2(x) be two pdf’s specifying two true X-distributions
that are symmetric of each other, and let H1(s) and H2(s) be two true links that are

symmetric of each other. Denote byβ ( jk)
m the limiting MLE ofβ based on data with

measurement error only in X when the true model is fj(x)fHk(s), for j,k= 1,2. If

E(X) = β0 = 0, thenβ (11)
0m =−β (22)

0m andβ (11)
1m = β (22)

1m .

Note that Proposition 3.1 includes two special cases: one iswhenH1(s) 6= H2(s)
and f1(x) = f2(x) = f (x), where f (x) is a pdf symmetric around zero; the other is
when f1(x) 6= f2(x) andH1(s) = H2(s) = H(s), whereH(s) is the cdf associated
with a distribution symmetric around zero. This is becausef1(x) = f2(x) = f (x)
implies f1(x) = f2(−x), since f (x) = f (−x), and thusf1(x) and f2(x) are symmet-
ric of each other. Similarly,H1(s) = H2(s) = H(s) implies H1(s) = 1−H2(−s),
as H(s) = 1−H(−s), henceH1(s) and H2(s) are symmetric of each other. This
proposition implies thatβ0m can distinguish two trueX-models that are symmetric
of each other, and can also tell apart two true links that are symmetric of each other.
For the purpose of model diagnosis, one can exploit this and other properties ofβ0m

to obtain a directional test based on RM that can identify thedirection of model
misspecification. This potential of RM is supported by the following observations
of β0m under the conditions stated in Proposition 3.1:

(M1) Despite the skewness of the true link, when the trueX-model is not normal,
β0m is increasing inσ2

u when the trueX-model is left-skewed, and it is decreasing
in σ2

u when the trueX-model is right-skewed.
(M2) When the trueX-model is normal and the true link is not probit,β0m is

increasing inσ2
u when the true link is right-skewed, and it is decreasing inσ2

u
when the true link is left-skewed.

The middle and bottom panels of Figure 2, which are associated with two left-
skewed trueX-models, illustrate the first half of (M1), and the second half of (M1)
is indicated by Proposition 3.1. Viewing a link function as acdf, we say that a
link function is left-skewed if the corresponding pdf is left-skewed. Among the four
considered mixture probit links, (L1) and (L3) are left-skewed and (L2) and (L4)
right-skewed. The top panel of Figure 2 illustrates (M2). InSection 4.4, we propose
a directional test based on RM that utilizes the properties of β0m summarized in
(M1) and (M2).

3.4 Limiting MLEs Based on Reclassified Data

Under the same configurations for the assumed/true models asin Section 3.3, we
solve (4) numerically forβc based on reclassified data generated according to the
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reclassification modelP(Y∗
i = Yi |Wi) = Φ(Wi + γ), for i = 1, . . . ,n, whereγ is a

constant. Figure 3 presentsβc whenγ = 0, which shows stronger dependence onσ2
u

compared to Figure 2, especially forβ0c. This implies that, if one applies RM to the
reclassified data,Tβ0

can be much more significant than the counterpart test statistic
from RM only (without adding noise toY).

Viewing βc as a function ofγ and thinking ofβc asβc(γ) symbolically, Figure 4
presentsβc(−2)−βc(0) asσ2

u varies. This figure reveals that the changes inβc as
γ changes can be substantial whenσ2

u is small. This phenomenon suggests that RC
alone (without adding further noise toW) can have good power to detectX-model
misspecification or link misspecification, and the power is higher when the error
contamination inX is milder. If theX-model is correctly specified, bothβ0c and
β1c can change substantially asγ varies whenσ2

u is fixed at a lower level, including
0. Hence, in the absence of measurement error inX, and thus without involving
RM, RC alone is expected to possess some power to detect moderate to severe link
misspecification.

In Appendix D in the Supplementary Materials, we show that, if the reclassifica-
tion model isP(Y∗

i = Yi |Wi) = π(Wi), whereπ(t) is an even function, thenβc has
the same property ofβm under the same conditions stated in Proposition 3.1.

4 Testing Procedures

The investigation in Section 3 on the limiting MLEs ofβ based on data with mea-
surement error inX or Y in the presence ofX-model misspecification or link mis-
specification are helpful for understanding the operating characteristics of the test
statistics,Tβ0

and Tβ1
. Although the assumed model is the probit-normal model

throughout Section 3, many findings there, such as some phenomenon summarized
in Proposition 3.1, also have empirical justifications fromsimulation studies carried
out under other assumed models, such as the logit-normal model. More importantly,
when the true model is not in the class of mixture-probit-mixture-normal, but the
assumed model is probit-normal, most of the phenomena described in Section 3 that
motivate the upcoming testing strategies are still observed in extensive simulations
we carried out. This latter point is practically more important because, although one
cannot control what the true model looks like in reality, onecan choose an assumed
model for the purpose of “guessing” some features of the truemodel. Some of these
simulation studies are presented in this section. More specifically, in this section, be-
sides computing finite sample MLEs under different assumed models, we first study
via simulation the operating characteristics of the aforementioned test statistics re-
sulting from three diagnostic methods: first, RM; second, RC; third, a hybrid method
that combines RM and RC. Then we propose more informative testing procedures
that can disentangle two sources of misspecification and point at the direction of
misspecification.
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Fig. 3 Plots ofβ0c (left column) andβ1c (right column) whenP(Y∗
i = Yi |Wi) = Φ(Wi), for i =

1, . . . ,n, versusσ2
u , with the trueX-model beingN(0,1) (top), (D1) (middle), and (D3) (bottom),

and the true link being probit (solid lines), (L1) (short dashed lines), (L2) (dotted lines), (L3)
(dot-dashed lines), and (L4) (long dashed lines).
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4.1 Simulation Design

Fixing the sample sizen at 500, we create the raw data,{(Yi ,Wi)}n
i=1, from differ-

ent true models resulting from varying four factors in the simulation experiments.
The first factor is the assumed model, taking two levels: probit-normal and logit-
normal. The second factor is the trueX-model, taking five levels (D0)–(D4) as de-
fined in Section 3.3. The third factor is the true link function. When the assumed
model is probit-normal, we consider the five true links, (L0)–(L4), i.e., the probit
and mixture-probit links formulated in Section 3.3. When theassumed model is
logit-normal, two generalized logit links (Stukel, 1988) are used as the true links,
referred to as (L5) and (L6). These two generalized logit links are symmetric of
each other, with (L5) left-skewed and (L6) right-skewed, asdepicted in Figure 5.
The fourth factor is the value ofσ2

u used to generate{Wi}n
i=1 according to (2), with

four values leading to reliability ratioω ranging from 0.7 to 1 at increments of 0.1.
Under each simulation setting, 1000 Monte Carlo (MC) replicates are generated.
After each replicate is generated, assuming a probit-normal model, we computeTβ0

andTβ1
associated with the aforementioned three diagnostic methods.

s

H
(s
)

0

−4 4

0.
5

1

0

Fig. 5 Two generalized logit links, (L5) (dashed line) and (L6) (dot-dashed line), in comparison
with the logit link (solid line).

When implementing RM,̂βr is the MLE from the remeasured data{(Yi ,W∗
i )}n

i=1,
whereW∗

i = (W∗
1,i , . . . ,W

∗
B,i), in whichW∗

b,i = Wi +σuZb,i , with Zb,i ∼ N(0,1) inde-

pendent acrossb = 1, . . . ,B, i = 1, . . . ,n, andB = 100. When carrying out RC,̂βr

is the estimate computed from the reclassified data,{(Y∗
i ,Wi)}n

i=1, where the re-
classified responses,Y∗

i = (Y∗
1,i , . . . ,Y

∗
B,i), for i = 1, . . . ,n, are generated according

to P(Y∗
b,i = Yi |Wi) = Φ(Wi). When employing the hybrid method, we first generate

{W∗
b,i ,b= 1, . . . ,B}n

i=1 as in RM above, then the reclassified responses are generated
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according toP(Y∗
b,i =Yi |W∗

b,i) = Φ(W∗
b,i); finally one obtainŝβr based on the hybrid

data that have measurement error in bothX andY, {(Y∗
b,i ,W

∗
b,i),b = 1, . . . ,B}n

i=1.
Using a significance level of 0.05, we monitor how often the value of a test statistic
turns out significant, leading to rejection of a null hypothesis, which states that two
MLEs being compared in the test statistic have the same limitasn→ ∞.

4.2 Simulation Results

Table 1 presents the rejection rate of each test statistic under each simulation set-
ting across 1000 MC replicates for a representative subset of all considered true-
model configurations. This subset of true models includes, (D3)f(L0), (D0)f(L3),
(D3)f(L3), (D4)f(L3), and (D3)f(L4). Among these five true-model configura-
tions, (D3)f(L0) represents the scenario where only theX-model is misspecified,
(D0)f(L3) represents the case where only the link is misspecified,and the latter
three configurations represent cases with dual misspecification. Albeit not included
in Table 1, we observe rejection rates for all tests well controlled at around 0.05
when the true model is (D0)f(L0), that is, when there is no model misspecification.
Some noteworthy observations regarding RM and RC from the simulation are sum-
marized in the following three remarks.

Remark 1: Whenσ2
u = 0, that is, the covariate is measured without error (ω = 1),

RM can detect neither source of misspecification. This is dueto the definition of the
remeasured data,W∗

b,i = Wi +
√

λσuZb,i , resulting in the remeasured data identical

to the raw data whenσ2
u = 0. In contrast, whenσ2

u = 0, RC has impressive power
to detect link misspecification, whether or not theX-model is also misspecified.

Remark 2: Whenσ2
u 6= 0, the power of RM to detectX-model misspecification sur-

passes that of RC if this is the only source of misspecification; but when only the
link is misspecified, the test based onTβ0

from RC is the clear winner in detecting
link misspecification, whose power increases asσ2

u decreases.

Remark 3: Although RM is designed for detectingX-model misspecification, and
RC is proposed aiming at detecting link misspecification, each of them can be influ-
enced in nontrivial ways by the other source of misspecification. Take RM as an ex-
ample. When only theX-model is misspecified, such as case (D3)f(L0) in Table 1,
RM is expectedly effective in picking up this type of misspecification. But its power
is mostly weakened by the additional link misspecification as in case (D3)f(L3).
Note that, when the true model is (D3)f(L3), the directions of the two misspec-
ification are the same in the sense that the trueX-model is left-skewed and so is
the true link. This tampering effect on the power of RM due to the added link mis-
specification is not observed forTβ0

when the dual misspecification are of opposit
directions, such as in case (D3)f(L4), although the power ofTβ1

is substantially
compromised there. Similar nontrivial patterns are observed for RC whenX-model
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misspecification is added on top of link misspecification. Insummary, whether or
not the added misspecification compromises the power of a method to detect the
type of misspecification it is originally designed for depends on how the two types
of misspecification interact.

Finally, the hybrid method is the same as RC whenσ2
u = 0. And, according to

Table 1, whenσ2
u 6= 0, the hybrid method performs similarly as RC when only the

link is misspecified. In other cases, the power of the hybrid method mostly lies
between that of RM and RC. We recommend use the hybrid method with caution
due to the amount of information loss when creating the hybrid data.

Table 1 Rejection rates across 1000 Monte Carlo replicates of each test statistic under each testing
procedure considered in Section 4 at different levels of reliability ratioω. “HB” refers to the hybrid
method

True model ω = 0.7 ω = 0.8 ω = 0.9 ω = 1
Assumed model: Probit-Normal

RM RC HB RM RC HB RM RC HB RM RC HB
(D3)f(L0) Tβ0

0.99 0.53 0.85 1.00 0.40 0.75 1.00 0.23 0.38 0 0.09 0.09
Tβ1

0.47 0.51 0.39 0.81 0.52 0.41 0.93 0.34 0.23 0 0.07 0.07

(D0)f(L3) Tβ0
0.18 0.75 0.72 0.31 0.92 0.92 0.48 0.98 0.99 0 1.00 1.00

Tβ1
0.04 0.08 0.06 0.05 0.09 0.08 0.08 0.08 0.09 0 0.06 0.06

(D3)f(L3) Tβ0
0.82 0.09 0.08 0.88 0.44 0.16 0.76 0.80 0.90 0 0.70 0.70

Tβ1
0.58 0.09 0.05 0.67 0.11 0.16 0.59 0.36 0.62 0 0.63 0.63

(D4)f(L3) Tβ0
1.00 0.89 0.97 1.00 0.89 0.96 1.00 0.96 0.96 0 1.00 1.00

Tβ1
0.03 0.53 0.66 0.10 0.74 0.83 0.45 0.81 0.84 0 0.80 0.80

(D3)f(L4) Tβ0
1.00 0.85 0.97 1.00 0.89 0.96 1.00 0.95 0.96 0 1.00 1.00

Tβ1
0.03 0.55 0.69 0.11 0.74 0.82 0.45 0.82 0.83 0 0.74 0.74

Assumed model: Logit-Normal
RM RC HB RM RC HB RM RC HB RM RC HB

(D0)f(L5) Tβ0
0.03 0.37 0.40 0.03 0.57 0.58 0.04 0.76 0.76 0 0.92 0.92

Tβ1
0.04 0.06 0.07 0.04 0.06 0.08 0.04 0.09 0.10 0 0.10 0.10

(D3)f(L5) Tβ0
0.67 0.05 0.18 0.89 0.09 0.06 0.95 0.32 0.18 0 0.87 0.87

Tβ1
0.04 0.08 0.14 0.08 0.06 0.08 0.13 0.04 0.04 0 0.12 0.12

(D4)f(L5) Tβ0
0.81 0.87 0.98 0.98 0.90 0.98 1.00 0.91 0.97 0 0.90 0.90

Tβ1
0.36 0.78 0.75 0.67 0.85 0.87 0.91 0.87 0.88 0 0.74 0.74

(D3)f(L6) Tβ0
0.73 0.86 0.99 0.94 0.89 0.98 1.00 0.87 0.95 0 0.80 0.80

Tβ1
0.29 0.68 0.73 0.56 0.77 0.84 0.82 0.75 0.80 0 0.62 0.62



Dual Model Misspecification in Generalized Linear Models withError in Variables 17

4.3 Sequential Tests

Although we caution use of the hybrid method in practice, sequentially using test
results from RM and those from RC can help to disentangle two types of misspeci-
fication. We now illustrate some sequential testing procedures when the covariate is
measured with error. To distinguish the test statistics from two methods, denote by

T(m)
θ andT(c)

θ the test statistics associated with RM and RC, respectively, whereθ
denotes a generic parameter. Suppose one implements RM, with only W-data fur-
ther contaminated, and then implements RC, with onlyY-data contaminated (and
theW-data left as originally observed). Implementing these twomethods sequen-

tially yields four test statistics of interest,T(m)
β0

, T(m)
β1

, T(c)
β0

, andT(c)
β1

. In light of the
operating characteristics of these test statistics revealed in Section 4.2, we consider
the following three sequential testing strategies.

First, if T(m)
β0

is highly significant andT(c)
β0

is insignificant, one may interpret
this as evidence that theX-model is misspecified and the assumed link may be
adequate for the observed data. For instance, when the true model is (D3)f(L0),
using this testing criterion, one concludes “only theX-model is misspecified” 55%,
70%, and 84% of the time whenω = 0.7,0.8,0.9, respectively, based on the sim-
ulation results in Section 4.2. When summarizing the preceding rejection rates, we
apply the Bonferroni correction for multiple testing and use a significance level of
0.025(= 0.05/2) now that two test statistics are used simultaneously.

Second, ifT(m)
β1

turns out insignificant whereasT(c)
β0

is highly significant, one may
view this as indication that the assumedX-model may be appropriate but the as-
sumed link is inadequate. Revisiting the simulation results in Section 4.2, when the
true model is (D0)f(L3), using this sequential testing strategy, one concludes “only
the link is misspecified” 67%, 86%, and 94% of the time whenω = 0.7,0.8,0.9,
respectively.

Third, having observed promising power from the above two sequential tests,

one would hope that having bothT(m)
β0

andT(c)
β0

significant can be interpreted as an
indication of dual misspecification. Unfortunately, due tothe complicated interac-
tion between the two misspecification described inRemark 3in Section 4.2, this
criterion is a reliable indicator of dual misspecification only when two misspecifi-
cation are of opposite directions. For example, when the true model is (D4)f(L3),

the criteion of bothT(m)
β0

andT(c)
β0

being significant is met 79%, 85%, and 93% of
the time across 1000 MC replicates whenω = 0.7,0.8,0.9, respectively. Similar
high power is also observed when the true model is (D3)f(L4). However, if the true
model is (D3)f(L3), the rejection rates according to this same criterion drop to 1%,
13%, and 29% whenω = 0.7,0.8,0.9, respectively.

Despite the complication arising from dual misspecification, empirical evidence
from the above three sequential tests give much encouragement to use the combina-

tion of two tests from two diagnostic methods, such asT(m)
β0

(or T(m)
β1

) andT(c)
β0

, in
order to learn more from the data regarding the two model assumptions.
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Table 2 Rejection rates associated with a one-sided test based onT(m)
β0

at significance level 0.05
under different true model configurations defined in Section 3.3 at different levels of reliability
ratio ω. Codes beneath the true model codes, [L] and [R], indicate left-sided and right-sided tests,
respectively

ω (D0)f(L1) (D0)f(L3) (D0)f(L4) (D4)f(L0) (D3)f(L3)
[R] [R] [L] [R] [L]

0.7 0.09 0.29 0.26 1.00 0.95
0.8 0.10 0.45 0.42 1.00 0.98
0.9 0.13 0.62 0.60 1.00 0.96

ω (D1)f(L0) (D3)f(L0) (D1)f(L1) (D2)f(L1) (D4)f(L3)
[L] [L] [L] [R] [R]

0.7 0.87 1.00 0.83 0.93 1.00
0.8 0.98 1.00 0.95 1.00 1.00
0.9 1.00 1.00 0.99 1.00 1.00

4.4 Directional Tests

The properties ofβ0m described in (M1)–(M2) in Section 3.3 suggest that the sign of

T(m)
β0

can indicate in which direction the trueX-model deviates from normal or the
true link function deviates from probit. More specifically,if there is strong evidence
against a normalX-distribution, then, despite what the true link is, a significantly

negative (positive)T(m)
β0

implies that the trueX-distribution is left-skewed (right-
skewed). This is supported by (M1). On the other hand, suppose one has evidence to
suggest that the assumed normalX-model is likely appropriate, but suspects that the
assumed probit link may be inadequate, then one further gains evidence to support

a right-skewed link ifT(m)
β0

< 0, and left-skewed otherwise. This is justified by (M2)
As empirical evidence, Table 2 presents the rejection rates(at significance level

0.05) from the same simulation study described in Section 4.1 but associated with

a one-sided test based onT(m)
β0

, assuming one knows a priori the right side of the
test (as we do in simulations). The high rejection rates for the cases withX-model
misspecification tabulated in Table 2 indicate that, if one is mostly interested in the

skewness of the trueX-distribution, the sign ofT(m)
β0

is indeed an effective indicator
of the direction of skewness, regardless whether or not (andhow) the link function is

misspecified. In the absence ofX-model misspecification,T(m)
β0

requires milder error
contamination inX in order to more effectively reveal the direction of skewness of
the true link.
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5 Application to Real Data Examples

We now apply the above testing procedures to two data examples, beginning with a
data set from the Framingham Heart Study briefly described inSection 1.

5.1 Framingham Heart Study

The data considered in this example consist of information on 1615 subjects, who
were followed for the development of coronary heart diseaseover six examination
periods. Denote byYi the binary indicator of the first evidence of coronary heart
disease for subjecti within an eight-year follow-up period from the second exam-
ination period, fori = 1, . . . ,1615. At each of the second and third examination
periods, each subject’s SBP was measured twice. We first center all observed SBP
measures from the second examination. Then, for subjecti (= 1, . . . ,1615), we com-
pute the average of the two (centered) SBP measures divided by 100 from the second
examination, and use it asWi , the error-contaminated version of the unobservable
(centered) long-term SBP,Xi . Using the two replicate measures in the second exam
and applying equation (4.3) in Carroll et al. (2006) gives anestimatedω for the so-
definedW as around 0.92. Assuming a probit-normal structural measurement error
model for the observed data{(Yi ,Wi)}1615

i=1 , we apply RM withλ = 1 andB= 100.

The resulting test statistics areT(m)
β0

≈ 2.349 (0.019) andT(m)
β1

≈ −2.387 (0.017),
with the correspondingp-values in parentheses. These test results yield significant
evidence that the normality assumption onX is inadequate. This finding is not new
(see, e.g., Huang, Stefanski, and Davidian, 2006; Huang, 2009). What is new here

is that, because nowT(m)
β0

is significantly positive (at significance level 0.05), us-
ing the directional test described in Section 4.4, we also find evidence that the true
X-distribution is right-skewed. This new finding (from a model diagnostics stand-
point) agrees with the kernel density estimate forX in Wang and Wang (2011, Figure
5), who applied the deconvoluting kernel density estimation (Stefanski and Carroll,
1990) to estimate the density ofX based onW-data.

We also apply the RC method using the reclassification model,P(Y∗
i =Yi |Wi) =

Φ(Wi), for i = 1, . . . ,1615, to generate the reclassified data. The resultant test statis-

tics areT(c)
β0

≈ −1.474 (0.141) andT(c)
β1

≈ 1.474 (0.141), with the associatedp-
values in parentheses. Based on these we conclude that the current data do not give
sufficient evidence to imply that the probit link is inappropriate for this application.
To this end, we are comfortable with the probit link in the GLMand lean toward a
right-skewed distribution forX as opposed to normal.
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5.2 Beetle Mortality

Pregibon (1980) studied the association between mortalityof adult beetles and ex-
posure to gaseous carbon disulfide. Using his test for link specification, he found
strong evidence to support an asymmetric link as opposed to the logit link. The data
include logarithm of dosages of carbon disulfide exposure for a total of 481 adult
beetles, and the status (being killed or surviving) of each beetle after five hours’ ex-
posure. LetYi denote the indicator of being killed after exposure to carbon disulfide
for theith beetle, and denote byXi the standardized (via centering and scaling) loga-
rithm of dosage this beetle was exposed to, fori = 1, . . . ,481. Here, the covariate of
interest, log(dosage), is free of measurement error, making assumptions onX-model
irrelevant to estimatingβ . Hence, we first focus on using RC to assess the adequacy
of a probit GLM relatingY andX. The reclassification model used for this purpose
is P(Y∗

i = Yi |Xi) = 0.2, for i = 1, . . . ,481. The values of the test statistics of inter-

est are, with the correspondingp-values in parentheses,T(c)
β0

≈ 3.184 (0.002) and

T(c)
β1

= 0.241 (0.810). This round of test provides strong evidence that the assumed
probit link may be inappropriate.

Log transformation is a popular transformation used by dataanalysts in biol-
ogy and medicine to alleviate departure from normality of data. We are now curi-
ous about what RM can tell us about the normality assumption on the covariate,
log(dosage), in this study. To make RM applicable, we createnoisy surrogate co-
variate data,{Wi}481

i=1, according to (2) with an estimatedω to be 0.8. Using the new
data,{(Yi ,Wi)}481

i=1, pretending to be the “raw” observed data, and assuming a probit-
normal model, we implement RM, RC, and the hybrid method, successively. When
carrying out RM, the remeasured data,{W∗

b,i ,b= 1, . . . ,100}481
i=1, are generated ac-

cording toW∗
b,i =Wi +σuZb,i with Zb,i ∼ N(0,1), for b= 1, . . . ,100, i = 1, . . . ,481.

For RC and the hybrid method, the reclassified responses are generated according
to P(Y∗

b,i =Yi |Wi) = 0.2 andP(Y∗
b,i =Yi |W∗

b,i) = 0.2, respectively, forb= 1, . . . ,100,
i = 1, . . . ,481. The resultant test statistics are listed below, withp-values in paren-

theses. From RM,T(m)
β0

≈ −0.618 (0.537) andT(m)
β1

≈ −1.724 (0.085); from RC,

T(c)
β0

≈ 2.904 (0.004) andT(c)
β1

≈ 0.090 (0.929); and finally, from the hybrid method,
Tβ0

≈ 2.903 (0.004) andTβ1
≈ 0.086 (0.932). The pattern of these three sets of tests

is mostly consistent with what is observed in Section 4.2 when only the link is mis-
specified. Following the sequential testing strategy proposed in Section 4.3, with the

insignificantT(m)
β1

and the highly significantT(c)
β0

(at significance level 0.025), one
can also conclude that the current data only provide strong evidence against the as-
sumed link but not the normality assumption on log(dosage).In addition, using the
directional test described in Section 4.4, although insignificant, the negative sign of

T(m)
β0

may be an indication that the true link is right-skewed.
For illustration purposes, we drop the log transformation on the dosage levels

in the raw data and view the standardized dosage as the true covariateX. Then
we repeat the same data generation procedure to create the (hypothetical) error-
contaminated observed data,{(Yi ,Wi)}481

i=1, based on which we further generate the
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remeasure data and the reclassified data as above, and implement RM, RC, and

the hybrid method. The test statistics are: from RM,T(m)
β0

≈ −1.192 (0.234) and

T(m)
β1

≈−4.067 (0.000); from RC,T(c)
β0

≈ 1.938 (0.053) andT(c)
β1

≈−1.320 (0.188);
from the hybrid method,Tβ0

≈ 1.253 (0.211) andTβ1
≈ −0.843 (0.400). Now the

test based onT(m)
β1

from RM indicates that the assumed normality on “dosage” is

highly suspicious. The nearly significantT(c)
β0

(at significance level 0.05) from RC
may also suggest the probit link questionable, although theevidence is weaker than
the previous round of testing from RC when log(dosage) is thetrue covariate. This
seems to suggest that the power of RC to detect link misspecification is somewhat
compromised by the coexistence of an inappropriate assumedX-model. Finally, us-

ing the directional test proposed in Section 4.4, the fact that T(m)
β0

< 0, although
insignificant, may be evidence that the true distribution ofdosage is left-skewed.

6 Discussion

In this study we tackle the challenging problem of model diagnostics for GLM
with error-prone covariates, where there are two potentialsources of model mis-
specification. Motivated by the rationale behind the remeasurement method (RM)
designed for assessing latent-variable model assumptions, we propose the reclassi-
fication method (RC) mainly for detecting a misspecified linkin GLM. We carry
out rigorous theoretical investigation to study the properties of MLEs for the re-
gression coefficients in GLM when only the link is misspecified, and also when
both the assumed link and the assumed latent-variable distribution differ from the
truth. These estimators include MLEs resulting from data with measurement error
only in the covariate, and also MLEs based on data with measurement error in the
binary response. These properties of the estimators justify use of RM and RC for
assessing different model assumptions, and further motivate more informative se-
quential/directional tests that can reveal how the true link or true latent-variable
model deviates from the assumed one.

Although starting from Section 3.2 we focus on the (mixture-)probit-normal
model as the assumed/true models, the theoretical findings in Sections 3.3 and 3.4
have broader implications beyond this formulation. For example, when the assumed
link is logistic and the true link belongs to the class of generalized logistic links
(Stukel, 1988), most properties ofβm andβc stated in Sections 3.3 and 3.4, espe-
cially the phenomena demonstrated in Figures 2, 3, and 4, arestill observed. The
catch then is that none of the needed ingredients listed in Section 3.2 for deriving
the scores equations (A.9) and (A.10) are available in closed form. Consequently,
one then has to go through far more brute-force numerical procedures to obtainβm

andβc on a case-by-case basis, making it difficult to summarize their properties,
and much more challenging (if not impossible) to analytically establish the clean
and neat results such as those in Proposition 3.1 and Appendix D. In other words,
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the assumed/true models formulated in Section 3.2 help us make great strides to-
ward understanding the asymptotic properties of the MLEs inthe presence of model
misspecification, and the findings under this formulation provide answers to more
general questions like “What happen to the MLE when one assumes a symmet-
ric (not necessarily normal/probit)X-model/link whereas the trueX-model/link is
asymmetric?”. Because of the generality of their implications, we expect similar op-
erating characteristics of the proposed testing procedures as described in Section 4.2
outside of the (mixture-)probit-normal formulation.

When multiple model assumptions are in question simultaneously, a potential
obstacle for model diagnostics, and for inference in general, is non-identifiability.
For example, in the framework of generalized linear mixed models (GLMM), it is
only meaningful to test a posited model for the random effects when one assumes
that the model for the response given the random effects is correct because these two
models cannot be identified/validated simultaneously (Alonso, Litière, and Laenen,
2010; Verbeke and Molenberghs, 2010). In the context of our study, although the
true covariateX in the primary model is a latent variable like random effectsin
GLMM, the existence of an observed surrogateW, which relates toX via a known
model, clears the obstacle of non-identifiability encountered in GLMM, and thus
it is possible to assess the assumed primary model and the assumed latent-variable
model simultaneously. Concrete evidence of such identifiability is partly given by
Proposition 3.1.

In the actual implementation of RC, one open question relates to the choice of
reclassification model. In this work, we choose this model mostly for ease of deriv-
ing the reclassified-data likelihood and also try to avoid too much information loss
in the reclassified responses. An interesting follow-up research topic is to find some
optimal ways of creating reclassified data to maximize the power of RC. This di-
rection of research will require involvement of the asymptotic variance of the MLE
of β , a quantity yet to be studied besides the asymptotic means which we focus
on in this article. Other practical concerns worth addressing in the future research
are incorporation of multivariate error-prone covariatesand relaxing the normality
assumption on the measurement error.

Appendix

Appendix A: Likelihood and Score Functions Referenced in
Section 3.2

A.1 Likelihood and Score Functions Under the Assumed Model

If one posits a probit link in the primary model and assumesX ∼ N(µx, σ2
x ), the

observed-data likelihood for subjecti is
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fY,W(Yi ,Wi ;Ω ,σ2
u) = ei [Φ{hi(β )}}Yi [Φ{−hi(β )}]1−Yi , for i = 1, . . . ,n, (A.1)

whereΦ(·) is the cumulative distribution function (cdf) ofN(0,1), and

ei =
1

√

σ2
u +σ2

x

φ

(

Wi −µx
√

σ2
u +σ2

x

)

, (A.2)

hi(β ) =
(

β0+β1
σ2

xWi +σ2
u µx

σ2
u +σ2

x

)(

1+
β 2

1 σ2
u σ2

x

σ2
u +σ2

x

)−1/2

. (A.3)

If the reclassification model is

P(Y∗
i =Yi |Wi) = πi , for i = 1, . . . ,n, (A.4)

the likelihood of theith reclassified data,(Y∗
i ,Wi), under the assumed model is

fY∗ ,W(Y
∗
i ,Wi ;Ω ,σ2

u) = ei [πiΦ{hi(β )}+(1−πi)Φ{−hi(β )}]Y
∗
i ×

[(1−πi)Φ{hi(β )}+πiΦ{−hi(β )}]1−Y∗
i . (A.5)

Differentiating the logarithm of (A.1) with respect toβ yields the normal scores
associated withβ based on the raw data with measurement error only inX; and,
similarly, differentiating the logarithm of (A.5) with respect toβ gives the counter-
part normal scores for the reclassified data with measurement error in bothX andY.
These two sets of scores are respectively

ψm(β ;Yi ,Wi) = h′i(β )φ{hi(β )}Φ−1{−hi(β )}
[

Yi

Φ{hi(β )}
−1

]

, (A.6)

ψc(β ;Y∗
i ,Wi) = h′i(β )φ{hi(β )}Φ−1{−hi(β )}d−1

i (β )×
[

Y∗
i (2πi −1)Φ{−hi(β )}

1−di(β )
+1−di(β )−πi

]

, (A.7)

where
di(β ) = (1−πi)Φ{hi(β )}+πiΦ{−hi(β )}, (A.8)

andh′i(β ) = (∂/∂β )hi(β ) consists of the following two elements,

∂hi(β )
∂β0

=

(

1+
β 2

1 σ2
u σ2

x

σ2
u +σ2

x

)−1/2

,

∂hi(β )
∂β1

=
(σ2

xWi +σ2
u µx){(∂/∂β0)hi(β )}−1−β1σ2

u σ2
x hi(β )

σ2
u +σ2

x +β 2
1 σ2

u σ2
x

.

A close inspection of the scores in (A.6) and (A.7) reveals some values ofπi that
one should avoid when specifying the reclassification modelin (A.4). First, note
that the score function in (A.7) is identically zero ifπi = 0.5 for all i = 1, . . . ,n.
Consequently,β is non-estimable from the reclassified data generated according to
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P(Y∗
i =Yi |Wi) = 0.5 for all i = 1, . . . ,n. This is not surprising as, with allπi ’s equal

to 0.5,{Y∗
i }n

i=1 virtually contains no information of the true responses. Second, the
two sets of scores are equal whenπi = 0 for i = 1, . . . ,n, or, πi = 1 for i = 1, . . . ,n.
This is also expected as this is the case where{Y∗

i }n
i=1 literally contains the same

information as{Yi}n
i=1, and hence MLEs ofβ from these two data sets are identical,

whether or not the assumed model is correct. Therefore, for the purpose of model
diagnosis, we avoid settingπi in (A.4) identically as 0.5, or 0, or 1, for alli = 1, . . . ,n.

A.2 Score Estimating Equations

Under regularity conditions, the limiting MLE ofβ based on the raw data and that
based on the reclassified data asn→ ∞, βm andβc, uniquely satisfy the following
score equations respectively,

EY,W {ψm(βm;Yi ,Wi)} = 0, (A.9)

EY∗ ,W {ψc(βc;Y
∗
i ,Wi)} = 0, (A.10)

where the subscripts attached toE{·} signify that the expectations are defined with
respect to the relevant true model.

Using iterated expectations, one can show that (A.9) boils down the following
set of two equations,

EW

[

φ{hi(βm)}
pi −Φ{hi(βm)}

Φ{hi(βm)}Φ{−hi(βm)}

]

= 0, (A.11)

EW

[

Wiφ{hi(βm)}
pi −Φ{hi(βm)}

Φ{hi(βm)}Φ{−hi(βm)}

]

= 0, (A.12)

wherepi is the mean ofYi givenWi under the true model, that is,pi =P(t)(Yi = 1|Wi)
evaluated atβ (the true parameter value), fori = 1, . . . ,n. Similarly, one can deduce
that (A.10) is equivalent to the following system of equations,

EW

[

φ{hi(βc)}
(1−2πi){1−di(βc)−qi}

di(βc){1−di(βc)}

]

= 0, (A.13)

EW

[

Wiφ{hi(βc)}
(1−2πi){1−di(βc)−qi}

di(βc){1−di(βc)}

]

= 0, (A.14)

whereqi is the mean ofY∗
i givenWi under the true model, that is,

qi = P(t)(Y∗
i = 1|Wi) = πi pi +(1−πi)(1− pi), for i = 1, . . . ,n. (A.15)
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A.3 Likelihood Function Under the True Model

Under the mixture-probit-normal model specified in Section3.2, the likelihood of
(Yi ,Wi) is

f (t)Y,W(Yi ,Wi ;Ω (t),σ2
u ) = ρe1i p

Yi
1i(1− p1i)

1−Yi +(1−ρ)e2i p
Yi
2i(1− p2i)

1−Yi ,

where, forℓ= 1,2,

eℓi =
1

√

σ2
u +σ2

xℓ

φ





Wi −µxℓ
√

σ2
u +σ2

xℓ



 ,

pℓi = αΦ(hℓ1i)+(1−α)Φ(hℓ2i),

hℓki =

(

β0−µk+β1
σ2

xℓWi +σ2
u µxℓ

σ2
u +σ2

xℓ

)(

σ2
k +

β 2
1 σ2

u σ2
xℓ

σ2
u +σ2

xℓ

)−1/2

, for k= 1,2.

It follows that, as the true mean ofYi givenWi ,

pi = P(t)(Yi = 1|Wi) =
ρe1i p1i +(1−ρ)e2i p2i

ρe1i +(1−ρ)e2i
, for i = 1, . . . ,n. (A.16)

Evaluating (A.15) at thispi , one obtains the true mean ofY∗
i given Wi , that is,

qi = P(t)(Y∗
i = 1|Wi), and further deduces that the true-model likelihood of the re-

classified data(Y∗
i ,Wi) is, for i = 1, . . . ,n,

f (t)Y∗ ,W(Y
∗
i ,Wi ;Ω (t),σ2

u) = {ρe1i +(1−ρ)e2i}q
Y∗

i
i (1−qi)

1−Y∗
i .

Appendix B: Limiting Maximum Likelihood Estimators when
β1 = 0

Whenβ1 = 0, the limiting MLEs ofβ are given in the following proposition.

Proposition B.0.1. Suppose that the true primary model is a GLM with a mix-
ture probit link andβ1 = 0. Under the assumed probit-normal model,βc = βm =
(β0m, 0)t , where

β0m = Φ−1
{

αΦ
(

β0−µ1

σ1

)

+(1−α)Φ
(

β0−µ2

σ2

)}

. (B.1)

The proof is given next, which does not depend on the trueX-model or the re-
classification model. Proposition B.0.1 indicates that, ifβ1 = 0, βm does not depend
on σ2

u , suggesting that RM cannot detect either misspecification.Also, βc does not
depend onπi , which defeats the purpose of creating reclassified data, hence RC does
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not help in model diagnosis either. This implication shouldnot raise much concern
because, after all, nowβ1m = β1c = β1(= 0), suggesting that MLEs ofβ1 remain
consistent despite model misspecification.

Proof: By the uniqueness of the solution to (A.9), it suffices to check if βm =
(β0m, 0)t solves (A.11)–(A.12), whereβ0m is given in (B.1).

Becauseβ1 = 0,

pi = P(t)(Yi = 1|Wi)

=
f (t)(Yi = 1,Wi ;Ω (t),σ2

u )

f (t)W (Wi ;τ ,σ2
u)

=

∫

P(t)(Yi = 1|x;β ) f (t)W|X(Wi |x;σ2
u ) f (t)X (x;τ)dx

f (t)W (Wi ;τ ,σ2
u)

[Note thatP(t)(Yi = 1|x;β ) is free ofx whenβ1 = 0.]

=
P(t)(Yi = 1|x;β ) f (t)W (Wi ;τ ,σ2

u)

f (t)W (Wi ;τ ,σ2
u)

= αΦ
(

β0−µ1

σ1

)

+(1−α)Φ
(

β0−µ2

σ2

)

. (B.2)

Suppose one assumes for now thatβ1m = 0, then by, (A.3),hi(βm) = β0m. With
both hi(βm) and pi in (B.2) free of Wi , (A.11) reduces topi − Φ{hi(βm)} =
0, or, Φ(β0m) = pi . Therefore,β0m = Φ−1(pi), which proves (B.1). And with
pi −Φ{hi(βm)}= 0, (A.12) holds automatically. This completes proving the result
regardingβm.

Next we show thatβm established above also solves (A.13)–(A.14), that is,
βc = βm. Supposeβ1c = 0, then hi(βc) = β0c, and di(βc) = (1− πi)Φ(β0c) +
πiΦ(−β0c). Note that, inside (A.13), withqi = πi pi +(1−πi)(1− pi) anddi(βc) =
(1− πi)Φ(β0c) + πiΦ(−β0c), one has 1− di(βc)− qi = (1− 2πi){pi − Φ(β0c)}.
Therefore, ifβ0c = Φ−1(pi), then 1− di(βc)−qi = 0 and (A.13) holds for allπi .
Furthermore, 1−di(βc)−qi = 0 immediately makes (A.14) hold. This shows that
βc = βm.

This completes the proof for Proposition B.0.1.�

Appendix C: Proof of Proposition 3.1

The following four results are crucial for proving Proposition 3.1. For clarity, we
incorporate the dependence ofhi(β ) in (A.3) onWi by re-expressing this function
ash(β0,β1,w), with the subscripti suppressed.

• (R1) If µx = 0, thenh(−β0m,β1m,−w) =−h(β0m,β1m,w).
• (R2) If µx = 0, thenφ {h(−β0m,β1m,−w)}=Cφ {h(β0m,β1m,w)}, whereC does

not depend onw.
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• (R3) If f1(x) = f2(−x) and fU(u) = fU(−u), then f (1)W (w) = f (2)W (−w), where

fU(u) is the pdf of the measurement errorU , f (1)W (w) and f (2)W (w) are the pdf of
W when the pdf ofX is f1(x) and f2(x), respectively.

• (R4) If f1(x) = f2(−x), fU(u) = fU(−u), H1(s) = 1−H2(−s), µx = 0, andβ0 = 0,
thenp(22)(−w) = 1− p(11)(w), wherep( jk)(w) denotes the conditional mean of
Yi givenWi = w under the true modelf j(x)fHk(s), for j,k= 1,2.

The first two results, (R1) and (R2), follow directly from thedefinition ofhi(β ) in
(A.3); (R3) can be easily proved by using the convolution formula based on the error
model given in equation (2) in the main article. The proof for(R4) is given next.

Proof. By the definition ofp( jk)(w), one has, withβ0 = 0,

p(11)(w) = P(t)(Yi = 1|Wi = w) =
∫ ∞

−∞
H1(β1x) fU(w−x) f1(x)dx/ f (1)W (w).

Similarly, p(22)(−w) is equal to
∫ ∞

−∞
H2(β1x) fU(−w−x) f2(x)dx/ f (2)W (−w)

=
∫ ∞

−∞
{1−H1(−β1x)} fU(−w−x) f1(−x)dx/ f (1)W (w), by (R3),

=
∫ ∞

−∞
fU(−w−x) f1(−x)dx/ f (1)W (w)−

∫ ∞

−∞
H1(−β1x) fU(−w−x) f1(−x)dx/ f (1)W (w)

=
∫ ∞

−∞
fU(−w+s) f1(s)ds/ f (1)W (w)−

∫ ∞

−∞
H1(β1s) fU(−w+s) f1(s)ds/ f (1)W (w)

=
∫ ∞

−∞
fU(w−s) f1(s)ds/ f (1)W (w)−

∫ ∞

−∞
H1(β1s) fU(w−s) f1(s)ds/ f (1)W (w)

= 1− p(11)(w).

This completes the proof of (R4).

Now we are ready to show Proposition 3.1. In essence, we will show that,
if (β0m,β1m) solves (A.11)–(A.12) when the true model isf1(x)f H1(s), then
(−β0m,β1m) solves (A.11)–(A.12) when the true model isf2(x)f H2(s). More
specifically, evaluating (A.11) and (A.12) at its solution under the true model
f1(x)fH1(s), we will show that the following two equations,

∫ ∞

−∞
φ{h(β0m,β1m,w)}

p(11)(w)−Φ {h(β0m,β1m,w)}
Φ {h(β0m,β1m,w)}Φ {−h(β0m,β1m,w)}

f (1)W (w)dw= 0,

(C.1)
∫ ∞

−∞
wφ{h(β0m,β1m,w)}

p(11)(w)−Φ {h(β0m,β1m,w)}
Φ {h(β0m,β1m,w)}Φ {−h(β0m,β1m,w)}

f (1)W (w)dw= 0,

(C.2)

imply the following two identities,
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∫ ∞

−∞
φ{h(−β0m,β1m,w)}

p(22)(w)−Φ {h(−β0m,β1m,w)}
Φ {h(−β0m,β1m,w)}Φ {−h(−β0m,β1m,w)}

f (2)W (w)dw= 0,

(C.3)
∫ ∞

−∞
wφ{h(−β0m,β1m,w)}

p(22)(w)−Φ {h(−β0m,β1m,w)}
Φ {h(−β0m,β1m,w)}Φ {−h(−β0m,β1m,w)}

f (2)W (w)dw= 0.

(C.4)

Take (C.4) as an example, the left-hand side of it is equal to,by (R1)–(R4) and
Φ(−t) = 1−Φ(t),

∫ ∞

−∞
(−v)φ{h(−β0m,β1m,−v)} p(22)(−v)−Φ {h(−β0m,β1m,−v)}

Φ {h(−β0m,β1m,−v)}Φ {−h(−β0m,β1m,−v)} f (2)W (−v)dv

= −C
∫ ∞

−∞
vφ{h(β0m,β1m,v)}

1− p(11)(v)−Φ {−h(β0m,β1m,v)}
Φ {−h(β0m,β1m,v)}Φ {h(β0m,β1m,v)}

f (1)W (v)dv

= −C
∫ ∞

−∞
vφ{h(β0m,β1m,v)}

1− p(11)(v)−1+Φ {h(β0m,β1m,v)}
Φ {h(β0m,β1m,v)}Φ {−h(β0m,β1m,v)}

f (1)W (v)dv

= C
∫ ∞

−∞
vφ{h(β0m,β1m,v)}

p(11)(v)−Φ {h(β0m,β1m,v)}
Φ {h(β0m,β1m,v)}Φ {−h(β0m,β1m,v)}

f (1)W (v)dv

= 0, according to (C.2).

Following similar derivations, one can show that the left-hand side of (C.3) is equal
to

−C
∫ ∞

−∞
φ{h(β0m,β1m,v)}

p(11)(v)−Φ {h(β0m,β1m,v)}
Φ {h(β0m,β1m,v)}Φ {−h(β0m,β1m,v)}

f (1)W (v)dv,

which is also equal to 0 according to (C.1). Therefore,β (11)
0m = −β (22)

0m andβ (11)
1m =

β (22)
1m . This completes the proof of Proposition 3.1.

Appendix D: A Counterpart Proposition of Proposition 3.1 for βc

Proposition D.0.2. Let f1(x) and f2(x) be two pdf’s specifying two true X-distributions
that are symmetric of each other, and let H1(s) and H2(s) be two true links that are

symmetric of each other. Denote byβ ( jk)
c the limiting MLE ofβ based on reclas-

sified data generated according to P(Y∗
i = Yi |Wi) = π(Wi) when the true model is

f j(x)fHk(s), for j,k = 1,2. If µx = β0 = 0 and π(t) is an even function, then

β (11)
0c =−β (22)

0c andβ (11)
1c = β (22)

1c .

The following two lemmas are needed in the proof, one lemma concerningdi(β )
defined in (A.8), and the other relates toqi defined in (A.15). To elaborate the de-
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pendence ofdi(β ) onWi in (A.8), we re-express this function asd(β0,β1,w), with
the subscripti suppressed.

Lemma 1. If µx = 0 and π(t) is an even function, then d(−β0c,β1c,−w) = 1−
d(β0c,β1c,w).

Proof: By (A.8),

d(−β0c,β1c,−w)

= {1−π(−w)}Φ {h(−β0c,β1c,−w)}+π(−w)Φ {−h(−β0c,β1c,−w)}
= {1−π(w)}Φ {−h(β0c,β1c,w)}+π(w)Φ {h(β0c,β1c,w)}

[Next use (R1) and the fact thatπ(t) = π(−t).]

= {1−π(w)} [1−Φ {h(β0c,β1c,w)}]+π(w) [1−Φ {−h(β0c,β1c,w)}]
= 1−d(β0c,β1c,w).

This completes the proof of Lemma 1.�

Lemma 2. If f1(x) = f2(−x), fU(u) = fU(−u), H1(s) = 1−H2(−s), µx = 0, β0 = 0,
andπ(t) is an even function, then q(22)(−w) = 1−q(11)(w), where q( jk)(w) denotes
the conditional mean of Y∗i given Wi = w under the true model fj(x)fHk(s), for
j,k= 1,2.

Proof. By (A.15),

q(22)(−w)

= {1−π(−w)}
{

1− p(22)(−w)
}

+π(−w)p(22)(−w)

= {1−π(w)} p(11)(w)+π(w)
{

1− p(11)(w)
}

, by (R4) andπ(−t) = π(t),

= 1−q(11)(w).

This completes the proof of Lemma 2. Following similar derivations, one can show
thatq(12)(−w) = 1−q(21)(w).

Now we are ready to show that, if(β0c,β1c) solves (A.13)–(A.14) under the true
model f1(x)fH1(s), then(−β0c,β1c) solves (A.13)–(A.14) under the true model
f2(x)fH2(s). Given that(β0c,β1c) solves (A.13) and (A.14) under the true model
f1(x)fH1(s), one has, by elaborating (A.13) and (A.14),

∫ ∞

−∞

φ {h(β0c,β1c,w)}
d(β0c,β1c,w){1−d(β0c,β1c,w)}

{1−2π(w)}
{

1−q(11)(w)−d(β0c,β1c,w)
}

f (1)W (w)dw= 0, (D.1)
∫ ∞

−∞
w

φ {h(β0c,β1c,w)}
d(β0c,β1c,w){1−d(β0c,β1c,w)}

{1−2π(w)}
{

1−q(11)(w)−d(β0c,β1c,w)
}

f (1)W (w)dw= 0. (D.2)
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Now we check if(−β0c, β1c) solves (A.13)–(A.14) under the true modelf2(x)f
H2(s). Plugging(−β0c, β1c) in (A.13) gives, where we setv=−w in the first equal-
ity,

∫ ∞

−∞

φ {h(−β0c,β1c,w)}
d(−β0c,β1c,w){1−d(−β0c,β1c,w)}

{1−2π(w)}
{

1−q(22)(w)−d(−β0c,β1c,w)
}

f (2)W (w)dw

=
∫ ∞

−∞

φ {h(−β0c,β1c,−v)}
d(−β0c,β1c,−v){1−d(−β0c,β1c,−v)} {1−2π(−v)}

{

1−q(22)(−v)−d(−β0c,β1c,−v)
}

f (2)W (−v)dv

[Next use (R1)–(R3), Lemma 1, Lemma 2, andπ(t) = π(−t).]

=
∫ ∞

−∞

Cφ {h(β0c,β1c,v)}
{1−d(β0c,β1c,v)}d(β0c,β1c,v)

{1−2π(v)}
{

−1+q(11)(v)+d(β0c,β1c,v)
}

f (1)W (v)dv

= −C
∫ ∞

−∞

φ {h(β0c,β1c,v)}
d(β0c,β1c,v){1−d(β0c,β1c,v)}

{1−2π(v)}
{

1−q(11)(v)−d(β0c,β1c,v)
}

f (1)W (v)dv

= 0, by (D.1).

Similarly, one can show that (D.2) implies

∫ ∞

−∞
w

φ {h(−β0c,β1c,w)}
d(−β0c,β1c,w){1−d(−β0c,β1c,w)}

{1−2π(w)}
{

1−q(22)(w)−d(−β0c,β1c,w)
}

f (2)W (w)dw= 0.

Hence,(−β0c, β1c) does solve (A.13)–(A.14) under the true modelf2(x)fH2(s).

In other words,β (11)
0c = −β (22)

0c andβ (11)
1c = β (22)

1c . Following parallel arguments as

above one can show thatβ (12)
0c =−β (21)

0c andβ (12)
1c = β (21)

1c . This completes the proof
of Proposition D.0.2.�
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