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Abstract: We consider estimating the mode of a response given an error-prone covariate. It is shown that
ignoring measurement error typically leads to inconsistent inference for the conditional mode of the response
given the true covariate, as well as misleading inference for regression coefficients in the conditional mode
model. To account for measurement error, we first employ the Monte Carlo corrected score method (Novick
& Stefanski, 2002) to obtain an unbiased score function based on which the regression coefficients can
be estimated consistently. To relax the normality assumption on measurement error this method requires,
we propose another method where deconvoluting kernels are used to construct an objective function that
is maximized to obtain consistent estimators of the regression coefficients. Besides rigorous investigation
on asymptotic properties of the new estimators, we study their finite sample performance via extensive
simulation experiments, and find that the proposed methods substantially outperform a naive inference
method that ignores measurement error. The Canadian Journal of Statistics 47: 262–280; 2019 © 2019
Statistical Society of Canada
Résumé: Les auteures considèrent l’estimation du mode d’une variable réponse étant donné une covariable
sujette à l’erreur. Le fait d’ignorer les erreurs de mesure mène souvent à un manque de convergence du
mode conditionnel à la vraie covariable, ainsi qu’à une inférence trompeuse découlant des coefficients de
régression du modèle conditionnel pour le mode. Pour tenir compte des erreurs de mesure, les auteures
exploitent la méthode du score corrigé par Monte Carlo (Novick et Stefanski, 2002) afin d’obtenir une
fonction score sans biais à partir de laquelle des estimateurs convergents des coefficients de régression
peuvent être obtenus. Afin d’assouplir l’hypothèse de normalité des erreurs de mesure requise par cette
méthode, les auteures proposent une autre approche dans laquelle des noyaux de déconvolution permettent
de construire une fonction objective qui est maximisée pour obtenir des estimateurs convergents des
coefficients de régression. En plus d’une étude rigoureuse des propriétés asymptotiques des nouveaux
estimateurs, les auteures décrivent leur performance pour des échantillons finis à l’aide d’expériences de
simulation substantielles. Elles constatent que la méthode proposée offre une performance considérablement
meilleure que les méthodes d’inférence naı̈ves qui ignorent les erreurs de mesure. La revue canadienne de
statistique 47: 262–280; 2019 © 2019 Société statistique du Canada

1. INTRODUCTION

Regression analysis has been a standard platform to study the association between a response, Y ,
and covariates of interest, X. The majority of the literature on regression analysis is devoted to
mean regression, where the mean of Y given X is the focal point of inference. There also exists
a large body of work on quantile regression, where one infers quantiles of Y conditioning on X
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(Koenker, 2005). In contrast, there have been much less study on mode regression (Lee, 1989;
Yao & Li, 2014; Chen et al., 2016), which aims to characterize the mode of Y given X. The mode
of a distribution is an informative summary feature that is more of interest than the mean or
quantiles in many applications (Parzen, 1962), such as biology (Hedges & Shah, 2003), economy
(Huang & Yao, 2012), meteorology (Hyndman, Bashtannyk & Grunwald, 1996), astronomy
(Bamford et al., 2008) and traffic engineering (Einbeck & Tutz, 2006), where the underlying
distributions of Y given X are often skewed. In these referenced works, the most likely value
of Y given a covariate value, as opposed to some average value of the response, is of scientific
interest; and a location measure that is resistant to outliers, such as the mode, is more appealing.
In these applications, some covariates cannot be measured directly or precisely, and only data
for their error-contaminated surrogates are collected.

To address complications caused by error-prone covariates, a good collection of methods
for mean regression that account for covariate measurement error have been developed (Carroll
et al., 2006; Fuller, 2009; Yi, 2017). There are also some approaches that take measurement
error into consideration in quantile regression (He & Liang, 2000; Wei & Carroll, 2009; Wang,
Stefanski, & Zhu, 2012). However, there is little research on mode regression in the presence of
measurement error in covariates. The only work we are aware of is Zhou & Huang (2016), in
which the authors proposed nonparametric methods to estimate the mode of Y given X based on
kernel density estimators. Differing from the nonparametric route they took, here we consider
a class of linear mode regression models, following the footsteps of existing works on mean
regression (Fuller, 2009) and quantile regression (He & Liang, 2000; Wei & Carroll, 2009; Wang,
Stefanski, & Zhu, 2012) with measurement error, where one starts by considering the conditional
mean or quantiles as some linear function of covariates. This class of mode regression models
has been mostly investigated by econometricians (Lee, 1989, 1993; Kemp & Silva 2012), and
all existing works assume error-free covariates. To the best of our knowledge, we are the first to
investigate linear mode regression with covariate measurement error.

The rest of the article is organized as follows. We first formulate the class of linear
measurement error mode models in Section 2, and provide some preliminary analysis on the
effect of measurement error on inference when one ignores measurement error. We propose
two methods to estimate the regression coefficients in the model that account for measurement
error in Section 3. Both methods depend on the choice of bandwidth, and we present a strategy
of choosing a suitable bandwidth in Section 4. Section 5 reports simulation studies where we
compare the two proposed methods with a naive method that ignores measurement error,
using estimates from the method proposed by Yao & Li (2014) applied to error-free data as
benchmarks. Section 6 presents an application of the three methods to dietary data collected from
the Women’s Interview Survey of Health. We point out extensions of the proposed methods
under more general settings and discuss follow-up research agendas in Section 7.

2. PREAMBLE

2.1. Data and Models
Suppose that the observed data consist of n independent data points, {(Y𝑗 ,W𝑗)}n

𝑗=1, where
{W𝑗}n

𝑗=1 are surrogates of the unobserved covariate values, {X𝑗}n
𝑗=1, and Y𝑗 given X𝑗 follows a

distribution specified by the probability density function 𝑓Y|X(y ∣ x), for 𝑗 = 1,… , n. As in Grund
& Hall (1995), we assume that 𝑓Y|X(y ∣ x) has a unique largest mode; in particular, we assume a
linear model for this conditional mode,

yM(x) = Mode(Y𝑗 ∣ X𝑗 = x) = 𝛽0 + 𝛽1x for 𝑗 = 1,… , n, (1)

where 𝜷 = (𝛽0, 𝛽1)T is the regression coefficient vector containing parameters to be estimated.
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A classical additive measurement error model is assumed in this article,

W𝑗 = X𝑗 + U𝑗 , (2)

where U𝑗 is the nondifferential measurement error (Carroll et al., 2006, Section 2.5) for
𝑗 = 1,… , n, following a distribution specified by the density function 𝑓U(u), of which the mean
is zero and variance is 𝜎2.

Measurement error in (2) being nondifferential essentially implies that, conditioning on X,
Y and W are independent, where the index 𝑗 is suppressed when we refer to a generic data
point, X𝑗 , Y𝑗 , or W𝑗 , for 𝑗 ∈ {1,… , n}. For model identifiability reasons, we assume 𝑓U(u) is
entirely known, including parameters associated with the distribution. Considerations for cases
where extra data are available to infer 𝑓U(u) are given in Section 7. Finally, we consider a
univariate covariate for illustration purposes in the majority of the study, and discuss in Section 7
generalization to multivariate covariates that may include some error-free components.

2.2. Naive Inference
Denote by y∗

M
(w) the mode of the conditional density of Y given W = w, 𝑓Y|W(y ∣ w). In the

context of linear mode regression, a naive inference method infers y∗
M
(w) assuming, as in (1),

y∗
M
(w) = 𝛽∗0 + 𝛽∗1 w, where 𝛽∗0 and 𝛽∗1 are the regression coefficients in this posited mode model.

In what follows, we use an example to demonstrate that naive inference for the mode function
can be misleading.

Suppose Y given X = x follows a distribution with mean m(x) = 𝛼0 + 𝛼1x and standard
deviation 𝜎(x) = 𝛾0 + 𝛾1x, where 𝛼0, 𝛼1(≠ 0), 𝛾0, and 𝛾1 are constants free of x. In addition,
suppose X ∼ N(𝜇X, 𝜎

2
X
) and U ∼ N(0, 𝜎2), where 𝜇X and 𝜎2

X
are the mean and variance of X,

respectively. Then, conditioning on W = w, Y follows a distribution with mean and standard
deviation given by (Fuller, 2009)

m∗(w) = 𝛼0 + (1 − 𝜆)𝛼1𝜇X + 𝜆𝛼1w,

𝜎∗(w) =
√

{𝛾0 + (1 − 𝜆)𝛾1𝜇X + 𝜆𝛾1w}2 + (1 − 𝜆)𝛼2
1𝜎

2
X
,

(3)

respectively, where 𝜆 = 𝜎2
X
∕(𝜎2

X
+ 𝜎2) is the reliability ratio (Carroll et al., 2006, Section 3.2.1).

Define two standardized mean residuals, e = {Y − m(X)}∕𝜎(X) and e∗ = {Y − m∗(W)}∕𝜎∗(W).
Denote by eM(x) the mode of e given X = x, and by e∗

M
(w) the mode of e∗ given W = w. One can

show that
yM(x) = m(x) + 𝜎(x)eM(x) = 𝛼0 + 𝛼1x + (𝛾0 + 𝛾1x)eM(x),

and similarly
y∗

M
(w) = m∗(w) + 𝜎∗(w)e∗

M
(w)

= 𝛼0 + (1 − 𝜆)𝛼1𝜇X + 𝜆𝛼1w+√
{𝛾0 + (1 − 𝜆)𝛾1𝜇X + 𝜆𝛾1w}2 + (1 − 𝜆)𝛼2

1𝜎
2
X
e∗

M
(w).

(4)

Comparing yM(x) and y∗
M
(w), one can see that, even if eM(x) and e∗

M
(w) are both constant functions,

the naive mode y∗
M
(w) is not a linear function in w unless 𝛾1 = 0 or 𝜆 = 1, whereas the true mode

yM(x) is linear in x if eM(x) does not depend on x.
This example illustrates that effects of measurement error on mode regression are in general

far more complicated than those in the context of mean regression, and one typically misspecifies
the functional form of the mode model in the naive mode regression. In contrast, by (3), when
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m(x) is linear in x, m∗(w) is also linear in w when X and U are independent normal random
variables, and thus the functional form of the mean model is not misspecified in the naive mean
regression. In this example, if 𝛾1 = 0, then 𝛽∗1 in the naive mode model revealed in (4) reduces
to 𝜆𝛼1, which is attenuated compared to 𝛽1 = 𝛼1 in (1) when eM(x) is free of x.

3. PROPOSED METHODS

3.1. Inference in the Absence of Measurement Error
Given a fixed y in the support of Y , Qh(y) = n−1 ∑n

𝑗=1 Kh(Y𝑗 − y) is the local constant kernel
density estimator (Silverman, 1986) of the density of Y evaluated at y, 𝑓Y(y), where K(t) is a
kernel, h is the bandwidth and Kh(t) = K(t∕h)∕h. Since the mode of Y maximizes its density
function 𝑓Y(y), a sensible estimator for the mode of Y is the maximizer of Qh(y). Motivated by
this viewpoint, in the absence of covariate measurement error, Yao & Li (2014) proposed to
estimate 𝜷 by maximizing

Qh(𝛽) =
1
n

n∑
𝑗=1

Kh(Y𝑗 − 𝛽0 − 𝛽1X𝑗). (5)

Setting K(t) as the standard normal density, Yao & Li (2014) developed an expectation-
maximization algorithm to compute the estimate of 𝜷, denoted by �̂�YL. In addition, they derived
the order of the bias and variance of �̂�YL as n → ∞, and established its asymptotic normality.

Naive implementation of Yao and Li’s method using error-contaminated data is to substitute
X𝑗 with W𝑗 in (5), resulting in a naive objective function one maximizes with respect to 𝜷.
Denote by �̂�NV the resultant naive estimator of 𝜷. To account for measurement error, we revise
this naive method from two perspectives.

3.2. Monte Carlo Corrected Score Method
Maximizing Qh(𝜷) in (5) with respect to 𝜷 is equivalent to solving the score equations for
𝜷,

∑n
𝑗=1 Ψ(Y𝑗 ,X𝑗 ;𝜷) = 0, where Ψ(Y𝑗 ,X𝑗 ;𝜷) = (𝜕∕𝜕𝜷)Kh(Y𝑗 − 𝛽0 − 𝛽1X𝑗). In the presence of

measurement error, naively applying Yao and Li’s method amounts to using the naive score,
Ψ(Y ,W;𝜷), in place of the true score, Ψ(Y ,X;𝜷). One way to correct this naive score-based
estimation for measurement error is to construct a score function that depends on (Y ,W), whose
expectation conditioning on (Y ,X) is equal toΨ(Y ,X;𝜷). This leads to the corrected score method
(Nakamura, 1990), which has found its successes in linear mean regression, several nonlinear
mean regression models (Carroll et al., 2006, Chapter 7) and some survival models (Song &
Huang, 2005; Wang, 2006; Zucker & Spiegelman, 2008) with covariate measurement error.

Although the idea of correcting the naive score by using an unbiased estimator of the true
score leads to a general strategy to account for measurement error, such an unbiased estimator,
referred to as a corrected score, often does not exist in closed form. Novick & Stefanski (2002)
developed a Monte Carlo procedure to numerically obtain a corrected score under the assumption
that U ∼ N(0, 𝜎2) and Ψ(Y ,X; 𝛽) is an entire function with respect to its second argument (Boas,
2011). By using the standard normal kernel in (5), we have the true score Ψ(Y ,X,𝜷) as an entire
function in X, which allows us to follow the Monte Carlo procedure to obtain an estimator of 𝜷
via the following four-step algorithm.

• MC-1: For b = 1,… ,B, generate independent random errors, {Ub,𝑗}n
𝑗=1, from N(0, 𝜎2).

• MC-2: Form the complex-valued data, {W̃b,𝑗 = W𝑗 + iUb,𝑗}n
𝑗=1, where i is the imaginary unit,

for b = 1,… ,B.
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• MC-3: ComputeΨMC, B(Y𝑗 ,W𝑗 ;𝜷) = B−1 ∑B
b=1 Re{Ψ(Y𝑗 , W̃b,𝑗 ;𝜷)}, where Re(t) denotes the real

part of a complex-valued t.
• MC-4: Solve the estimating equations for 𝜷,

n∑
𝑗=1

ΨMC, B(Y𝑗 ,W𝑗 ;𝜷) = 0. (6)

Denote the resultant estimator as 𝛽MC.

By proving that E[Re{Ψ(Y𝑗 , W̃b,𝑗 ;𝜷)} ∣ (Y𝑗 ,X𝑗)] = Ψ(Y𝑗 ,X𝑗 ;𝜷), Novick & Stefanski (2002)
showed that Re{Ψ(Y𝑗 , W̃b,𝑗 ;𝜷)} is a corrected score that involves extra noise due to its dependence
on Ub,𝑗 . A corrected score that is free of the extra noise is E[Re{Ψ(Y𝑗 , W̃b,𝑗 ;𝜷)} ∣ (Y𝑗 ,W𝑗)],
which usually cannot be derived analytically. This motivates MC-3 above, where one computes
the average of {Re{Ψ(Y𝑗 , W̃b,𝑗 ;𝜷)}, b = 1,… ,B} as an approximation of the aforementioned
expectation. Clearly, this empirical mean, ΨMC, B(Y𝑗 ,W𝑗 ;𝜷), is also a corrected score, referred
to as the Monte Carlo corrected score. Using the fact that �̂�MC is an M-estimator that solves
the estimating equations (6) constructed from an unbiased score function, Novick & Stefanski
(2002, Section 5) established the consistency and asymptotic normality of �̂�MC. Finally, they
demonstrated that, even when the assumption of U being normally distributed or the true score
function being complete is violated, �̂�MC is often less biased than the counterpart naive estimator.

3.3. Corrected Kernel Method
Even though the Monte Carlo corrected score method enjoys a certain degree of robustness to
the normality assumption on U, an alternative method that is well justified for more general
error distributions is desirable. This motivates us to correct the naive method from a different
angle. Instead of correcting the naive score function, we propose to correct the naive objective
function for measurement error. This is accomplished by constructing an unbiased estimator of
the summand in (5), Kh(Y − 𝛽0 − 𝛽1X), based on (Y ,W).

Since the objective function Qh(𝛽) originates from a kernel density estimator, such unbiased
estimators are readily available in Carroll & Hall (1988) and Stefanski & Carroll (1990), where
the authors considered nonparametric density estimation in the presence of measurement error.
Following their construction of a deconvoluting kernel, one can show that, conditioning on (Y ,X),
an unbiased estimator of Kh(Y − 𝛽0 − 𝛽1X) is K∗

h (Y − 𝛽0 − 𝛽1W), where K∗
h (t) = K∗(t∕h)∕h, and

K∗(t) = 1
2𝜋 ∫ e−ist 𝜙K(s)

𝜙U(−𝛽1s∕h)
ds, (7)

in which 𝜙K(s) is the Fourier transform of K(t), and where 𝜙U(s) is the characteristic function of
U that does not vanish, both assumed to be even, and the integration is over the real line.

Besides being used for density estimation in the works of Carroll et al., (2006), Fan &
Truong (1993) also used a deconvoluting kernel similar to (7) to construct a local constant
estimator of E(Y ∣ X = x) in the presence of measurement error in X. Replacing the naive
quantity, Kh(Y − 𝛽0 − 𝛽1W), with its unbiased estimtor defined above, K∗

h (Y − 𝛽0 − 𝛽1W), gives
the corrected objective function to be maximized with respect to 𝜷,

Q∗
h(𝜷) =

1
n

n∑
𝑗=1

K∗
h (Y𝑗 − 𝛽0 − 𝛽1W𝑗).
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We call this method the corrected kernel method and denote the resultant estimator as �̂�CK. One
existing work that also corrects an objective function for measurement error is Wang, Stefanski,
& Zhu (2012) in the context of linear quantile regression. In this work, the authors derived
a smooth function depending on (Y ,W), of which the conditional expectation given (Y ,X)
approaches to the true objective function as the smoothing parameter involved in the smooth
function shrinks to zero.

Stefanski & Carroll (1990) studied the validity of the construction of (7) and its properties
for two types of measurement error distributions, namely ordinary smooth error distributions and
super smooth error distributions (Fan, 1991). Their definitions are as follows.

Definition 1. The distribution of U is ordinary smooth of order b if, as |t| → ∞, d0|t|−b ≤|𝜙U(t)| ≤ d1|t|−b for some positive constants d0, d1 and b.

Definition 2. The distribution of U is super smooth of order b if, as |t| → ∞, d0|t|b0

exp(−|t|b∕d2) ≤ |𝜙U(t)| ≤ d1|t|b1 exp(−|t|b∕d2) for some positive constants d0, d1, d2, b, b0
and b1.

For example, Laplace distributions are ordinary smooth of order b = 2, and normal distributions
are super smooth of order b = 2. We derive the asymptotic bias and variance of �̂�CK under
each type of measurement error distributions, and also establish its asymptotic normality.
These findings are summarized in the following two theorems. Detailed proofs are provided in
Appendices A and B in the Supplementary Material. Lemmas referenced in the theorems along
with their proofs are given in Appendix C in the Supplementary Material.

Denote by g(𝜖 ∣ x) the density of the mode residual, 𝜖 = Y − 𝛽0 − 𝛽1x. To prove the theorems,
conditions on g(𝜖 ∣ x) and the covariate are listed under Conditions G in Appendix A in the
Supplementary Material. These assumptions are also imposed in Yao & Li (2014) and are indeed
mild assumptions satisfied in a wide range of applications. Additional conditions concerning
K(t) and 𝜙U(t) that are required for proving the following two theorems are also provided in
Appendix A in the Supplementary Material. Conditions on K(t) are imposed mainly to guarantee
integrability of functions of the forms t𝓁1𝜙2

K
(t) and t𝓁1K(𝓁2)(t) for some positive integers 𝓁1 and

𝓁2. Essentially, these conditions suggest that 𝜙K(t) and K(𝓁2)(t) tail off fast enough as |t| → ∞,
which can be easily satisfied by choosing an adequate kernel such as the one we use for the
corrected kernel method in the simulation study reported in Section 5. Conditions imposed on
𝜙U(t) are also mainly about how fast 𝜙(𝓁)

U (t) tails off as |t| → ∞ for some nonnegative integer 𝓁.

Theorem 1. Under Conditions G and conditions in Lemma C, there exists a maximizer of
Q∗

h(𝜷), denoted by �̂�CK, such that, as n → ∞ and h → 0,

(i) when U follows an ordinary smooth distribution of order b, if nh7+2b → 0, then

‖�̂�CK − 𝜷‖ = O(h2) + Op

(√
1

nh3+2b

)
; (8)

(ii) when U follows a super smooth distribution of order b, if exp(2|𝛽1|bh−b∕d2))∕(nhb6 ) → 0,
where b6 = max{3 − 2 min(b2, b3), 5 − 2 min(b2, b3, b4), 7 − 2 min(b2, b3, b4, b5)}, in which
b𝓁 , for 𝓁 = 2, 3, 4, 5, are defined in Lemma C, then

‖�̂�CK − 𝜷‖ = O(h2) + Op

{
exp

(|𝛽1|b
d2hb

)√
1

nh3−2 min(b2,b3)

}
. (9)
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The error rates presented in Theorem 1 combine the rate of bias, appearing in the big-O part
of (8) and (9), and the rate of standard deviation, as in the big-Op part of (8) and (9), of �̂�CK.
Three observations are worth pointing out regarding these rates. First, the bias rate is not affected
by measurement error, and coincides with the bias rate of Yao and Li’s estimator in the absence
of measurement error (Yao & Li 2014, Theorem 2.2). Second, compared to the variance rate of
Yao and Li’s estimator in the absence of measurement error (Yao & Li 2014, Theorem 2.2), the
variance rates here are inflated due to measurement error. By setting b = 0, the variance rates
suggested by (8) and (9) reduce to Op{1∕(nh3)}, which is the variance rate of Yao and Li’s
estimator. Setting b = 0 is equivalent to setting 𝜎2 = 0, which leads to an error-free covariate.
Third, comparing (8) and (9) reveals that the convergence rate of �̂�CK in the presence of super
smooth measurement error is much slower than that when U is ordinary smooth. This is in line
with the findings in density estimation (Carroll & Hall, 1988; Stefanski & Carroll, 1990), local
polynomial estimation in mean regression (Fan & Truong, 1993; Delaigle, Fan & Carrollm,
2009; Huang & Zhou, 2017) and nonparametric mode regression (Zhou & Huang, 2016) in the
presence of different types of measurement error.

Moments of certain functions that involve Fourier transforms are derived in Appendix C to
show Theorem 1. Results regarding these moments, along with strategies for deriving them, are
also useful for establishing the asymptotic normality of �̂�CK, although additional assumptions
listed under Conditions N in Appendix A in the Supplementary Material are needed as well.

Theorem 2. Under Conditions N and the same assumptions imposed in Theorem 1, for the
maximizer of Q∗

h(𝜷), �̂�CK, that satisfies the properties in Theorem 1,

(i) if U follows an ordinary smooth distribution of order b,√
nh3+2b

(
�̂�CK − 𝜷 − h2𝜇2J∗−1Q∕4

) d
−→ N(0, J∗−1KLJ

∗−1), as n → ∞,

where KL is a constant matrix, Q = limn→∞ n−1 ∑n
𝑗=1 E{g(3)(0|X𝑗)X̃𝑗}, and J∗ = limn→∞ n−1∑n

𝑗=1 E{g(2)(0|X𝑗)X̃𝑗 X̃
T
𝑗
}, in which X̃𝑗 = (1,X𝑗)T;

(ii) if U follows a super smooth distribution of order b,

{
Var(�̂�CK)

}−1∕2
(
�̂�CK − 𝜷 − 1

4
h2𝜇2J∗−1Q

) d
−→ N(0, 1), as n → ∞,

where Var(�̂�CK) = O[exp{2|𝛽1|b∕(d2hb)}∕{nh3−2 min(b2,b3)}], and, for a generic positive def-
inite matrix 𝚺, 𝚺−1∕2 denotes the inverse of the positive definite square root of it.

4. BANDWIDTH SELECTION

Kernel-based methods are typically sensitive to the choice of bandwidths. To address the
complication in bandwidth selection due to measurement error, Delaigle & Hall (2008) developed
a strategy for smoothing parameter selection that combines simulation-extrapolation (SIMEX)
(Cook & Stefanski, 1994; Stefanski & Cook, 1995) and cross validation. We apply this strategy
to choose a bandwidth h following the algorithm described next, where we aim to choose an h
that optimizes inference for 𝜷 in some sense. Generically denote by �̂�h an estimator of 𝜷 under
consideration with the bandwidth fixed at h based on observed data {(Y𝑗 ,W𝑗)}n

𝑗=1.

• SM-1: Generate M sets of further contaminated covariate data, {W∗
m,𝑗

= W𝑗 + U∗
m,𝑗

}n
𝑗=1, for

m = 1,… ,M, where {U∗
m,𝑗

, 𝑗 = 1,… , n}M
m=1 are independent random errors generated from

𝑓U(u).
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• SM-2: For m = 1,… ,M, denote by �̂�
∗
h,m the estimate of 𝜷 based on data {(Y𝑗 ,W

∗
m,𝑗

)}n
𝑗=1 using

the method under consideration. Find

h1 = argmin
h>0

1
M

M∑
m=1

(�̂�∗
h,m − �̂�h)TS−1

h,1(�̂�
∗
h,m − �̂�h),

where Sh,1 is the sample variance–covariance matrix of {�̂�∗
h,m − �̂�h}M

m=1.
• SM-3: Generate M sets of even further contaminated covariate data, {W∗∗

m,𝑗
= W∗

m,𝑗
+ U∗∗

m,𝑗
}n
𝑗=1,

for m = 1,… ,M, where {U∗∗
m,𝑗

, 𝑗 = 1,… , n}M
m=1 are independent random errors generated from

𝑓U(u), which are also independent of {U∗
m,𝑗

, 𝑗 = 1,… , n}M
m=1.

• SM-4: For m = 1,… ,M, denote by �̂�
∗∗
h,m the estimate of 𝜷 based on data {(Y𝑗 ,W

∗∗
m,𝑗

)}n
𝑗=1 using

the method under consideration. Find

h2 = argmin
h>0

1
M

M∑
m=1

(�̂�∗∗
h,m − �̂�

∗
h,m)

TS−1
h,2(�̂�

∗∗
h,m − �̂�

∗
h,m),

where Sh,2 is the sample variance–covariance matrix of {�̂�∗∗
h,m − �̂�

∗
h,m}

M
m=1.

• SM-5: Set the selected bandwidth as h = h2
1∕h2.

The criterion we minimize in SM-2 and SM-4 is motivated by a theoretical optimal bandwidth
given by hideal = argminh>0 E{(�̂�h − 𝜷)T𝚺−1

h (�̂�h − 𝜷)}, where 𝚺h is the variance–covariance
matrix of �̂�h. The rationale behind this SIMEX procedure is that, as shown in Delaigle & Hall
(2008), log(hideal) − log(h1) ≈ log(h1) − log(h2) when 𝜎2 is small. And thus the value of h from
SM-5 is a sensible approximation of hideal. Besides Delaigle & Hall (2008), Wang, Stefanski, &
Zhu (2012) also used a similar strategy to select the smoothing parameter in their problem of
linear quantile regression with covariate measurement error.

5. EMPIRICAL EVIDENCE

5.1. Simulation Design
To assess finite sample performance of the proposed estimators, we design comparative
experiments where �̂�NV, �̂�MC (with B = 1000) and �̂�CK are obtained based on simulated error-prone
data {(Y𝑗 ,W𝑗)}n

𝑗=1, as well as �̂�YL based on the corresponding error-free data {(Y𝑗 ,X𝑗)}n
𝑗=1. The

fourth estimator serves as a gold standard in the sense that estimators, naive or nonnaive, based
on error-prone data are expected to be inferior in some regard than this estimator. Comparing
the first three estimators with this reference estimator can shed light on how measurement errors
compromise the naive estimator, and whether or not the two proposed nonnaive estimators
improve over the naive estimator.

The kernel K(t) used for obtaining �̂�NV, �̂�MC and �̂�YL is the standard normal density; and
we use the kernel of which the Fourier transform is 𝜙K(t) = (1 − t2)3I(−1 ≤ t ≤ 1) for �̂�CK. The
choice of kernel for the corrected kernel method is in part dictated by the technical conditions on
𝜙K(t) that arise from deriving asymptotic properties of �̂�CK. To mitigate the effects of data-driven
bandwidth selection on the proposed estimators, in the first part of simulation, we use an
approximation of hideal given by ĥideal = argminh>0(�̂�h − 𝜷)T�̂�−1

h (�̂�h − 𝜷), where �̂�h is a bootstrap
estimate of 𝚺h based on 100 bootstrap samples. Clearly, ĥideal cannot be computed in practice
since 𝜷 is unknown. In the second part of the simulation, we implement the SIMEX method
described in Section 4, with M = 10, to select h for the proposed estimators. To preserve the
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integrity of �̂�YL, we run the Matlab code kindly provided by Professor Yao to compute �̂�YL and
�̂�NV, including their choice of bandwidth based on minimizing an estimate of the asymptotic
mean squared error of Yao and Li’s estimator of 𝜷.

For ease of comparison, we follow the model setting in the simulation study presented in
Yao & Li (2014) to generate error-free data. More specifically, for each of the two sample
sizes, n = 200 and 400, the true covariate values {X𝑗}n

𝑗=1 are independent realizations from
uniform(0, 1). Given X𝑗 , the response is generated according to Y𝑗 = 1 + 3X𝑗 + (1 + 2X𝑗)e𝑗 , for
𝑗 = 1,… , n, where {e𝑗}n

𝑗=1 are independent errors from 0.5N(−1, 2.52) + 0.5N(1, 0.52). For this
error distribution, eM(x) ≈ 1 for all x ∈ [0, 1], and thus yM(x) ≈ 2 + 5x. Ignoring rounding error,
we have the true mode regression coefficients 𝜷 = (2, 5)T. The error-contaminated covariate
measurements {W𝑗}n

𝑗=1 are generated according to (2), with U following a Laplace distribution
and a normal distribution, respectively, whose mean is zero and variance 𝜎2 is set at four levels
to achieve reliability ratios 𝜆 = 0.9, 0.85, 0.8, 0.75.

5.2. Simulation Results
Under each of 16 model settings resulting from the combinations of n-𝑓U(u)-𝜆, 300 Monte Carlo
replicate data sets of the form {(Y𝑗 ,X𝑗 ,W𝑗)}n

𝑗=1 are generated, producing 300 sets of estimates,

{�̂�NV, �̂�MC, �̂�CK, �̂�YL}, among which �̂�YL is not affected by the change in 𝑓U(u) or 𝜆. Figure 1
presents the boxplots of these estimates when n = 200 for the case with Laplace measurement
error when the approximated ideal bandwidth is used for �̂�MC and �̂�CK. Figure 2 depicts the
boxplots of the estimates when n = 200, U is normal, and the approximated ideal bandwidth is
used for �̂�MC and �̂�CK. We provide in Appendix D in the Supplementary Material figures of the
counterpart boxplots when h is chosen by the SIMEX method for �̂�MC and �̂�CK.

Overall, results for the two proposed methods that account for measurement error with
bandwidths selected via the SIMEX method are very similar to those when the approximated
ideal bandwidths are used. Except for higher variability, the two proposed estimates are
comparable with the estimates obtained in the absence of measurement error, �̂�YL; and the naive
estimate, �̂�NV = (𝛽NV,0, 𝛽NV,1)T, is compromised by measurement error in contrast. Under the current
model setting, 𝛽NV,1 attenuates more towards null as error contamination in the covariate is more
severe, that is, as 𝜆 decreases; furthermore 𝛽NV,0 deviates more from the truth from above.

Between the two proposed estimators, �̂�MC appears to be more variable than �̂�CK, especially
in the presence of Laplace measurement error. This is expected because the Monte Carlo
corrected score involves simulated pseudo measurement error. This source of variability can
be more prominent when a small B is used to construct the Monte Carlo corrected score,
ΨMC, B. But increasing B after certain point, say, going beyond the current level (1,000) in the
presented simulation experiments, becomes less profitable in terms of efficiency gain, especially
considering the added computational burden with a much larger B. Another reason for the
observed higher variability when U follows a Laplace distribution can be due to applying the
Monte Carlo corrected score method when the normality assumption on U is violated.

Although the corrected kernel method has neither aforementioned concern, computing
the deconvoluting kernel requires some care as the integral that defines K∗(t) in (7) can be
computationally challenging, especially in the presence of normal measurement error (Delaigle
& Gijbels, 2007). We use the fast Fourier transforms (Bailey & Swarztrauber, 1994) to compute
these integrals, which can still be problematic at times when U is normal. To alleviate numerical
inaccuracy in the numerical integration, we follow the suggestion in Meister (2004) and replace
the normal characteristic function with the Laplace characteristic function in (7) even when
U actually follows a normal distribution. The presented numerical results associated with �̂�CK

in this section are obtained using this treatment. We observe in our extensive numerical study
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FIGURE 1: Boxplots of estimates of 𝛽0 (on the left panels) and estimates of 𝛽1 (on the right
panels) when U is Laplace measurement error at four levels of reliability ratios (from the top row
to the bottom row), 𝜆 = 0.9, 0.85, 0.8, 0.75. Within each panel, the four estimates (from left to
right) result from the naive method (NAIVE), the Monte Carlo corrected score method (MCCS),
the corrected kernel method (CK) and Yao and Li’s method (YL) in the absence of measurement
error, respectively. The approximated theoretical optimal bandwidths are used for the Monte

Carlo corrected score method and the corrected kernel method.

that, when the numerical integration using fast Fourier transforms goes through smoothly with
𝜙U(s) as the normal characteristic function, using a Laplace characteristic function instead does
not cause noticeable changes in �̂�CK; and using the latter often leads to smoother numerical
implementation. The robustness to and the benefit of Laplace measurement error assumption

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



272 LI AND HUANG Vol. 47, No. 2
0.

9

Intercept 0
0

1
2

3
4

Slope 1

2
4

6
8

0.
85

0
1

2
3

4

2
4

6
8

0.
8

0
1

2
3

4

2
4

6
8

0.
75

0
1

2
3

4

NAIVE MCCS CK YL

2
4

6
8

NAIVE MCCS CK YL

FIGURE 2: Boxplots of estimates of 𝛽0 (on the left panels) and estimates of 𝛽1 (on the right
panels) when U is normal measurement error at four levels of reliability ratios (from the top row
to the bottom row), 𝜆 = 0.9, 0.85, 0.8, 0.75. Within each panel, the four estimates (from left to
right) result from the naive method (NAIVE), the Monte Carlo corrected score method (MCCS),
the corrected kernel method (CK) and Yao and Li’s method (YL) in the absence of measurement
error, respectively. The approximated theoretical optimal bandwidths are used for the Monte

Carlo corrected score method and the corrected kernel method.

was noted and investigated by Meister (2004) and Delaigle (2008). For instance, Delaigle (2008)
showed that, if the assumed error distribution and the true error distribution match in regard to the
first two moments, the bias due to misspecifying the error distribution is of order O(h2) + o(𝜎2)
when a second-order kernel is used in a kernel density estimator.
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TABLE 1: Monte Carlo averages of four sets of estimates over 300 Monte Carlo replicates when
𝜆 = 0.75, 0.80. Numbers in parentheses underneath the averages are empirical standard errors associated

with the averages. The truth is (𝛽0, 𝛽1) = (2, 5).

𝜆 = 0.75 𝜆 = 0.80

n = 200 n = 400 n = 200 n = 400

Method 𝛽0 𝛽1 𝛽0 𝛽1 𝛽0 𝛽1 𝛽0 𝛽1

U ∼ Laplace(0, 𝜎2)

Naive 2.26 3.82 2.29 3.85 2.18 4.04 2.22 4.05

(0.02) (0.04) (0.01) (0.03) (0.02) (0.04) (0.01) (0.03)

MCCS 1.96 4.77 1.84 5.08 1.86 5.06 1.80 5.18

(0.04) (0.08) (0.03) (0.07) (0.03 ) (0.07) (0.02 ) (0.05 )

CK 1.72 5.14 1.72 5.19 1.74 5.14 1.73 5.18

(0.03) (0.05) (0.02) (0.04) (0.02) (0.05) (0.02) (0.03)

U ∼ N(0, 𝜎2)

Naive 2.21 3.88 2.27 3.92 2.17 4.07 2.18 4.16

(0.02) (0.05) (0.01) (0.03) (0.02) (0.05) (0.01) (0.03)

MCCS 2.02 4.62 1.92 4.88 1.75 5.18 1.78 5.17

(0.04) (0.09 ) ( 0.02 ) (0.04 ) (0.02) (0.05 ) (0.03) (0.06)

CK 1.77 5.02 1.79 4.97 1.80 4.99 1.84 4.99

(0.02) (0.04) (0.02) (0.03) (0.02) (0.04) (0.02) (0.04)

YL 1.83 5.08 1.87 5.05 1.83 5.08 1.87 5.05

(0.01) (0.03) (0.01) (0.02) (0.01) (0.03) (0.01) (0.02)

CK: corrected kernel method; MCCS: Monte Carlo corrected score method; YL: Yao and Li’s method in the absence of
measurement error.

Table 1 presents Monte Carlo averages of the four considered estimates across 300 replicates
along with their empirical standard errors when 𝜆 ∈ {0.75, 0.8}. The same summary statistics
for results obtained when 𝜆 ∈ {0.85, 0.9} are tabulated in Appendix D in the Supplementary
Material. Besides reinforcing the findings from Figures 1 and 2 that, compared to the naive
estimator, the two proposed estimators are less compromised by measurement error and are
closer to the benchmark estimator, these results also show that the performance of the proposed
estimators improve in both accuracy and precision as the sample size increases. This is observed
even for the Monte Carlo corrected score method in the presence of Laplace measurement error,
a case this method is not designed for.

To this end, our focus has been on estimating 𝜷. Because modes can be used to predict
the outcome Y , we also compare predictions using estimated modes from the above three
linear mode regression methods and the local linear mode estimation using the nonparametric
method developed by Zhou & Huang (2016). Table 2 provides such comparison in terms of the
empirical coverage probability of a prediction interval (band) of width c𝜎e centred around an
estimated mode line (or curve) from a considered method across 300 Monte Carlo replicates, for
c = 0.1, 0.2, 0.5. Here, 𝜎e is the standard deviation of e𝑗 , which is around 2 in the simulation.
According to Table 2, all four considered methods applying to error-prone data yield prediction
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TABLE 2: Monte Carlo averages of proportions of observed responses captured by a prediction interval
(band) of width c𝜎e, for c = 0.1, 0.2, 0.5, associated with each method across 300 Monte Carlo replicates.
Numbers in parentheses underneath the averages are 100×(empirical standard error) associated with the

averages.

𝜆 = 0.85 𝜆 = 0.9

n = 200 n = 400 n = 200 n = 400

Method 0.1𝜎e 0.2𝜎e 0.5𝜎e 0.1𝜎e 0.2𝜎e 0.5𝜎e 0.1𝜎e 0.2𝜎e 0.5𝜎e 0.1𝜎e 0.2𝜎e 0.5𝜎e

U ∼ Laplace(0, 𝜎2)

Naive 0.09 0.18 0.39 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40

(0.07) (0.11) (0.15) (0.07) (0.10) (0.15) (0.07) (0.10) (0.14) (0.06) (0.08) (0.11)

MCCS 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40

(0.06) (0.08) (0.11) (0.06) (0.08) (0.09) (0.06) (0.08) (0.10) (0.05) (0.07) (0.10)

CK 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.19 0.40

(0.06) (0.09) (0.11) (0.06) (0.08) (0.10) (0.05) (0.07) (0.10) (0.05) (0.07) (0.10)

NMR 0.09 0.17 0.38 0.09 0.17 0.38 0.09 0.17 0.38 0.09 0.17 0.38

(0.06) (0.09) (0.13) (0.06) (0.08) (0.11) (0.06) (0.09) (0.013) (0.05) (0.08) (0.11)

U ∼ N(0, 𝜎2)

Naive 0.09 0.18 0.39 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40

(0.07) (0.11) (0.17) (0.06) (0.10) (0.15) (0.06) (0.09) (0.12) (0.06) (0.09) (0.12)

MCCS 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40

(0.06) (0.08) (0.11) (0.05) (0.08) (0.10) (0.06) (0.08) (0.09) (0.05) (0.07) (0.09)

CK 0.09 0.18 0.40 0.09 0.18 0.40 0.09 0.18 0.40 0.10 0.19 0.40

(0.06) (0.09) (0.12) (0.05) (0.07) (0.10) (0.06) (0.09) (0.11) (0.05) (0.07) (0.09)

NMR 0.09 0.17 0.38 0.09 0.17 0.38 0.09 0.17 0.38 0.09 0.17 0.38

(0.06) (0.09) (0.13) (0.06) (0.08) (0.11) (0.06) (0.09) (0.13) (0.06) (0.08) (0.11)

YL 0.09 0.18 0.40 0.09 0.19 0.41 0.09 0.18 0.40 0.09 0.19 0.41

(0.06) (0.10) (0.13) (0.05) (0.07) (0.10) (0.06) (0.10) (0.13) (0.05) (0.07) (0.10)

CK: corrected kernel method; MCCS: Monte Carlo corrected score method; NMR: Zhou and Huang’s nonparametric
mode regression; YL: Yao and Li’s method in the absence of measurement error.

intervals (bands) with similar empirical coverage probabilities as those from Yao and Li’s
linear mode regression method applying to error-free data. The observed similarity may not be
surprising because prediction based on mean regression is also less affected by measurement
error in covariates when compared to the amount that covariate effects estimation is affected
(Buonaccorsi, 1995).

Instead of comparing prediction intervals centring around estimated modes, Table 3 presents a
more close-up comparison of estimated modes themselves. In particular, Table 3 shows the Monte
Carlo averages of the point-wise error associated with each method, |the estimated yM(x) − yM(x)|,
at x = 0.5, 0.9. From this more close-up comparison, one can see that using error-prone data
for mode estimation tends to produce more bias than when one uses error-free data; but
our two proposed methods substantially alleviate the bias seen in the naive mode estimates.
The nonparametric method shows no advantage when point-wise error of mode estimation is
concerned, especially when the covariate value is near the boundary, for example, x = 0.9. We
acknowledge that the current simulation setting is designed for linear mode regression, with data
simulated from models with a linear mode function. Nonparametric mode regression makes no
assumption on the functional form of the conditional mode function, and thus it is expected
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TABLE 3: Monte Carlo averages of point-wise errors, |the estimated yM(x) − yM(x)|, associated with each
method when x = 0.5, 0.9 across 300 Monte Carlo replicates. Numbers in parentheses are empirical

standard error associated with the averages.

𝜆 = 0.85 𝜆 = 0.9

n = 200 n = 400 n = 200 n = 400

Method x = 0.5 x = 0.9 x = 0.5 x = 0.9 x = 0.5 x = 0.9 x = 0.5 x = 0.9

U ∼ Laplace(0, 𝜎2)

Naive 0.28 (0.01) 0.53 (0.02) 0.25 (0.01) 0.51 (0.02) 0.27 (0.01) 0.47 (0.02) 0.20 (0.01) 0.38 (0.01)

MCCS 0.22 (0.01) 0.45 (0.03) 0.16 (0.02) 0.33 (0.03) 0.18 (0.01) 0.35 (0.03) 0.15 (0.01) 0.30 (0.02)

CK 0.20 (0.01) 0.35 (0.02) 0.17 (0.01) 0.26 (0.01) 0.21 (0.01) 0.32 (0.01) 0.18 (0.01) 0.28 (0.01)

NMR 0.66 (0.01) 1.10 (1.12) 0.65 (0.01) 1.24 (0.12) 0.68 (0.02) 1.31 (0.12) 0.66 (0.01) 0.58 (0.15)

U ∼ N(0, 𝜎2)

Naive 0.28 (0.01) 0.59 (0.02) 0.25 (0.01) 0.54 (0.02) 0.25 (0.01) 0.46 (0.02) 0.21 (0.01) 0.39 (0.02)

MCCS 0.18 (0.01) 0.37 (0.02) 0.14 (0.01) 0.24 (0.01) 0.18 (0.01) 0.33 (0.02) 0.12 (0.01) 0.23 (0.01)

CK 0.21 (0.01) 0.33 (0.02) 0.21 (0.01) 0.26 (0.01) 0.20 (0.01) 0.40 (0.02) 0.18 (0.01) 0.25 (0.01)

NMR 0.64 (0.01) 0.95 (0.09) 0.34 (0.02) 0.52 (0.08) 0.63 (0.02) 1.28 (0.14) 0.68 (0.01) 1.05 (0.11)

YL 0.14 (0.01) 0.21 (0.01) 0.14 (0.01) 0.22 (0.01) 0.14 (0.01) 0.21 (0.01) 0.14 (0.01) 0.22 (0.01)

CK: corrected kernel method; MCCS: Monte Carlo corrected score method; NMR: Zhou and Huang’s nonparametric
mode regression; YL: Yao and Li’s method in the absence of measurement error.

to exhibit higher variability and less accuracy in estimating the mode than methods that take
into account a simple (and true) functional form. Scenarios where the data generating process
involves a nonlinear mode function are where one can benefit from employing the nonparametric
method, which are scenarios beyond the scope of the current article.

6. APPLICATION TO DIETARY DATA

In this section, we apply the proposed methods to a dietary data set from the Women’s Interview
Survey of Health. The data are from n = 271 subjects, each completing a food frequency
questionnaire (FFQ) and six 24-h food recalls on randomly selected days. We focus on studying
the impact of the long-term usual intake (X) on the FFQ intake measured as the percent calories
from fat (Y) (Carroll, Freedman & Pee, 1997). Since the long-term intake cannot be measured
directly, and the 24-h recalls can be viewed as error-contaminated surrogates of it, we used the
average of these recalls from each subject as a surrogate (W) of this subject’s long-term intake.
Figure 3 provides the histogram of FFQ intake and the scatter plot of it versus the 24-h food
recalls. The histogram indicates an underlying skewed distribution, and the scatter plot suggests
existence of outliers in the observed data. These two features suggest that mode regression can
provide valuable information regarding the association between a response and a covariate that
mean regression may not capture.

For illustration purposes, we consider a linear mode regression model for the mode of Y𝑗 given
X𝑗 , where X𝑗 is not observed but its error-contaminated surrogate W𝑗 is, where W𝑗 =

∑6
k=1 W𝑗,k∕6,

in which W𝑗,k is subject 𝑗’s kth food recall, for k = 1,… , 6 and 𝑗 = 1,… , 271. Using the six
replicate measures for each underlying X𝑗 , we estimate the variance of measurement errors
associated with W𝑗 by way of one-sixth of

∑n
𝑗=1

∑6
k=1(W𝑗,k − W𝑗)2∕(5n), following equation

(4.3) in Carroll et al., (2006). This gives an estimate of the measurement error variance as
�̂�2 = 0.12, and the corresponding estimated reliability ratio being 0.73.
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FIGURE 3: The histogram (on the left panel) of food frequency questionnaire intake and the
scatter plot (on the right panel) of this quantity versus a surrogate of long-term intake for the

dietary data.

We carry out the linear mode regression analysis using the naive method, the Monte Carlo
corrected score method, the corrected kernel method assuming Laplace and normal measurement
error, respectively, and we also implement the local linear mode estimation as the only fully
nonparametric method. Table 4 presents the estimated regression coefficients from three linear
mode regression methods. These results suggest that both proposed methods produce estimates
of the covariate effect, 𝛽1, that imply a stronger association between the FFQ intake and the
long-term intake than the estimate from the naive method does. In particular, compared to the
naive estimate, the estimated covariate effect from the Monte Carlo corrected score method
increases by 29%, and the estimates from the corrected kernel method increase by 38% and 34%
when assuming Laplace measurement error and normal measurement error, respectively.

This also gives an example where using the Laplace characteristic function and the normal
characteristic function in the corrected kernel method yields very similar estimates. Figure 4
depicts three of these estimated mode regression lines, omitting the one from the corrected kernel
method under the normality assumption and the estimated mode curve obtained by applying
the local linear estimation in Zhou & Huang (2016). Computer codes for implementing the two
proposed method for this data set are provided in Appendices E and F in the Supplementary
Material. This code and the dietary data are also available as online Supplementary Material for
interested readers to download.

7. DISCUSSION

7.1. Recap and Extensions
In this article, we propose two methods to infer regression coefficients in a linear mode model
for a response given an error-prone covariate. The resultant inference for the covariate effect
significantly improve over the naive inference from applying Yao and Li’s method without
accounting for measurement error. As demonstrated in the real data analysis in Section 6,
estimating the measurement error variance is trivial when replicate measures of each underlying
true covariate value are available. This treatment of unknown 𝜎2 has been a routine practice in the
measurement error literature, where researchers typically observe little impact of estimating 𝜎2

on the final inference for covariate effects. The measurement error variance is the only piece of

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2019 MODE REGRESSION WITH COVARIATE MEASUREMENT ERROR 277

TABLE 4: Regression coefficient estimates in the linear mode regression model from the naive method,
the Monte Carlo corrected score method, and the corrected kernel method (assuming Laplace and normal
U, respectively) using the dietary data. Numbers in parentheses are estimated standard deviations of the

regression coefficient estimates resulting from 200 bootstrap samples.

Method 𝛽0 𝛽1

Naive −0.27 (0.10) 0.36 (0.11)

MCCS −0.10 (0.05) 0.48 (0.13)

CK-Laplace −0.07 (0.05) 0.50 (0.12)

CK-Normal −0.09 (0.06) 0.49 (0.13)

CK-Laplace: corrected kernel method assuming Laplace U; CK-Normal: corrected kernel method assuming normal U;
MCCS: Monte Carlo corrected score method.
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FIGURE 4: Dietary data overlaid with the estimated mode regression line from naively applying
Yao and Li’s method (green dashed line), the Monte Carlo corrected score method (cyan
dot-dashed line), the corrected kernel method assuming Laplace measurement error (red solid

line) and a local linear estimate of the mode curve (blue two-dashed line).

information regarding 𝑓U(u) required for implementing the Monte Carlo corrected score method
since normal U is assumed for this method. To implement the corrected kernel method, the
characteristic function of U, 𝜙U(t), is needed, which can also be easily estimated using replicate
measures Delaigle, Hall & Meister (2008). Moreover, as noted in our simulation study and by
several other authors (Meister, 2004; Delaigle, 2008; Delaigle, Fan & Carrollm 2009; Zhou &
Huang, 2016), simply setting 𝜙U(t) as the Laplace characteristic function works well in most
scenarios, which frees one from estimating the characteristic function altogether.

Both proposed methods can easily incorporate multiple covariates in the linear mode model.
Indeed, Yao and Li’s method is developed more generally with multivariate covariates, and
the Monte Carlo corrected score method entails evaluating the score function used in Yao and
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Li’s method at simulated contaminated covariate data, hence one only needs to revise MC-1 in
the algorithm in Section 3.2 accordingly to implement the Monte Carlo corrected score method
with multivariate covariates. To implement the corrected kernel method when there are p > 1
covariates, some or all of which are prone to nondifferntial measurement error, one uses a
multivariate characteristic function of U = (U1,… ,Up)T in (7) evaluated at −𝜷T

1s∕h, bearing in
mind that 𝜙U𝓁

(t) = 1 if the 𝓁th covariate is error-free, for 𝓁 ∈ {1, 2,… , p}.

7.2. Limitations and Future Research
When the normality assumption on U is violated in the Monte Carlo corrected score method, the
bias of �̂�MC can be substantial when the true measurement error distribution is skewed. The bias
reduction achieved by �̂�CK when the Laplace characteristic function is used in the deconvoluting
kernel can also be less impressive in this case. In addition, the proposed estimates may exhibit
erratic behaviour when 𝜆 is small, regardless of the sample size. Besides the measurement error
distribution, the bandwidth chosen by the computationally intensive SIMEX method may also
contribute to such erratic behaviour. Further research is needed to develop a more effective
bandwidth selector that is computationally efficient.

The mode residual distribution, g(𝜖 ∣ x), is left unspecified in our article, and thus the proposed
methods are broadly applicable even when one lacks a parametric model for 𝑓Y|X(y ∣ x). However,
we impose a linear functional form for the mode of Y given X = x, making these methods
semiparametric in nature. One follow-up research direction is to incorporate semiparametric
components into the specification of yM(x). Yao & Xiang (2016) proposed a local polynomial
mode estimation method and also considered a nonparametric varying coefficient mode regression
model. Zhao et al., (2014) proposed a variable selection method based on a partially linear varying
coefficient mode regression model. These works, and other existing works on semiparametric
mode regression, all assume error-free covariates. Upon completion of the project reported in this
article, we have started to explore partially linear mode regression in the presence of covariate
measurement error.

SUPPLEMENTARY MATERIAL

Supplementary material available online includes proofs of Theorems 1 and 2, lemmas referenced
in the theorems along with their proof, technical conditions stated in the theorems, additional
simulation results mentioned in Section 5.2, and computer code for analyzing the dietary data
using the two proposed methods, and the dietary data.
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