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Motivated by inferring cellular signaling networks using noisy
flow cytometry data, we develop procedures to draw in-
ference for Bayesian networks based on error-prone data.
Twomethods for inferring causal relationships between nodes
in a network are proposed based on penalized estimation
methods that account for measurement error and encour-
age sparsity. We discuss consistency of the proposed net-
work estimators and develop an approach for selecting the
tuning parameter in the penalized estimation methods. Em-
pirical studies are carried out to compare the proposedmeth-
ods with a naive method that ignores measurement error.
Finally, we apply these methods to infer signaling networks
using single cell flow cytometry data.
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1 | INTRODUCTION

1.1 | Motivations

The study of cellular signaling networks has been a major research area in biology for several decades. By analyzing
how multiple cell signaling pathways affect each other within a network, scientists gain valuable insights on normal
cellular responses in a biological system, and their potential disregulation in disease [1, 2, 3]. Statistical models that
mathematically conceptualize these signaling networks have been developed [4, 5]. These models have advanced
experimental cell biology, and influenced the way biologists view, monitor, and study signaling networks by perturbing
them in designed experiments [6, 7].
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Among these models, Bayesian networks [8] have been widely adopted as an attractive model for characterizing
complex cell signaling cascades. With recent advances in biochemistry, molecular biology, and cell physiology, rich data
information become available at the cell level from high throughput technologies. For example, flow cytometry makes
measuring physical and chemical characteristics of cells possible, and has become an important tool in a broad range
of biological and clinical research. This technology produces abundant data that can be used to infer cellular signalling
networks [9, 10, 11, 12, 13]. However, measurement errors in flow cytometry data inevitably arise from imperfectmea-
surements, photon-counting statistics, and data storagemethods [14, 15, 16, 17]. Figure 1, borrowing from Figure 1 in
Galbusera et al. [17], illustrates data (such as the height, area, and width of a pulse) reported by a cytometer. To collect
such data, one streams cells past a laser light source, and detects them via fluorescence picked up by detectors. The flu-
orescence signal often contains autofluorescence resulting from the laser exciting cellular components other than the
green fluorescent protein that one intends to excite. Automated compensation tools have been developed to correct
for these nuisance sources of fluorenscence, and for spillove resulting from using fluorescent dyes measurable in more
than one detector. Yet the autocompensation procedure depends on flow cytometrists’ subjective gate placement.
Error arising in the compensated data are discussed in greater details in Roederer [14]. Besides this and earlier refer-
ences, the following blog gives a more detailed take on “bad flow cytometry data" and spectral compensation in the
context of more recent models of flow cytometers, https://voices.uchicago.edu/ucflow/author/lkjohnston.
These practical concerns regarding the quality of flow cytometry data even with the latest technology motivate our
study presented in this article, where we develop methods for inferring Bayesian networks representing cellular sig-
naling networks using error-prone flow cytometry data.

F IGURE 1 An illustration of the signals reported by the cytometer given in Figure 1 in Galbusera et al. [17].

The proposed methods can be used to infer Bayesian networks arising in other applications. Examples of these
applications include constructing social networks based on survey data subject to imperfect respondent recall [18],
studying connectivity and association between different regions of one’s brain in the default mode network using
preprocessed noisy brain image data [19], and modeling gene regulatory pathways using gene expression data that
are imprecise due to experimental errors [20], stray background signal irrelevant to mRNA transcripts [21], or data
normalization [22]. With this wide range of applications in mind, we provide a literature overview next on networks
and network inference in a general context.
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1.2 | Literature Review

Networks, or graphs, have been a topic of great interest that started mostly in the artificial intelligence community
[8, 23, 24]. Later their application became more widespread, motivating statistical research on graphical models used
in biology, genetics, social science, and physics [25, 26]. A network consists of a set of nodes, also referred to as
vertices or variables, and a set of edges connecting nodes. Graphs with undirected edges are called undirected graphs.
In an undirected graph, a set of nodes connecting to a particular node form a neighborhood of this node. Given its
neighborhood, this node is independent of nodes outside of the neighborhood. This type of graphs is useful for
characterizing correlations between nodes. When causal relationships are of interest, directed edges are used, giving
rise to the so-called directed acyclic graphs (DAG). Pairing such a graph with a joint probability distribution of all nodes
produces a Bayesian network. When there is an edge pointing from one node to another node, these two nodes are
referred to as a parent node (of the latter) and a child node (of the former), respectively. Given its parents, a node is
independent of its non-descendant nodes. This is more formally known as the local Markov property of DAG, which
in turn suggests that a Bayesian network encodes the joint distribution of the set of nodes in the graph. Provided with
this encoding, not only can one uncover the correlation structure among nodes, but one can also reveal if a correlation
between two nodes is due to a direct causal relationship between them or an indirect dependence mediated by other
nodes. The latter piece of information is especially of interest in biology and genetics [27]. Because of this, some
researchers refer to Bayesian networks as causal networks to signify causality as their research focal point, such as in
research on cellular signaling networks.

There is a large collection of works on inferring Bayesian networks. Many existing works follow the theme of
search-and-score [28, 29, 30, 31, 32, 33, 34, 35]. Following this theme, one formulates a scoring criterion, and
searches for a directed graph, or an equivalent class of directed graphs [36], that optimizes the score. The score
can be constructed based on a likelihood function of observed data in the frequentist framework [11, 37]; it can also
originate from a posterior distribution of a graph in the Bayesian framework [29]. Scores formulated borrowing these
two schools of statistics have also been used, such as the Bayesian Dirichlet equivalent uniform score defined as the
log likelihood of the observed data given suitably chosen Dirichlet priors over the parameters of a network structure
[35]. When the number of nodes is large, scores designed to penalize complexity of a graph are often employed
[38, 39, 40]. Another well explored theme for inferring Bayesian networks leads to the constraint-based approaches
that involve testing conditional independence among nodes [41, 42]. To lessen the computational burden in the pres-
ence of many nodes, Tsamardinos et al. [43] proposed the max-min hill-climbing algorithm that combines ideas from
search-and-score, constraint-based approaches, and local learning. Friedman and Koller [44] used a Markov chain
Monte Carlo (MCMC) method over the space of node orders, which is smaller and more regular than the space of
graph structures. Eaton and Murphy [45] suggested to apply dynamic programming algorithm on the space of node
orders, then used the resultant proposal distribution for MCMC methods in the space of DAGs. Also considering the
order space, Ellis and Wong [46] developed a fast MCMC algorithm based on data that include interventional data
and observational data. Ye et al. [47] proposed to minimize a regularized Cholesky score over the space of topological
orderings. When compared with several competing methods applied to both observational and interventional data,
their method achieved improved performance in network structure learning. Interventional data arise from interven-
tion experiments, such as flow cytometry experiments considered in our study. In such an experiment, one fixes the
values of some node(s), which in effect destroys the causal dependencies of the intervened node(s). Inclusion of in-
terventional data greatly improves the identifiability of a Bayesian network, as Hauser and Bühlmann [48] and Peters
et al. [49] explained in great detail.

All aforementioned existing works rely on observed data as precise measures of nodes. But, as seen in the moti-
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vating examples, measures of nodes can be imprecise. For flow cytometry experiments, Galbusera et al. [17] showed
that flow cytometry measurements contain a significant amount of shot-noise that can be easily mistaken for true
biological variability. Although measurement error problems have been long investigated in many regression settings
[50, 51, 52], there is very limited research in the context of inferring Bayesian networks. One exception is the work
by Luo and Zhao [12], who used Bayesian hierarchical modeling to incorporate measurement error and random error
that represent intrinsic noise in flow cytometry data when inferring signaling pathways. In this article, we tackle this
problem from the frequentist point of view. To the best of our knowledge, this is the first frequentist work addressing
this problem.

The data structure considered in our study and mathematical formulations of the data generating mechanism are
described in Section 2. We then outline the proposed penalized estimation methods in Section 3, which includes
detailed algorithms for implementing the proposed methods. To choose the tuning parameter in the penalized estima-
tion, we construct a tuning parameter selector in Section 4. In Section 5, simulation studies are reported, where we
compare finite sample performance of the proposed methods and a naive method that ignores measurement error,
and carry out sensitivity analysis under incorrect assumptions on measurement errors. We also apply these methods
to a flow cytometry data set to infer a signaling network of immune system cells. In Section 6, we summarize the
contribution of our study and discuss follow-up research.

2 | DATA AND MODEL

Denote byX theN×p (unobserved) datamatrix as error-freemeasures of p nodes in a network, including interventional
data and observational data from N experimental units. Refer to node j as Xj , denote by n j and n−j the number of
interventional data points and the number observational data points associated with Xj , respectively, so that n j +
n−j = N , and by O j the set of row indices corresponding to the observational data for Xj in X, for j = 1, . . . , p .
If an interventional study involves p experimental conditions under each of which a different node is intervened,
then ∑p

i=1
n j = N . In general, ∑p

i=1
n j can be below or above N , e.g., when some nodes are never intervened or are

intervened in more than one condition. The observed data matrix of the same dimension,W, is an error-contaminated
surrogate of X.

Taking the data structure into consideration, we assume that the causal relationships of the p nodes are specified
by

X[O j , j ] = X[O j ,−j ]Bj + ε [O j , j ], for j = 1, . . . , p, (1)

where X[O j , j ] is the n−j × 1 vector taken from the j th column of X containing only entries in the rows indicated by
O j , X[O j ,−j ] is an n−j × (p − 1) submatrix of X storing data in the rows indicated by O j and all columns except the
j th column, ε is the N × p matrix of model error representing intrinsic noise due to unmodelling variation, ε [O j , j ]
consists of n−j independent and identically distributed (i.i.d.) mean-zero random errors, B = [βi j ]i ,j=1,...,p is the p × p
matrix of regression coefficients with zero diagonal entries, and Bj = B[−j , j ]. The regression model representation
of a Bayesian network in (1) is the same as that formulated in Fu and Zhou [13]. It is assumed that b = (BT

1, . . . ,B
T
p )T

is a vector of natural parameters in the sense that, given sufficient interventional data associated with each node, b
is identifiable [13]. For Xj , the nodes on the right-hand-side of (1) associated with nonzero entries in Bj are parents
of Xj . Having Bj = 0 means that Xj has no parent, and is referred to as a root node. Having the j th row, B[j , ], as a
zero vector implies that Xj has no child, and is referred to as a leaf node. Assume thatW results from contaminating
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X with additive mean-zero normal measurement error independent of X, that is,

W = X +U, (2)

where U is the N × p matrix of nondifferential measurement error [50, Section 2.5]. It is further assumed in this study
that, for each node Xj , the measurement error associated with the interventional data of Xj and the measurement
error associated with the observational data of Xj follow the same distribution. This implies that {U[`, ] }N

`=1
are i.i.d.

random vectors from Np (0, Σu ) , where Σu is the p×p variance-covariancematrix of themeasurement error associated
with nodes (X1, . . . ,Xp ) . This assumption is practically reasonable when the source of measurement error remains
the same throughout an experiment, for instance, by using the same model of flow cytometers in all experimental
conditions.

According to (1) and (2), the Bayesian network with error-prone nodes consists of p hierarchical measurement
error models, with the j th hierarchical model consisting of two submodels,

W[O j , j ] = X[O j ,−j ]Bj + ε [O j , j ] +U[O j , j ], (3)

W[O j ,−j ] = X[O j ,−j ] +U[O j ,−j ], (4)

where the first submodel is for the error-contaminated node j regressing on the remaining p − 1 error-free nodes,
and the second submodel relates the observed covariates with the true covariates in the j th regression model, for
j = 1, . . . , p . Given the set of p measurement error models, making inference for an underlying Bayeisan network that
relates the p nodes mainly involves inferring B using W. The variance-covariance associated with ε [O j , j ] does not
need to be estimated for the proposed methods. Estimating Σu requires either external validation data or replicate
measures of the same set of error-free measures of nodes [50]. Such estimation has been a routine practice in the
measurement error literature, where researchers mostly report little impact on the final inference on regression pa-
rameters. In order to focus on inference on B, we assume Σu known in the methodology development, and investigate
consequences of estimating or misspecifying Σu in empirical studies in Section 5.

3 | ESTIMATION OF B

3.1 | Penalized Objective Functions

When X is observed, Fu and Zhou [13] proposed to estimate B via maximizing a penalized log-likelihood function
corresponding to the graphicalmodel in (1). More recently, Li et al. [37] developed likelihood ratio tests for connectivity
and directionality of a DAG that involve maximizing constrained and penalized log-likelihood functions built upon
regression models in (1). In the presence of measurement error, a naive likelihood-based approach for estimating B is
to ignore measurement error and useW in place of X in the penalized negative log-likelihood function as follows,

Rnv (B) =
p∑
j=1

{
Vj ,nv +

p∑
i=1

Pλ ( |βi j |)
}
, (5)
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where, for j = 1, . . . , p ,

Vj ,nv =
n−j
2

log


∑
`∈O j

(
W[` , j ] −W[`,−j ]Bj

)2 , (6)

and Pλ ( ·) is a penalty function. Onemay choose a penalty according to the LASSO [53], the adaptive LASSO (ALASSO)
[54], or the SCAD penalty [55]. Both ALASSO and SCAD have been shown to enjoy the appealing oracle properties
in variable selections. In this study we adopt SCAD in (5), defined as

Pλ (t ) = λt I (t ∈ [0, λ)) +
(a2 − 1)λ2 − (t − aλ)2

2(a − 1) I (t ∈ [λ, aλ)) + (a + 1)λ2
2

I (t ≥ aλ),

where λ is a tuning parameter, I ( ·) is the indicator function, and a = 3.7. Besides avoiding the adaptive weights
required in ALASSO, our choice of the SCAD penalty is also motivated by findings in Aragam and Zhou [56]. There,
the authors showed that a concave penalty, such as SCAD, offers improved performance in Bayesian network structure
learning when comparing with an L1-based penalty like LASSO. Minimizing (5) with respect to B yields an estimator
of it, denoted by B̂nv.

To account for measurement error in node data, we construct a penalized objective function based on the cor-
rected score function [57]. Assuming normal model error and measurement error, the corrected score function asso-
ciated with the j th measurement error model is given by

Ψj (Bj ) =
∑
`∈O j

Ψj ` (Bj )

=
∑
`∈O j

{
(W[`, j ] −W[` ,−j ]Bj )W[`,−j ]t + Σu [−j ,−j ]Bj

}
. (7)

When Σu = 0, the summand in (7) reduces to the score used in the least squares method for estimating the regression
coefficients in the j th regression model, for j = 1, . . . , p . In the presence of measurement error, one can show that
E {Ψj ` (B∗j ) } = 0 [50, Section A.6], where B∗

j
is the truth of Bj , for ` ∈ O j and j = 1, . . . , p . In other words, the

corrected score, Ψj ` (Bj ) , is an unbiased score that corrects the naive least squares score for measurement error.

For each j ∈ {1, . . . , p }, we follow the construction of quadratic inference functions [58] and propose the penal-
ized score-based objective function given by

R (B) =
p∑
j=1

{
Vj +

p∑
i=1

Pλ ( |βi j |)
}
, (8)

where

Vj =


1

n−j

∑
`∈O j

Ψj ` (Bj )

t

{Hj (Bj ) }−1


1

n−j

∑
`∈O j

Ψj ` (Bj )
 , (9)

in which Hj (Bj ) = n−1−j
∑
`∈O j Ψj ` (Bj )Ψj ` (Bj )

t is a consistent estimator for the variance-covariance matrix of the
corrected score, which is “sandwiched" between the scores to achieve optimal efficiency in the score-based inference
[59]. A non-naive estimator of B, denoted by B̂, is a minimizer of R (B) .
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In Appendix A of the Supplementary Materials, we establish the consistency of the estimator as a minimizer of
(8) with a fixed p under regularity conditions. Denote by B∗ the true value of B, and define b∗ = (B∗t1 , . . . ,B

∗t
p ) t . Write

the tuning parameter λ in (8) as λn to signify its dependence on n = min1≤j≤p n−j in the discussion of asymptotics.
The consistency of B̂ is stated in the following theorem.
Theorem 3.1 Under assumptions (A1)–(A5) in Appendix A, as n → ∞, if

√
nλn = op (1) , then there exists a local

minimizer of R (B) defined in (8), denoted by B̂, such that ‖b̂ − b∗ ‖ = Op (n−1/2) , where b̂ = (B̂t1, . . . , B̂
t
p ) t .

3.2 | Algorithms for Estimating B

To find an optimizer of the penalized log-likelihood, Fu and Zhou [13] developed a pairwise coordinate descent (PCD)
algorithm to iteratively update each of the p (p − 1)/2 pairs, (βi j , βj i ) , for i , j = 1, . . . , p , with all other entries of B
fixed at their values from the preceding iteration. The algorithm is designed to avoid estimates for βi j and βj i to be
nonzero simultaneously, since βi j and βj i both being nonzero is a violation of acyclicity. But PCD does not check for
other forms of acyclicity violation. To thoroughly check for cycles in an estimated regression coefficients matrix, we
implement Kahn’s topological sorting algorithm [60] along with PCD.

Given a directed graph structure G , a topological sorting algorithm is an iterative procedure that yields a sorted
sequence of nodes in which a child node always comes after its parent nodes, and thus specifies a topological ordering
of these nodes compatible with G . A topological sorting algorithm can be used to detect cycles because a topological
ordering of nodes does not exist whenever there exists a cycle in the graph [61]. In particular, Kahn’s sorting algorithm
is developed based on the fact that a DAGmust have at least one root node; moreover, removing root nodes and their
out-going edges from a DAG always yields a subgraph that is still a DAG. Hence, an early termination of the sorting
algorithm will only occur if a subgraph at that step has no root node, which indicates existence of at least one cycle
in the (sub)graph. When this occurs, we will strategically remove edges until root nodes emerge so that the sorting
algorithm can resume. Figure 2 illustrates the application of Kahn’s sorting algorithm for the purpose of cycle detection
and elimination for an initial graph structure G . The output of the depicted algorithm is an order compatible with the
resultant acyclic graph specified by a queue of p nodes, denoted by T . At the beginning of the algorithm, we set T

as an empty queue, and accumulate in T the root nodes of the (sub)graphs created during the iterative procedure.
In Figure 2, the weakest edge in G mentioned in the middle gray-shaded box is the edge associated with an

estimated regression coefficient that indicates the weakest association among all non-zero estimated regression co-
efficients. We use p-values of the estimated regression coefficients to identify the weakest edge to be removed until
the sorting algorithm resumes due to newly emerging root nodes. By the time the queue T collects all p nodes, we
obtain a final regression coefficient matrix estimate by placing zeros in the entries corresponding to the removed weak
edges.

A complete algorithm for finding a minimizer of the penalized score-based objective function R (B) in (8) that
specifies a DAG is related next, which uses the PCD algorithm in conjunction with Kahn’s sorting algorithm.

Step 1: Obtain an initial estimate of B by solving p unpenalized corrected score estimating equations one at a time.
Denote by B̂(0) the resultant initial estimate of B. Set the iteration index t = 0.

Step 2: For i , j ∈ {1, . . . , p } and i , j , define β̃i j = B̂(t ) [i , j ] and β̃j i = B̂(t ) [j , i ]. For each pair of nodes i and j ,
update (β̃i j , β̃j i ) to (β̃ ∗i j , β̃

∗
j i
) by minimizing the penalized score-based objective function following the algorithm

elaborated in Appendix B of the Supplementary Materials. Set B̂(t+1) = [β̃ ∗
i j
]i ,j=1,...,p . Denote by G̃ the graph

structure specified by B̂(t+1) , which may have cycles.
Step 3: For j = 1, . . . , p , compute unpenalized corrected score estimates for regression coefficients associated with



8 Huang and Zhang

Input G Are there root nodes in G?

Remove the weakest edge
from G

Add root nodes to the tail of
T

Remove out-going edges
from root nodes

Remove leaf root nodes from
G

Is G empty?

Output T

Yes

No

Yes

No

F IGURE 2 Kahn’s topological sorting algorithm for eliminating cycles in G and finding a topological ordering, T ,
compatible with the resultant acyclic graph.

the parents of Xj indicated by G̃ . Obtain estimated standard errors of these unpenalized regression coefficients
estimates via sandwich variance estimation for M-estimators. Produce p-values based on the unpenalized esti-
mate of βi j and its estimated standard error for testing H0 : βi j = 0 versus H1 : βi j , 0, if Xi is a parent of Xj
according to G̃ .

Step 4: Implement Kahn’s sorting algorithm to eliminate cycles in G̃ by setting some (initially nonzero in Step 3)
coefficients in B̂(t+1) to zero that have the largest p-values, unless G̃ from Step 3 is a DAG.

Step 5: If |B̂(t+1) − B̂(t ) |∞ is larger than a small pre-sepecified threshold, set t = t +1, and return to Step 2. Otherwise,
output B̂(t+1) as a minimizer of R (B) that specifies a DAG. Here, for a matrix A, |A |∞ denotes the largest entry of
A in absolute value.

The threhold we set in Step 5 is 10−4 in our simulation study, and we observe negligible change in the output of
the algorithm when an even smaller threshold is used. One can follow a similar algorithm described above to find
the optimizer of the naive penalized log-likelihood function Rnv (B) in (5) that relates to a DAG. This is elaborated in
Appendix C of the Supplementary Materials, where formulas for updating each pair of regression coefficients in Step
2 are provided. The algorithm implemented in Fu and Zhou [13] to optimize their penalized log-likelihood function
using error-free data does not include Steps 3 and 4 above and thus does not guarantee to return a DAG in the end. Li
et al. [37] applied the alternating direction method of multiplier (ADMM) [62] to update parameters in their penalized
objective function, followed by depth-first search [61] for cycle detection, and then deleted weak edges based on the
absolute values of estimated regression coefficients to ensure acyclicity of a graph at each iteration.

When implementing the PCD algorithm, one considers one pair of regression models at a time within each itera-
tion: the regression model with Xj as the response and the one with Xi as the response. For each pair of models, one
focuses on inferring one regression coefficient in each model in that iteration. In particular, one chooses between “Xi
is an influential covariate in the j th regression model" and “Xj is an influential covariate in the i th regression model,"
given all other covariates chosen from the previous iteration for that model. Alternatively, instead of updating B̂(t )

one pair of entries at a time, one may update one column of B̂(t ) at a time by selecting important covariates for the
j th regression model, for j = 1, . . . , p . This leads to another approach for estimating B that follows a similar algorithm
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but with the following step replacing Step 2 above.

Step 2∗: For j = 1, . . . , p , use B̂(t )
j

as the starting value to solve the following penalized score estimating equation,

n−1−j
∑
`∈O j

Ψj ` (Bj ) − P̃λ (Bj ) = 0, (10)

where P̃λ (Bj ) is a (p − 1) × 1 vector with entries given by, for k , j ,

∂

∂βk j
Pλ ( |βk j |) = λ

{
I ( |βk j | ≤ λ) +

(aλ − |βk j |)+
(a − 1)λ

}
sign(βk j ) .

Let the resultant p sets of solutions be the p columns in B̂(t+1) , though not including the zero diagonal element
in each column. Denote by G̃ the graph structure induced by B̂(t+1) .

We use Newton-Raphson algorithm to solve (10), where the derivative of P̃λ (Bj ) is approximated by a (p −1) × (p −1)
diagonal matrix whose diagonal entries are given by I (βk j , 0) | (∂/∂βk j )Pλ ( |βk j |) |/ |βk j |, for k , j . This is also the
local quadratic approximation used in Fan and Li [55]. We refer to this algorithm as the node-wise parent selection
(NPS) algorithm to distinguish it from the previous algorithm that involves PCD. Unlike Step 2 in the PCD algorithm,
Step 2∗ here ignores the acyclicity constraint. Steps 3 and 4 are where we impose this constraint in the NPS algorithm.

For each node, the NPS algorithm in Step 2∗ is precisely the algorithm proposed by Huang and Zhang [63] for
variable selection in one linear regression model with error-prone covariates. Ma and Li [64] developed a similar
score-based variable selection strategy applicable to a larger class of measurement error models. Both groups of au-
thors established consistency of the score-based variable selection method when one regression model is considered.
Without considering the correlation between p regression models that the Bayesian network decomposes into, we
expect that this alternative algorithm can yield a sensible estimate for B that ignores the acyclicity constraint, and the
cycle detection and elimination in Step 4 allows one to impose this constraint on the output of the NPS algorithm.
Putting the penalty term aside, solving the p sets of penalized score estimation equations in (10) is intrinsically related
to minimizing the penalized score-based objective function in (8) since they both originate from the corrected score.

4 | TUNING PARAMETER SELECTION

Weare now in the position to discuss choices of the tuning parameter λ in the penalized score-based objective function
in (8) and the penalized score estimating equation in (10). In principle, it is desirable to use a consistent information
criterion to choose λ. Assume that the class of candidate models includes the true model which the observed data
come from. In the context of variable selection in a regressionmodel, within the class of all candidatemodels, a correct
model includes all truly influential predictors in the true model and may also include non-influential predictors; the
rest are incorrect models that are referred to as underfitted models. In other words, the true model is the most
parsimonious correct model, and a correct model that is not the true model is an overfitted model. A consistent
information criterion refers to a criterion that approaches (in probability) to its optimal value as the sample size tends
to infinity when evaluated at the true model.

To infer a Bayesian network consisting of error-prone nodes, we propose the score-based information criterion
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evaluated at a graph G given by

SIC(G ) =
p∑
j=1

(
V̂j + e j

log n−j
n−j

)
, (11)

where e j is the number of parents of Xj according to G , and V̂j is equal toVj evaluated at the unpenalized corrected
score estimate of Bj given the structure of G . In the context of linear regression with error-prone covariates, Huang
and Zhang [63] developed two score-based information criteria very much in the same spirit as the summand in (11)
to facilitate variable selection in one regression model. The proposed information criterion in (11) is essentially the
sum of p score-based information criteria associated with p regression models as the decomposition of a Bayesian
network. To establish its consistency as a model criterion, it is instructive to relate arguments for model selection
where one regression model is concerned to arguments for graph selection, where a graph can be decomposed into
p regression models.

Denote by EG the set of directed edges inG , and by |EG | the size of this set. Suppose there exists a true Bayesian
network that dictates the data generating process, with graph structure G0, in the class of networks under consid-
eration. Parallel with notions in variable selection in the regression setting, let G− and G+ denote generically an
underfitted graph and an overfitted graph, respectively, where G− satisfies EG0

1 EG− , and G+ satisfies EG0
⊂ EG+ .

Then G0 and G+ are correct graphs, with the former more parsimonious than the latter, that is, |EG0
| < |EG+ |. In

contrast, G− is an incorrect graph, and one does not necessarily have |EG− | < |EG0
|. To establish the consistency of

SIC(G ) , it suffices to show that

SIC(G−) − SIC(G0) > 0 with probability approaching one, as n →∞ and,

SIC(G+) − SIC(G0) → 0+ in probability as n →∞.

These assertions are proved in Appendix D of the Supplementary Materials, where p is allowed to diverge as n →∞.

5 | EMPIRICAL EVIDENCE

5.1 | Competing Methods

In this section, we implement the proposed score-based methods and the naive likelihood-based method using sim-
ulated network data to assess their finite sample performance. For the score-based methods, we use the SIC tuning
parameter selector to choose λ. For the naive method, we adopt the tuning parameter selection method employed in
Fu and Zhou [13] based on the relative change in prediction error.

Denote by eλ the number of edges of an estimated graph when the tuning parameter is set to λ, and by B̂(λ)nv

the corresponding naive estimate of B. Define the prediction error by PEλ =
∑p
j=1

∑
`∈O j (W[`, j ] − Ŵ

(λ) [` , j ])2,
where Ŵ(λ) [` , j ] = W[` ,−j ]B̂(λ)nv,j . Suppose one considers m candidate values for λ, λ1 > λ2 > . . . > λm . For each
k = 2, . . . ,m , one computes the relative change in prediction error defined by RCPk−1,k = (PEλk−1 − PEλk )/(eλk −
eλk−1 ) , if eλk − eλk−1 > 0, and RCPk−1,k = 0 otherwise. Then one chooses λK as the tuning parameter value, where
K = max{k : RCPk−1,k ≥ α max(RCP1,2, . . . ,RCPm−1,m ), k = 2, . . . ,m }, in which α is a threshold parameter set
to 0.1 as recommended by Fu and Zhou [13]. The quantity defined as RCPk−1,k quantifies the gain in prediction
accuracy at the price of increasing graph complexity (as eλ increases) when one drops λ from λk−1 to λk . The use
of the threshold α is to further guard against overly dense graphs. The constructions of RCP and K together aim to
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balance graph complexity and prediction accuracy.
In summary, there are three methods implemented in the simulation study: the naive likelihood-based method

using the PCD algorithm with λ chosen by RCP, the score-based method using the PCD algorithm with λ chosen by
SIC, and the score-based method using the NPS algorithm with λ chosen by SIC.

5.2 | Simulation Settings

The simulation experiment involves two factors: the number of nodes p and the variance-covariance matrix of the
measurement error Σu . There are two levels for p , 10 and 20. Given p , the total number of edges of a true graph is 3p ,
and each node has at most four parents. Once such a graph is created randomly, we set the entries in B associated
with the first half of edges to 0.5, and entries associated with the second half of edges to 1. Then we generate n j = 5

interventional data points from N (0, 1) , for j = 1, . . . , p . When generating normal measurement errors, we first set
Σu = σ2

u Ip , where σ2
u varies across five levels so that the reliability ratio, τ = Var(Xj )/{Var(Xj ) + σ2

u }, associated
with each Xj ranges from 0.8 to 1 at increments of 0.05, for j = 1, . . . , p . In a different setting we let Σu = σ2

uVp ,
where σ2

u takes the five aforementioned levels, and Vp is a p × p matrix with entries given by Vp [j , j ′] = 0.5|j−j
′ | , for

j , j ′ = 1, . . . , p . For each simulation setting, we randomly generate ten graphs, from each of which an N ×p data matrix
W is generated according to (3) and (4) with {ε [`, j ], ` = 1, . . . ,N }p

j=1
being independent realizations from N (0, 1) .

Given a true graph G , the following five metrics are used to assess the quality of an estimated graph Ĝ :

• the true positive rate, TPR = |EĜ ∩ EG |/(3p) ;
• the false discovery rate, FDR = (R + |EĜ ∩ EcG |)/ |EĜ |, where R denotes the number of edges in G that show up

in Ĝ in the reversed direction;
• the specificity defined as |Ec

Ĝ
∩ Ec

G
|/{p (p − 4) }, where p (p − 4) = p2 − p − 3p is the number of zero non-diagonal

entries in B;
• the rate of correct identification of existence (with the right direction) and non-existence of edges defined as
( |EĜ ∩ EG | + |EcĜ ∩ E

c
G
|)/{p (p − 1)/2}; and lastly,

• the Frobenius norm of B − B̂ divided by the number of off-diagonal entries of B, that is, trace{(B − B̂) (B −
B̂)T }/{p (p − 1) }.

The first four metrics are of interest when one is concerned about inference on the graph structure, and the last metric
is of interest when one wishes to understand the strength of associations between nodes, and to use the estimated
Bayesian network for prediction.

5.3 | Simulation Results

Figure 3 depicts the Monte Carlo (MC) averages across ten graphs of TPR, FDR, specificities, and rates of correct
identification of existence/non-existence of directed edges associated with three considered methods when p = 10

under two specifications of Σu . Figure 4 shows the same collection of results when p = 20. Across these four metrics,
the advantages of the score-based methods pairing with the SIC tuning parameter selector are evident over a wide
range of reliability ratio τ , whether the PCD algorithm is used for implementing the corrected score method, or the
NPS algorithm is used. The naive likelihood-based method suffers from low TPR, although it is comparable with
the score-based methods in terms of specificity. This phenomenon can be explained by the attenuation effect of
measurement error on slope parameters estimates in a linear regression model [51, Section 1.1]. More specifically, in
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the context of linear regression with additive covariates measurement error, naive estimators of covariate effects tend
to attenuate towards zero, which explains the low TPR. Such attenuation effect does not compromise naive estimation
of a null covariate effect, which explains the robustness of specificity to measurement error. As a combination of TPR
and specificity, the correction rate observed for the naive method is also less affected by measurement error than
TPR alone. This robustness is more evident in a sparser graph, such as a graph consisting of p = 20 nodes with 3p

edges when comparing with a graph consisting of p = 10 nodes with 3p edges. Here, a measure of sparsity of a graph
G can be defined as |EG |/{p (p − 1)/2}, where p (p − 1)/2 is the largest number of edges possible for a DAG with p
nodes. Finally, even in the absence of measurement error (i.e., with τ = 1 in Figures 3 and 4), the two score-based
methods still outperform the likelihood-based method when TPR and correction rate are considered. This implies that
the construction of the (unpenalized) objective function plays an important role in network inference.

Figure 5 showsMCmedians of the Frobenius norm of B− B̂ divided by p (p −1) . This figure suggests that the PCD
algorithm can lead to some numerical instability for the corrected score method, and the NPS algorithm produces
more stable regression coefficients estimates that are also less biased than the naive estimates. In fact, between the
two score-basedmethods, the one using the NPS algorithm yields better inference outcomes in all aspects depicted in
Figures 3–5 than those resulting from the PCD algorithm. This suggests that there may exist some interaction effect
of regression coefficients estimation and cycle elimination procedure on the finite sample performance of a method.
Algorithmic properties of different optimization methods in conjunction with different cycle detection and elimination
procedures deserve a separate investigation that is beyond the scope of the current study.

5.4 | Inference under a misspecified Σu

To inspect sensitivity of the proposedmethodology to misspecification of Σu , we implement the score-basedmethods
while assuming a variance-covariance matrix for the measurement error to be Σ̃u , which can differ from the truth, Σu ,
in two ways. In the first type of misspecification, Σ̃u and Σu share the same structure, with Σ̃u = σ̃2

u Ip or Σ̃u = σ̃2
uVp ,

where σ̃2
u = σ2

u +0.05k , for k = 0,±1,±2,±3, so that one understates or overstates the severity of error contamination
unless when k = 0. Using error-contaminated data generated with Σu = σ2

u Ip or Σu = σ2
uVp , fixing σ2

u at 0.25 to yield a
reliability ratio of τ = 0.8 for each node, Figure 6 presents MC averages of TPR, FDR, specificities, and rates of correct
identification of directed edges when the two score-based methods are used to infer a graph with p = 10 nodes.
Overall, misspecifying Σu by a scale while keeping the right structure only affects TPR and the correction rate slightly,
although overstating error contamination tends to inflate FDR and lower the specificity. The latter phenomenon can
be due to overcorrecting the strength of some covariate effects when one overstates the measurement error variance.
Parallel results when p = 20 are shown in Appendix E of the Supplementary Materials, which tell similar stories.
Figure 7 depicts Monte Carlo medians of the Frobenius norm of B− B̂ divided by p (p − 1) in the presence of this type
of misspecification. When the graph is sparser, i.e., when p = 20 in the current setting, the impact of misspecifying
Σu is milder when the NPS alogorithm is used than when the PCD algorithm is used. The PCD algorithm suffers from
a misspecified Σu in terms of covariates effects estimation more when measurement errors are correlated.

In the second type of misspecification, the assumed Σ̃u is structurally different from the truth. Figure 8 shows
counterpart results of Figure 3 when one mistakenly assumes uncorrelated (or correlated) measurement error when
Σu indicates correlated (or uncorrelated) measurement error. By comparing patterns observed in Figure 8 with those
depicted in Figure 3, both figures for cases with p = 10, one can see that TPR and the correction rate are more
compromised when one mistakenly assumes uncorrelated measurement error in the presence of correlated measure-
ment error; and it is less harmful to assume correlated measurement errors when measurement errors are actually
uncorrelated. Other metrics relating to graph structure estimation are fairly robust to this type of misspecification.
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Bias in covariates effects estimation are much more substantial than those under the first type of misspecification.
Counterpart results when p = 20 are summarized in Appendix E of the Supplementary Materials, which indicate that
graph structure estimation is more robust to this form of misspecification when the graph is sparser, despite the bias
in covariates effects estimation.

Lastly, instead of assuming a variance-covariance matrix for the measurement error, we estimate it based on
four replicate measures of X, denoted by Wm , for m = 1, 2, 3, 4, in each MC replicate under each simulation setting
described in Section 5.2. The estimator follows that in equation (4.3) in Carroll et al. [50], and is given by Σ̂u =

(3N )−1 ∑N
`=1

∑4
m=1 (Wm [` , ] −W[`, ]) t (Wm [`, ] −W[`, ]) , where W =

∑4
m=1Wm/4. To infer a graph, we use W as

a surrogate of X, and set the corresponding measurement error variance-covariance at Σ̂u/4. With the estimated
variance-covariance matrix in place of the truth, Figure 9 demonstrates counterpart summary statistics depicted in
Figure 3 regarding graph structure estimation when p = 10. It turns out that the score-based method using the PCD
algorithm is much less sensitive to this replacement than when the NPS algorithm is used. And the latter somewhat
degrades in terms of TPR and the correction rate. These patterns are also observed when the graph is sparer with
p = 20 (see Figure E.3 in Appendix E in the Supplementary Materials). Covariates effects estimation is fairly robust to
this additional estimation of Σu , as one can see in Figure 10.

It is worth noting that, despite the observed degradation in some aspects in the inference results due to a mis-
specified variance-covariace matrix for the measurement error, the score-based methods mostly still improve over the
naive method. This suggests that there is indeed some gain in acknowledging existence of measurement error and
making effort to account for it when drawing inference. Under the assumption that Σu is known, both PCD and NPS
algorithms exploit the nice partition of B, which contains all parameters to be inferred in our study. This partition of
B is parallel to decomposing a Bayesian network into p regression models, each of which is the model that PCD or
NPS deals with at each iteration of the algorithm. One loses such clean partition of the set of unknown parameters if
one wants to estimate Σu , based on replicate data for instance, along with B. Hence, these two algorithms cannot be
easily revised to incorporate the estimation of Σu when validation data or replicate measures are available. Different
objective functions in conjunction with new algorithms for optimization are needed for simultaneous estimation of
Σu and B.

5.5 | Application to Flow Cytometry Data

Now we return to the application of inferring cellular signaling networks using flow cytometry data. In particular,
the flow cytometry data entertained in this section consist of p = 11 phosphomolecular measurements from each of
N = 7466 human immune system cells collected in an experiment described in Sachs et al. [9]. In this experiment, a
series of stimulatory cues and inhibitory interventions were imposed, producing the observed data matrix as a mixture
of observational data and interventional data for the eleven phosphorylated proteins and phospholipids (see Table 1 in
[9]). Shojaie andMichailidis [11] applied a penalized likelihood estimationmethodwith LASSO and ALASSO penalty to
infer the signaling network while assuming known ordering of the eleven nodes. Without assuming ordering known,
Fu and Zhou [13] applied their likelihood-based penalized estimation method on this data set to infer a directed
signaling network using the PCD algorithm, also treating the data as measures of the true nodes. Luo and Zhao [12]
viewed the observed data as error-contaminated surrogates of the true protein activity levels, and assumed a normal
additive measurement error, with an inverse gamma prior distribution for the measurement error variance (common
for all nodes). Neither of the aforementioned methods guarantees that the inferred graph is acyclic.

As in Luo and Zhao [12], we treat the observed phosphomolecularmeasurements as error-contaminatedmeasures
of the true nodes, whose ordering is unknown. Because this data do not contain replicate measures of the same
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underlying protein activity level, error variance is not identifiable, even with the normality assumption imposed. We
thus follow awidely adopted practice in themeasurement error literature in this case, and carry out sensitivity analysis
by inferring the underlying network under different assumed variance-covariance matrices for the measurement error.
In particular, we first assume correlated measurement error with Σ̃u = (1 − τ) Σ̂W, where Σ̂W is the sample variance-
covariance of W computed using interventional data; we then assume uncorrelated measurement error with Σ̃u =

(1 − τ)diag(σ̂2
W1
, . . . , σ̂2

Wp
) , where σ̂2

Wj
is the j th diagonal entry of Σ̂W, for j = 1, . . . , p .

We apply our score-based methods with τ = 0.8, 0.9 in the above assumed Σ̃u . The computer code for this data
analysis along with the data are available in the supplementary materials. Panel (a) in Figure 11 shows a network with
directed edges reflecting causal relationships between these nodes that are currently well accepted in the literature.
Networks shown in panels (b) and (c) in Figure 11 are provided by two existing works, including the one in Shojaie and
Michailidis [11] where the authors used the ALASSO penalty under the assumption that data are free of measurement
error with ordering known, and the network from Fu and Zhou [13] assuming error-free data, where the authors used
the PCD algorithm to minimize the penalized negative log-likelihood function as in the naive method considered in
our empirical study but without the last step of cycle elimination, and with the ALASSO penalty instead of SCAD.
Panels (d)–(f) in Figure 11 are estimated networks from our analysis of the data, carried out in the same way as in
the simulation experiment, including the naively inferred network and the networks resulting from the score-based
methodswhile assuming correlatedmeasurement error with τ = 0.9. When comparing each of the latter five networks
with the consensus graph, the network from Shojaie and Michailidis [11] includes 14 edges in the consensus network
among a total of 27 edges in their inferred graph; and there are 8 edges in the consensus network included in the
network from Fu and Zhou [13], which also has a total of 27 edges. Among the remaining three estimated graphs
(in panels (d)–(f)), the naive method produces a very sparse graph, with merely 8 edges, among which 5 are in the
consensus graph; the corrected score method implemented via the PCD algorithm leads to a graph with 27 edges, 9
of which are in the consensus graph; the corrected score method using the NPS algorithm results in a graph with 26
edges, 8 of which are in the consensus graph.

Figure 12 reproduces the two inferred graphs from the score-based methods in panels (e) and (f) of Figure 11,
in comparison with counterpart graphs when we assume a nondiagonal Σ̃u with τ = 0.8, and those obtained when a
diagonal Σ̃u with τ = 0.9 is assumed in the score-basedmethods. The estimated graphs are very similar when changing
τ from 0.9 to 0.8 in the assumed nondiagonal Σ̃u . For example, when the NPS algorithm is used, the graph under the
assumption of τ = 0.8 is identical to that obtained under the assumption of τ = 0.9 except that the latter has two
additional edges, and both graphs include the same collection of 8 edges in the consensus graph. When we assumed
uncorrelated measurement errors with τ = 0.9, the PCD algorithm results in a much denser graph than that resulting
from setting τ = 0.9 in the nondiagonal Σ̃u , with 33 edges, 8 of which are in the consensus graph that are also in the
counterpart graph when assuming uncorrelated measurement error.

Using the consensus graph as a gold standard, the above comparisons between all considered networks suggests
that, the naive likelihood-based method with cycle elimination can lead to low discovery rate, and the corrected score
methods can identify more truly existing causal relationships between nodes. Between the two methods based on
the corrected score, the PCD algorithm can result in a higher false discovery rate than the NPS algorithm. Inferences
from the score-based methods are more sensitive to the correlation structure of the measurement error than to the
magnitude of the error variance.
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6 | DISCUSSION

We proposed score-based methods to infer a Bayesian network using error-prone data from interventional experi-
ments. When only observational data are available, the proposed method can be used to infer graphs within a Markov
equivalence class [36], since a graph is not identifiable using observational data only but a Markov equivalence class
is. A consistent model criterion is also constructed based on the same score function for tuning parameter selection.
Besides establishing the consistency in the resulting regression coefficients estimator, we also provide convincing
empirical evidence to show that the proposed score-based methods can substantially outperform a naive likelihood-
based method that ignores measurement error. And, even in the absence of measurement error in nodes, using a
quadratic inference function constructed based on an unbiased score is more preferable than using a likelihood func-
tion to formulate a penalized objective function for network estimation.

We exploit Kahn’s topological sorting algorithm along with the PCD algorithm or the NPS algorithm to estimate
the regression coefficients matrix, which are computationally less burdensome than many search-and-score methods
that aim to select a graph from a DAG family of size that grows super-exponentially fast as p grows [65]. Between
the PCD algorithm and the NPS algorithm, the latter is computationally much more efficient. For example, in the
simulation experiments presented in Section 5 carried out on a Dell Precision M4800 workstation with 512GB serial
ATA solid state drive, it typically takes less than half a second for the NPS algorithm to reach to a final estimated graph
with p = 10 nodes, but it can take around ten seconds for the PCD algorithm. The contrast in implementation time is
evenmore drastic when p = 20, where it can take the PCDmore than aminute whereas it takes the NPS algorithm one
and a half seconds or so to infer a graph. Instead of applying a topological sorting algorithm to check for acyclicity,
incorporating the acyclicity constraint in the score function via a smooth characterization of acyclicity as in Zheng
et al. [66] may improve numerical efficiency. One computational hurdle remains for the proposed method when p is
large is the inversion of a (p − 1) × (p − 1) matrix in (9). A model criterion that does not involve the inversion of a large
matrix is more desirable in that case.

We assume identically distributed measurement error when formulating the measurement error models in (2)–
(4) and constructing the corrected score in (7). This assumption can be violated if the source of measurement er-
ror varies across different experimental conditions in a designed experiment. In this case one may revise the score
function in (7) accordingly to reflect non-identically distributed measurement error. As an example, let us consider
an experiment involving p conditions, and only node j is intervened under condition j , for j = 1, . . . , p . Denote
by Ō j the complement of the index set associated with observational data for node j , O j . In other words, Ō j is
the index set associated with interventional data for node j , for j = 1, . . . , p . Suppose that the N rows of U in
(2) are not identically distributed p-dimensional Gaussian measurement errors; instead, U[Ō j , ] consists of n j real-
izations from Np (0, Σ (j )u ) , for j = 1, . . . , p . This is to assume that, within the same experimental condition, mea-
surement errors are i.i.d., but across different conditions, measurement errors may not share the same variance-
covariance matrix. To reflect this assumption regarding U, the score function in (7) should be replaced by Ψj (Bj ) =∑p
j ′=1

∑
`∈O j ∩Ō j ′ {(W[`, j ] −W[`,−j ]Bj )W[`,−j ]

t + Σ
(j ′)
u [−j ,−j ]Bj }. If the normality assumption in measurement

error is violated, the corrected score in (7) may not be an unbiased score. Constructing score functions that are robust
to the normality assumption and also account for measurement error is a follow-up research direction. This is also the
direction one can follow to relax the linearity assumption of the regression model in (1).
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Supplementary Materials

Supplementary material available online includes Appendix A that provides the proof for Theorem 3.1, Appendices
B and C that provide updating formulas for the PCD algorithms in Section 3, Appendix D that provides the proof for
the consistency of SIC(G ) stated in Section 4, and Appendix E containing additional simulation results referenced in
Section5.4.
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F IGURE 3 Monte Carlo averages of TPR, FDR, specificity, and correctness rate versus the reliability ratio τ across ten graphs with
p = 10 nodes associated with three methods, the method by Fu and Zhou [13] (dash-dotted lines), corrected score method using PCD
algorithm (dashed lines), and corrected score method using NPS algorithm (solid lines), when Σu is a diagonal matrix (top panels) and when it
is not a diagonal matrix (bottom panels).
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F IGURE 4 Monte Carlo averages of TPR, FDR, specificity, and correctness rate versus the reliability ratio τ across ten graphs with
p = 20 nodes associated with three methods, the method by Fu and Zhou [13] (dash-dotted lines), corrected score method using PCD
algorithm (dashed lines), and corrected score method using NPS algorithm (solid lines), when Σu is a diagonal matrix (top panels) and when it
is not a diagonal matrix (bottom panels).
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F IGURE 5 Monte Carlo medians of the Frobenius norm of B − B̂ divided by p (p − 1)
versus the reliability ratio τ across ten graphs with p = 10 nodes (top panels) and p = 20

nodes (bottom panels) associated with three methods, the method by Fu and Zhou [13]
(dash-dotted lines), corrected score method using PCD algorithm (dashed lines), and
corrected score method using NPS algorithm (solid lines), when Σu is a diagonal matrix (left
panels) and when it is not a diagonal matrix (right panels).
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F IGURE 6 Monte Carlo averages of TPR, FDR, specificity, and correctness rate versus σ̃2
u in the assumed measurement error

variance-covariance matrix, Σ̃u = σ̃2
u Ip (top panels) and Σ̃u = σ̃2

uVp (bottom panels), across ten graphs with p = 10 nodes associated with the
corrected score method using PCD algorithm (dashed lines), and the corrected score method using NPS algorithm (solid lines). The red
dash-dotted reference line in each panel corresponds to the method by Fu and Zhou [13] that is invariant to the assumed σ̃2

u . The true
measurement error variance-covariace metrix is Σu = 0.25Ip (top panels) and Σu = 0.25Vp (lower panels).
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F IGURE 7 Monte Carlo medians of the Frobenius norm of B − B̂ divided by p (p − 1)
versus σ̃2 in the assumed measurement error variance-covariance matrix, Σ̃u = σ̃2Ip (left
panels) and Σ̃u = σ̃2Vp (right panels) across ten graphs with p = 10 nodes (top panels) and
p = 20 nodes (bottom panels) associated with the corrected score method using PCD
algorithm (dashed lines) and corrected score method using NPS algorithm (solid lines). The
red dash-dotted reference line in each panel corresponds to the method by Fu and Zhou [13]
that is invariant to the assumed σ̃2

u . The true measurement error variance-covariace matrix is
Σu = 0.25Ip (left panels) and Σu = 0.25Vp (right panels).
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F IGURE 8 Monte Carlo averages of TPR, FDR, specificity, and correctness rate versus the reliability ratio τ across ten graphs with
p = 10 nodes associated with three methods, the method by Fu and Zhou [13] (dash-dotted lines), corrected score method using PCD
algorithm (dashed lines), and corrected score method using NPS algorithm (solid lines), when one assumes Σ̃u = σ2

u Ip while the truth is
Σu = σ2

uVp (top panels) and when one assumes Σ̃u = σ2
uVp while the truth is Σu = σ2

u Ip (bottom panels).
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F IGURE 9 Monte Carlo averages of TPR, FDR, specificity, and correctness rate versus the reliability ratio τ across ten graphs with
p = 10 nodes associated with three methods, the method by Fu and Zhou [13] (dash-dotted lines), corrected score method using PCD
algorithm (dashed lines), and corrected score method using NPS algorithm (solid lines), when an estimated variance-covariance matrix for
measurement error is used in place of the true Σu , which is a diagonal matrix (top panels) or when it is not a diagonal matrix (bottom panels).



24 Huang and Zhang

τ

F
ro

be
ni

us
 N

or
m

/[p
(p

−
1)

]

0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

τ

F
ro

be
ni

us
 N

or
m

/[p
(p

−
1)

]

0.8 0.9 1.0
0.

0
0.

1
0.

2
0.

3
0.

4

τ

F
ro

be
ni

us
 N

or
m

/[p
(p

−
1)

]

0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

τ

F
ro

be
ni

us
 N

or
m

/[p
(p

−
1)

]

0.8 0.9 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

F IGURE 10 Monte Carlo medians of the Frobenius norm of B − B̂ divided by p (p − 1)
versus the reliability ratio τ across ten graphs with p = 10 nodes (top panels) and p = 20

nodes (bottom panels) associated with three methods, the method by Fu and Zhou [13]
(dash-dotted lines), corrected score method using PCD algorithm (dashed lines), and
corrected score method using NPS algorithm (solid lines), when an estimated
variance-covariance matrix for measurement error is used in place of the true Σu , which is a
diagonal matrix (left panels) or when it is not a diagonal matrix (right panels).
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F IGURE 11 Six signaling networks associated with the flow cytometry data set: (a) the consensus graph, (b) the estimated graph from
Shojaie and Michailidis [11] assuming ordering known, (c) the estimated graph from Fu and Zhou [13], (d) the estimated graph from the
naive method with cycle elimination, (e) the estimated graph from the corrected score method implemented via the PCD algorithm, (f) the
estimated graph from the corrected score method implemented via the NPS algorithm. In graphs (b)–(f), the inferred edges in agreement
with (a) are highlighted as red dashed edges. In (e) and (f), we assume correlated measurement errors with τ = 0.9 in Σ̃u = (1 − τ) Σ̂W.
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