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Summary. Joint modeling of a primary response and a longitudinal process via shared random effects is widely used in
many areas of application. Likelihood-based inference on joint models requires model specification of the random effects.
Inappropriate model specification of random effects can compromise inference. We present methods to diagnose random effect
model misspecification of the type that leads to biased inference on joint models. The methods are illustrated via application
to simulated data, and by application to data from a study of bone mineral density in perimenopausal women and data from
an HIV clinical trial.
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1. Introduction
It is often of interest to characterize the association between
a primary endpoint and a longitudinal process and to also
understand the inherent features of the longitudinal process.
One popular approach is to link a regression model for the pri-
mary endpoint and a mixed effects model for the longitudinal
process through joint dependence on latent random effects. It
has been demonstrated (e.g., Hsieh, Tseng, and Wang, 2006)
that appropriate parametric modeling of the random effects
in joint models yields more efficient inference procedures and
can also shed light on the underlying features of the longitu-
dinal process. One concern in this approach is the sensitivity
of inference to the model assumptions on random effects. In
this article, we address the issue of robustness of estimators
for the primary regression parameters to such assumptions.
We call this aspect of robustness latent-model robustness.

The primary endpoint in the joint model setting can be
a simple response such as a binary indicator of the presence
of a disease, or more complex such as a possibly censored
time to event. The Study of Women’s Health Across the Na-
tion (SWAN) (Sowers et al., 2003) provides an example of
the former. Two objectives of SWAN are to characterize the
association between an indicator of the evidence of osteope-
nia, a binary endpoint, and the underlying hormone patterns
over the menstrual cycle in perimenopausal women, and to
understand the underlying hormone patterns in this popula-
tion. The hormone patterns cannot be observed directly but
are observed through longitudinal progesterone levels derived
from urine (PDG). The AIDS Clinical Trials Group (ACTG)
Protocol 175 (Hammer et al., 1996) is a setting where a joint
model with time-to-event endpoint is a relevant framework.
In this study, more than 2000 HIV-1-infected subjects were
followed for their CD4 counts from week 8 postbaseline and

every 12 weeks thereafter, and the “event” is defined as a
composite of ≥50% decline in CD4, progression to AIDS, or
death. It is of interest to study the prognostic value of CD4
counts and their inherent trajectories over time in this popu-
lation. In both studies, the longitudinal measurements, PDG
and CD4 counts, are subject to assay error and intrasubject
variation.

Assuming multivariate normal random effects, Wulfsohn
and Tsiatis (1997) obtained maximum likelihood estimators
(MLEs) for the regression parameters in joint models with
time-to-event endpoint. Wang, Wang, and Wang (2000) pro-
posed three methods to estimate the primary regression pa-
rameters in joint models with simple endpoint. Their meth-
ods rely on the assumption that the random effects follow a
multivariate normal distribution, and they noted the concern
about the sensitivity of inference to the normality assump-
tion. Song, Davidian, and Tsiatis (2002) modeled the ran-
dom effects using a flexible seminonparametric (SNP) model
to avoid the restrictive normal assumption. Li, Zhang, and
Davidian (2004) proposed conditional score estimators
(CSEs) for the primary regression parameters in joint models
with simple endpoint. Tsiatis and Davidian (2001) also de-
rived the CSEs for the regression parameters in joint models
with time-to-event endpoint. The CSEs require no assumption
on the random effects. However, the latent-model robustness
of the CSEs is achieved at the expense of loss of efficiency. The
effects of model misspecification on random effects in joint
models have been investigated by several authors. Through
extensive simulation studies, Hsieh et al. (2006) demonstrated
robustness of the MLEs against departure from the normal
random effect assumption in joint models with time-to-event
endpoint. Hsieh et al. (2006) concluded that the MLE is ro-
bust to random effect model misspecification when there is

C© 2009, The International Biometric Society 719



720 Biometrics, September 2009

rich enough information from the longitudinal data. Also fo-
cusing on joint models with time-to-event endpoint, Rizopou-
los, Verbeke, and Molenberghs (2008) investigated the effect
of misspecifying the random effect model on the parameter
estimators and their standard errors. They showed that the
difference between the MLE obtained from the joint model
with a misspecified random effect model and the MLE based
on the correct model converges to zero as the number of re-
peated measurements per subject increases.

Assuming the two component models in a joint model are
correct, the MLE is consistent and efficient when the random
effect model is correctly specified. Even with the robustness
property of the MLE revealed by the aforementioned authors,
a relevant question is whether or not the available longitudinal
information in a particular data set is rich enough to yield an
MLE insensitive to model misspecification. Diagnostic tools
that can reveal adverse effects of model misspecification when
they do exist are thus desired. Huang, Stefanski, and Davidian
(2006) applied a remeasurement method to structural mea-
surement error models to diagnose model misspecification on
the unobservable true predictor.

In this article, we use an improved remeasurement method
to develop diagnostic tools for joint models. In Section 2, we
formulate joint models generically. From a viewpoint different
from that of Rizopoulos et al. (2008), we provide an explana-
tion in Section 3 for the asymptotic latent-model robustness
of the MLE when longitudinal data information is extensive
enough. In Section 4, we describe the improved remeasure-
ment method and apply it to joint models to diagnose random
effect model misspecification; test statistics are also proposed
to assess quantitatively the robustness of parameter estima-
tors. The diagnostic methods are illustrated via simulation in
Section 5. In Section 6, the proposed methods are applied to
the SWAN and ACTG 175 data sets.

2. Joint Models
For subject i, i = 1, . . . , n, denote by Yi the primary end-
point, which is a scalar in joint models with simple endpoint,
and is defined as a vector in joint models with time-to-event
endpoint. Denote by Wi = (Wi1, . . . , Wim i

)T the set of longi-
tudinal measurements recorded at times ti = (ti1, . . . , tim i

)T ,
and by Hi the vector of observed covariates, for i = 1, . . . , n.
Finally, define QT

i = (YT
i ,WT

i ,HT
i )T as all the observed data

from subject i, for i = 1, . . . , n.
The two component models in a joint model are the model

for the primary response Yi and the model for the longitudi-
nal process Wi . Define fYi |Xi ,Hi

(yi |xi , hi ; θ, ζ) as the density
function associated with the first component model, where θ
is the vector of primary regression parameters that relate Yi

to (Xi ,Hi ), ζ is a vector of nuisance parameters, and Xi is the
p × 1 vector of latent variables. Denote by f

(a )
Xi |Hi

(xi |hi ; τ (a ))
the assumed density of Xi conditional on Hi , where τ (a ) is a
vector of model parameters. The second component model is
derived from the linear mixed effects model,

Wi = DiXi + Ui , (1)

where Di is an mi × p (mi > p) design matrix of rank
p,Ui = (Ui1, . . . , Uim i

)T is the vector of intrasubject er-
rors distributed according to Nm i

(0, σ2Im i
), and Im i

is

the mi × mi identity matrix. The density of Wi given
Xi , fWi |Xi

(wi |xi ; σ2), is thus Nm i
(DiXi , σ

2Im i
). It is as-

sumed that Yi and Wi are independent given Xi and Hi

(Carroll et al., 2006, Section 2.5).
Let Ω = (θT , τ (a )T , σ2, ζT )T be the d × 1 vector of all

unknown parameters in the joint model. Inference on θ is of
central interest. The MLE for Ω maximizes the observed data
likelihood, to which the contribution from subject i is given
by, for i = 1, . . . , n,

fYi ,Wi |Hi
(yi , wi |hi ;Ω)

=
∫

fYi |Xi ,Hi
(yi |xi , hi ; θ, ζ)fWi |Xi

(
wi |xi ; σ2

)
× f

(a )
Xi |Hi

(
xi |hi ; τ (a )

)
dxi .

(2)

For the SWAN data, the primary response is binary with
Y i = 1 indicating absence of osteopenia (bone mineral density
above the 33rd percentile), and Y i = 0 indicating presence,
for i = 1, . . . , 632. Li et al. (2004) analyzed these data and
assumed a logistic model for Y i ,

Pr(Yi = 1 |Xi ,Hi ) =
{
1 + exp

(
−β0 −βT

1 Xi − βT
2 Hi

)}−1
, (3)

where Hi includes covariates such as age and ethnicity in-
dicator, and Xi = (X 1i , X 2i )T is a bivariate latent variable.
The observed longitudinal process Wi is the recorded natural
log of PDG over one menstrual cycle, the length of which is
standardized to a reference of 28 days. Li et al. (2004) posited
a piecewise linear mixed effects model for Wi given by W ij =
X 1i + X 2i (tij − 1.4)+ − 2X 2j (tij − 2.1)+ + U ij , i =
1, . . . , 632, j = 1, . . . , mi , where u+ = uI(u > 0), I(·) is the
indicator function, tij is in units of 10 days, and 6 ≤ mi ≤
14. Here, then, X 1i denotes the subject-specific natural log
PDG up to day 14, and X 2i is the subject-specific “slope”
of the symmetric rise (days 14–21) and fall (days 21–28) of
natural log PDG over a standardized cycle. In this example,
θ = (β 0, βT

1 , βT
2 )T , and there is no ζ in model (3).

For the ACTG 175 data, the response of interest is a time-
to-event T i , for i = 1, . . . , 2279. Define Yi = (V i , Δi )T , where
V i = min(T i , Ci ), Ci is the censoring time, and Δi = I(T i ≤
Ci ). Song et al. (2002), who analyzed these data, assumed
that censoring, intrasubject errors, and timing of measure-
ments are noninformative, and specified the first component
model as the proportional hazards model (PHM)

λi (u |Xi , Hi )

= lim
du→0

du−1Pr(u ≤ Ti < u + du |Ti ≥ u,Xi , Hi )

= λ0(u) exp{γ(X1i + X2i u) + ηHi}, (4)

where λ0(u) is an unspecified baseline hazard function, H i

is a treatment indicator, and Xi = (X 1i , X 2i )T is a bivariate
latent variable, with (X 1i + X 2i u) representing the true post-
12-week log10 CD4 count of subject i at time u. The observed
post-12-week log10 CD4 count is given by, for i = 1, . . . , 2279,
j = 1, . . . , mi ,

Wij = X1i + X2i tij + Uij . (5)
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The density of Yi given Xi and H i is

fYi |Xi ,H i
(yi |xi , hi ; θ, λ0)

= [λ0(Vi ) exp{γ(x1i + x2i Vi ) + ηhi}]Δi

× exp

[
−

∫ V i

0

λ0(u) exp{γ(x1i + x2i u) + ηhi} du

]
.

In this example, θ = (γ, η)T , and λ0(u) can be viewed as the
nuisance parameter ζ in the first component model.

Throughout the article we assume both component models
in the joint models are correctly specified, and we focus on
the assumed latent variable model, f

(a )
Xi |Hi

(xi |hi ; τ (a )).

3. Expected Robustness
Consistency of the MLE is guaranteed when either σ2 = 0 or
the assumed random effect model is correct. Neither are likely
to hold in practice, and thus the relevant issues are sensitiv-
ity of the MLE to the random effect model assumption and
how to study the effects of model misspecification if they ex-
ist. Several authors (Song et al., 2002; Hsieh et al., 2006; and
Rizopoulos et al., 2008) reported intriguing latent-model ro-
bustness under joint model setting. Hsieh et al. (2006) pro-
vided a heuristic explanation for this phenomenon. Rizopoulos
et al. (2008) showed for survival models with finite dimen-
sional parameter space that the score vector under the mis-
specified model is close to the correct score vector when mi

is large enough. In this section, we provide a new explanation
for the robustness property of the MLE through the following
result.

Theorem 1: Define Si = (DT
i Di )−1 DT

i Wi , and denote by
si a realization of Si , for i = 1, . . . , n. The ratio of the density
in equation (2) and the following expression,

fWi |Si

(
wi | si ; σ2

)
fYi |Si ,Hi

(yi | si , hi ; θ, ζ)f (a )
Xi |Hi

(
si |hi ; τ (a )

)
,

(6)

approaches one as the longitudinal information increases with-
out bound.

The proof is given in Web Appendix A. Note that, viewing
the random effect Xi as an unknown parameter, Si in The-
orem 1 is the ordinary least squares estimator for Xi . The
intuition of this result is that, when the longitudinal data in-
formation is rich enough, Xi can be well estimated by Si so
that it is as if Xi were observed like fixed effects instead of
being latent quantities, and thus the dependence of likelihood
inference on the assumed model for Xi weakens. Note in equa-
tion (6) that θ appears only in fYi |Si ,Hi

(·). Consequently, the
MLE derived from the likelihood based on equation (6) does
not depend on f

(a )
Xi |Hi

(·) and thus neither will the MLE based
on equation (2) as the longitudinal information increases. The
key issue in practice is knowing when the longitudinal in-
formation is great enough for the MLE to achieve a desired
degree of robustness. We next describe an improved remea-
surement method for assessing robustness of the MLE in a
particular data set.

4. Diagnostic Methods
4.1 Remeasurement Method (SIMEX)
The remeasurement method in Huang et al. (2006) is de-
rived from the SIMEX method developed by Cook and Ste-
fanski (1994) and Stefanski and Cook (1995), also described
in Carroll et al. (2006, Chapter 5). To motivate our improved
remeasurement method, we first review the remeasurement
method of Huang et al. (2006) in the joint model context.

The remeasurement method involves further contaminating
Wi and reestimating Ω based on the contaminated-enhanced
data. Specifically, for each prespecified positive constant λ:

• Step 1. For b = 1, . . . , B, generate the bth λ-remeasured
data set, denoted by {Qb ,i (λ)}n

i=1, where Qb ,i (λ) =
{YT

i ,Wb ,i (λ)T , HT
i }T , by taking

Wb ,i (λ) = Wi +
√

λσZb ,i , (7)

where Zb ,i are independent mi -dimensional standard
normal random errors, for i = 1, . . . , n and b = 1, . . . , B.

• Step 2. Estimate the parameters based on {Qb ,i (λ)}n
i=1.

Denote by θ̂b (λ) the estimate for θ, and by Ω̂b (λ) the
entire estimated parameter vector, for b = 1, . . . , B.

• Step 3. Compute θ̂B (λ) = B−1
∑B

b=1 θ̂b (λ). Similarly de-
fine Ω̂B (λ) = B−1

∑B

b=1 Ω̂b (λ).
• Step 4. Plot θ̂B (λ) versus λ ≥ 0, where θ̂B (0) = θ̂(0) is

the estimate based on {Qi}n
i=1. This plot is referred to

as a SIMEX plot.

A SIMEX plot where θ̂B (λ) remains relatively constant across
λ indicates robustness.

The above procedure has two drawbacks. First, the re-
measured Wb ,i (λ) defined in equation (7) depends on the
unknown σ. Second, Ω is estimated B times in step 2 to
obtain Ω̂B (λ), which is computationally burdensome. The
improved remeasurement method we now propose overcomes
both drawbacks.

First, to generate remeasured data free of parameters, we
define

Wb ,i (λ) = W1,b i (λ) + W2, i (λ), (8)

where

W1,b i (λ) = PDi
Wi +

√
λDi

(
DT

i Di

)−1/2
TT

b ,iWi , (9)

W2, i (λ) =
√

1 + λ(Im i
− PDi

)Wi , (10)

PDi
= Di (DT

i Di )−1DT
i ,Tb ,i = (Im i

− PDi
)Zb ,i{ZT

b ,i (Im i
−

PDi
)Zb ,i}−1/2, and the elements in the mi × p matrix Zb ,i

are independent standard normal random variables. It can
be shown that ZT

b ,i (Im i
− PDi

)Zb ,i is positive definite almost
surely when mi ≥ 2p so that {ZT

b ,i (Im i
− PDi

)Zb ,i}−1/2

exists almost surely. The construction of the new Wb ,i (λ)
in equation (8) is in the spirit of the empirical SIMEX
discussed in Section 5.3.13 in Carroll et al. (2006). As
elaborated in Section 4.2, W1,b i (λ) is a suboptimal, normally
distributed, unbiased estimator for DiXi , and W2, i (λ) is
a normal unbiased estimator for zero, with the combined
variance-covariance matrix of W1,b i (λ) and W2, i (λ) equal to
(1 + λ)σ2Im i

, which coincides with the variance–covariance
matrix of the old Wb ,i (λ) defined in equation (7).
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Second, to avoid repeated estimation of Ω using the remea-
sured data, we construct a new system of estimating equations
at λ > 0. Assume that Ω̂(0) solves the vector estimating equa-
tion evaluated at the observed data given by

n∑
i=1

ψ(Qi ;Ω) = 0, (11)

for some d × 1 vector-valued function ψ(·; Ω). The functional
form of ψ(·; Ω) depends on estimation procedure. We defer
specification of ψ(·; Ω) until Section 5 where specific joint
models and target estimators are considered in simulation.
Based on the remeasured data, we solve the following vector
estimating equation evaluated at all B sets of λ-remeasured
data for an estimator of Ω,

n∑
i=1

ψ(B )
{
Q(B )

i (λ);Ω
}

= 0, (12)

where Q(B )
i (λ) = {Qb ,i (λ)}B

b=1, and ψ(B ){Q(B )
i (λ);Ω} =

B−1
∑B

b=1 ψ{Qb ,i (λ);Ω}, for i = 1, . . . , n. Denote by Ω̃B (λ)
the solution to equation (12) and by θ̃B (λ) the correspond-
ing estimator for θ. Using Ω̃B (λ) in place of Ω̂B (λ) in the
remeasurement method is appealing for two reasons. First,
while Ω̃B (λ) is obtained by solving only one vector estimat-
ing equation (12), Ω̂B (λ) requires solving B vector estimating
equations,

n∑
i=1

ψ{Qb ,i (λ);Ω} = 0, b = 1, . . . , B. (13)

Second, the summand in equation (12) is usually “smoother”
than that in equation (13), thus solving equation (12) is often
easier than solving equation (13). To be consistent in notation,
we define Ω̃(0) as the estimator based on {Qi}n

i=1, which is
the same as Ω̂(0).

4.2 Equivalence Between Two Versions of the Remeasurement
Method

The improved remeasurement method is more efficient com-
putationally, and it still retains the key features neces-
sary for diagnosing model misspecification. First, note that,
for the old Wb ,i (λ) defined in equation (7), one has
Wb ,i (λ) |Xi ∼ Nm i

{DiXi , (1 + λ)σ2Im i
}, just like Wi |Xi ∼

Nm i
{DiXi , σ

2Im i
} except for the inflated variance, (1 + λ)σ2.

This feature is important because it implies that the density of
Qb ,i (λ) is identical to that of Qi except for the measurement
error variance. Therefore, if the observed data density given
in equation (2) is correct, then replacing σ2 with (1 + λ)σ2

in equation (2) gives the correct density of the λ-remeasured
data. With the correct likelihood, consistent MLE for all sizes
of λ is achieved, resulting in a constant SIMEX plot asymptot-
ically. Conversely, a nonconstant SIMEX plot indicates model
misspecification.

We show now that the new Wb ,i (λ) defined in equation (8)
has the same feature as that of the old Wb ,i (λ). Because
Wi |Xi ∼ Nm i

(DiXi , σ
2Im i

), it is obvious by equation (10)
that

W2, i (λ) |Xi ∼ Nm i

{
0, (1 + λ)σ2(Im i

− PDi
)
}
. (14)

To derive the distribution of W1,b i (λ) given Xi , we first
consider the distribution of W1,b i (λ) given Tb ,i . By equation
(9), W1,b i (λ) |Tb ,i ∼ Nm i

[E{W1,b i (λ) |Tb ,i}, var{W1,b i (λ) |
Tb ,i}], where, by noting that TT

b ,iDi = 0,

E{W1,b i (λ) |Tb ,i} =
(
PDi

+
√

λDiLiTT
b ,i

)
DiXi = DiXi ,

in which Li = (DT
i Di )−1/2 such that LiLT

i = (DT
i Di )−1. Then

by realizing that TT
b ,iPDi

= 0, and TT
b ,iTb ,i = Ip , we have

var{W1,b i (λ) |Tb ,i}

=
(
PDi

+
√

λDiLiTT
b ,i

)
σ2Im i

(
PDi

+
√

λTb ,iLT
i DT

i

)
= (1 + λ)σ2PD i

.

That is, W1,b i (λ) |Tb ,i ∼ Nm i
{DiXi , (1 + λ)σ2PDi

}, and
thus

W1,b i (λ) |Xi ∼ Nm i

{
DiXi , (1 + λ)σ2PDi

}
. (15)

Lastly, straightforward algebra reveals that, given Xi ,
cov{W1,b i (λ),W2, i (λ)} = 0. Combining equations (14) and
(15), we have Wb ,i (λ) |Xi ∼ Nm i

{DiXi , (1 + λ)σ2Im i
}, as

desired. The new definition of Wb ,i (λ) given in equation (8)
is assumed in the sequel.

Second, we prove that Ω̂B (λ) and Ω̃B (λ) defined in Sec-
tion 4.1 are asymptotically equivalent. Assume that the vector
equation

E[ψ{Qb ,i (λ);Ω(λ)}] = 0 (16)

uniquely defines Ω(λ), where the expectation is taken with
respect to the true density of Qb ,i (λ). Recall that Ω̂b (λ) is the
solution to equation (13), for b = 1, . . . , B. A first-order Taylor
expansion of equation (13) around Ω(λ) and rearrangement
of terms gives

n1/2{Ω̂b (λ) − Ω(λ)}

= n−1/2A−1
1 {Ω(λ)}

n∑
i=1

ψ{Qb ,i (λ);Ω(λ)} + op (1), (17)

for b = 1, . . . , B, where A1{Ω(λ)} is equal to E[−∂ψ
{Qb ,i (λ);Ω}/∂ΩT ] evaluated at Ω(λ), and the expectation is
taken with respect to the true density of Qb ,i (λ). Averaging
equation (17) over b = 1, . . . , B for any finite B gives

n1/2{Ω̂B (λ) − Ω(λ)}

= n−1/2A−1
1 {Ω(λ)}

n∑
i=1

B−1
B∑

b=1

ψ{Qb ,i (λ);Ω(λ)} + op (1)

= n−1/2A−1
1 {Ω(λ)}

n∑
i=1

ψ(B )
{
Q(B )

i (λ);Ω(λ)
}

+ op (1). (18)

Next consider the vector equation that uniquely defines Ω∗(λ),

E
[
ψ

{
Q(B )

i (λ);Ω∗(λ)
}]

= 0, (19)
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where the expectation is taken with respect to the true density
of Q(B )

i (λ). Because

E
[
ψ

{
Q(B )

i (λ);Ω
}]

= B−1
B∑

b=1

E
[
ψ{Qb ,i (λ);Ω}

]
= E

[
ψ{Qb ,i (λ);Ω}

]
,

for any b and i, the solution to equation (16), Ω(λ), also solves
equation (19). By the uniqueness of the solution to equa-
tion (19), Ω∗(λ) = Ω(λ). A first-order Taylor expansion of
equation (12) around Ω∗(λ)(=Ω(λ)) gives

n1/2{Ω̃B (λ) − Ω(λ)}

= n−1/2A−1
2 {Ω(λ)}

n∑
i=1

ψ(B )
{
Q(B )

i (λ);Ω(λ)
}

+ op (1),

(20)

where

A2{Ω(λ)} = E
[
− ∂ψ(B )

{
Q(B )

i (λ);Ω
}/

∂ΩT
]⏐⏐

Ω=Ω(λ )

= B−1
B∑

b=1

E
[
− ∂ψ{Qb ,i (λ);Ω}/∂ΩT

]⏐⏐
Ω=Ω(λ )

= A1{Ω(λ)}.

Finally, subtracting equation (20) from equation (18) reveals
that n1/2{Ω̂B (λ) − Ω̃B (λ)} p→ 0 as n → ∞.

4.3 Test of Robustness
The SIMEX plot is a convenient graphical tool to visually as-
sess latent-model robustness. However, due to the variation in
the estimators, (non)robustness is not always evident from the
SIMEX plot. We now define two test statistics to objectively
assess robustness.

For a vector (or a square matrix) Π, denote by [Π](k ) the
kth element (or diagonal element) of Π. Analogous to the
test statistic proposed in Huang et al. (2006), we define a
test statistic to assess latent-model robustness based on the
improved remeasurement method as

t∗1(λ) = n1/2{Ω̃B (λ) − Ω̃(0)}(k )

/√
[ν̂1](k ),

for 1 ≤ k ≤ d, where ν̂1 is an estimator for the variance–
covariance matrix of n1/2{Ω̃B (λ) − Ω̃(0)}. A second test
statistic we propose is defined by

t∗2(λ) =

n−1/2

[
n∑

i=1

ψ(B )
{
Q(B )

i (λ); Ω̃−σ 2 (0), (1 + λ)σ̃2(0)
}]

(k )

/
√

[ν̂2](k ),

where Ω̃−σ 2 (0) is Ω̃(0) excluding σ2, and ν̂2 is an esti-
mator for the variance–covariance matrix of n−1/2

∑n

i=1 ×
ψ(B ){Q(B )

i (λ); Ω̃−σ 2 (0), (1 + λ)σ̃2(0)}. Note that, unlike t∗1(λ),
computing t∗2(λ) does not require estimating Ω at λ > 0.

Define by Ω−σ 2 the parameter vector Ω excluding σ2. Both
test statistics are motivated by the fact that, if the estimators
for Ω−σ 2 are robust, then Ω−σ 2 (λ) = Ω−σ 2 (0) for λ > 0, and

both test statistics should center at zero. The derivations for
ν̂1 and ν̂2 are given in Web Appendix B. We also show in Web
Appendix C that t∗1(λ) and t∗2(λ) are asymptotically equivalent
for assessing robustness.

5. Simulation Studies
5.1 Joint Models with Simple Endpoint
We first demonstrate the proposed diagnostic methods ap-
plied to joint models with simple endpoint. A data set of
size n = 500 is generated from a joint model with a bi-
nary response. The first component model is a logistic model,
Pr(Yi = 1 |Xi ) = {1 + exp(−β 0 − β1Xi )}−1, where Xi =
(X 1i , X 2i )T , and β1 = (β 11, β 12)T . The true values of the pri-
mary regression parameters θ = (β 0, βT

1 )T are (−2, 1, 1)T .
The latent variable Xi is generated from a location mixture
bivariate normal (BVN), (1 − p)N 2(δ, I2) + pN 2(0, I2), where
p = 0.4 and δ = (5, 0)T . The longitudinal measures Wi are
generated according to equation (1), with mi = 5, tij = j for
j = 1, . . . , 5, Di 5 × 2 with the jth row equal to (1, j), and
Ui ∼ N 5(0, 0.6I5), for i = 1, . . . , 500.

We consider four estimators for θ. One is the CSE derived
in Li et al. (2004). The other three are the MLEs when the
assumed models for X are a two-component location mixture
BVN; a nonmixture BVN; and a model specified by the bi-
variate second-order SNP density (Zhang and Davidian, 2001)
given by f

(a )
X (x ; τ (a )) = P 2

2{R−1(xi − μ)}φ{R−1(xi − μ)}
|R|−1, where P 2(z) = a00 + a10z 1 + a01z 2 + a20z

2
1 + a11z 1z 2 +

a02z
2
2 for z = (z 1, z 2)T , and the polynomial coefficients in

P 2(z) are constrained so that f
(a )
X (x; τ (a )) integrates to one.

Among the four estimators, the CSE is robust by construc-
tion (Li et al., 2004), as is the MLE based on a mixture BVN,
the correct model for X. The other two MLEs are suspect,
as the assumed random effect models are incorrect. We use
the proposed diagnostic devices to evaluate the robustness of
the estimators. The function ψ(·; Ω) in equation (11) associ-
ated with the CSE is the conditional score defined in Li et al.
(2004); and ψ(·; Ω) associated with the MLE is given by

ψ(Yi ,Wi ;Ω)

=

⎛⎜⎜⎜⎜⎜⎜⎝

1
mi − 2

WT
i

{
Im i

− Di

(
DT

i Di

)−1
DT

i

}
Wi − σ2

∂ log fWi

(
wi ; τ (a ), σ2

)
∂τ (a )

∂ log fY i ,Wi

(
yi , wi ; θ, τ (a ), σ2

)
∂θ

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where fWi
(wi ; τ (a ), σ2) is the marginal density of Wi .

We first implement the improved remeasurement method
on one simulated data set with B = 50 and λ ∈ [0, 1]
to construct SIMEX plots. Denote the four estimators as
θ̃

(c )
B (λ), θ̃

(m )
B (λ), θ̃

(n )
B (λ), and θ̃

(s)
B (λ), where the superscript

identifies the estimator: c, CSE; m, mixture BVN; n, BVN;
s, SNP. Figures 1a and b contain the SIMEX plots of the
first two elements in θ for each of the four estimates. As ex-
pected, θ̃

(c )
B (λ) and θ̃

(m )
B (λ) appear to be robust as reflected

by the nearly constant SIMEX plots. The estimate resulting
from the flexible SNP modeling θ̃

(s)
B (λ) also has a relatively
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Figure 1. Plots (a) and (b) are SIMEX plots for the MLEs of the first two elements in each of θ̃
(c )
B (λ), θ̃

(m )
B (λ), θ̃

(n )
B (λ), and

θ̃
(s)
B (λ), computed from one simulated data set. Plots (c) and (d) are the average SIMEX plots from 30 MC replicates. The

line types are, θ̃
(c )
B (λ): long dashed; θ̃

(m )
B (λ) : dash-dotted; θ̃

(n )
B (λ) : solid; and θ̃

(s)
B (λ) : dotted. The short dashed lines are the

reference lines at the true values, β 0 = −2 and β 11 = 1. The ranges of the vertical axes in (a) and (b) are set to be one

estimated standard deviation of θ̃
(n )

(0) below and above the average of the four types of estimates at λ = 0.

flat SIMEX plot. However, the SIMEX plot of θ̃
(n )
B (λ), which

is based on the least flexible assumed model for X among all
the considered models, is clearly distinguished from the other
three. To observe the typical trend in SIMEX plots, we repeat
this experiment 30 times and construct the average SIMEX
plots. These appear in Figures 1c and d. Note the similarity
with Figures 1a and b.

Table 1

Statistics t∗1(1) and t∗2(1) associated with θ̃
(c )
B , θ̃

(m )
B , θ̃

(n )
B , and θ̃

(s)
B as depicted in Figures 1a and b from the

simulation in Section 5.1. The numbers in parentheses are the p-values associated with the statistics.

Statistic Parameter CSE Mixture BVN–MLE BVN–MLE SNP–MLE

t∗1(1) β 0,B 0.001 (0.999) 0.80 (0.42) 3.53 (<0.001) 0.43 (0.67)
β 11,B 0.46 (0.64) −0.51 (0.61) −3.37 (<0.001) −0.42 (0.67)
β 12,B 0.73 (0.47) 1.00 (0.32) −0.26 (0.80) 1.83 (0.07)

t∗2(1) β 0,B −0.95 (0.34) −0.53 (0.59) −0.70 (0.48) 0.01 (0.99)
β 11,B −0.59 (0.56) 0.54 (0.59) 3.24 (0.001) 0.11 (0.91)
β 12,B −0.33 (0.74) −1.47 (0.14) −2.74 (0.006) −0.21 (0.83)

To assess the robustness objectively, we present t∗1(1) and
t∗2(1) in Table 1 for the four types of estimators depicted in
Figures 1a and b. In Table 1, the pattern of p-values is con-
sistent with the visual impressions of Figures 1a and b. The
operating characteristics of t∗1(λ) based on the improved re-
measurement method are similar to those based on the origi-
nal remeasurement method of Huang et al. (2006). To examine
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Table 2
Percentage of t∗2(1) that exceed t0.975(n − d) in absolute value

among the 500 replicate data sets from the simulation in
Section 5.1

Parameter CSE Mixture BVN–MLE BVN–MLE

β 0 0.06 0.04 0.06
β 11 0.05 0.04 0.95
β 12 0.03 0.05 0.56

the operating characteristics of t∗2(λ), we compute t∗2(1) asso-

ciated with θ̃
(c )
B (λ), θ̃

(m )
B (λ), and θ̃

(n )
B (λ), respectively, for 500

replicate data sets generated from the same joint model as
above. The percentages of |t∗2(1)| values exceeding t0.975(n −
d) are presented in Table 2. The results of t∗2(1) for θ̃

(c )
B (λ) and

θ̃
(m )
B (λ) indicate reasonable size of t∗2(1). The results of t∗2(1)

associated with β̃
(n )
11,B and β̃

(n )
12,B suggest promising power. In

combination, these results suggest that t∗2(λ) provides power
for detecting the effects of latent model misspecification, while
maintaining reasonable size.

5.2 Joint Models with Time-to-Event Endpoint
We now study the diagnostic methods on a joint model
with possibly censored time-to-event endpoint. Each simu-
lated data set has n = 500 subjects. The time-to-event is
generated according to a PHM given by λi (u |Xi ) = λ0(u)
exp{γ(X 1i + X 2i u)}, with γ = −1 and λ0(u) = I(u ≥ 16). The
bivariate latent variable Xi = (X 1i , X 2i )T is generated from a
truncated BVN obtained by first generating Xi from a BVN
with E(Xi ) = (4.173,−0.0103)T , and {var(X 1i ), cov(X 1i ,
X 2i ), var(X 1i )} = (4.96, −0.0456, 0.012), then discarding
the realizations with negative γX 2i . This causes around 46%
truncation of the original BVN. The censoring distribution is
exponential with mean 110, resulting in a censoring rate of
around 25%. The longitudinal measures W ij are generated
according to equation (5) at times tij = (0, 2, 4, 8, 16, 24, 32,
40, 48, 56, 64, 72, 80), with a 10% missingness rate at times u
≥ 16. On average there are around six repeated measures for
each subject under this configuration. The intrasubject error
variance is σ2 = 0.15.

Using the superscript convention introduced in Section 5.1,
we consider three MLEs in this simulation, γ̃

(m )
B , γ̃

(n )
B , and

γ̃
(s)
B , where the assumed SNP model is of first order; and the

MLEs are obtained via the expectation–maximization algo-
rithm as described in Wulfsohn and Tsiatis (1997) and Song
et al. (2002). The function ψ(·; Ω) in equation (11) is the
likelihood score in this case. Because it is often very time
consuming to estimate the parameters in the setting of joint
models with time-to-event endpoint, we only compute t∗2(λ) to
assess robustness. For a data set generated from the current
joint model, the values of t∗2(1), with the associated p-values in
the following parentheses, are found to be: γ̃

(m )
B ,−1.56 (0.12);

γ̃
(n )
B ,−1.81 (0.07); and γ̃

(s)
B ,−1.15 (0.25). As in the previous

simulation, γ̃
(n )
B exhibits the greatest evidence of nonrobust-

ness, although falling short of 0.05 level of significance. These
results agree with the observations in Song et al. (2002) and
Hsieh et al. (2006) under similar simulation settings. This

is an example where the longitudinal information is great
enough to yield the MLEs relatively insensitive to random ef-
fect model assumptions. Among 100 Monte Carlo (MC) repli-
cates, the proportions of data sets that yield significant t∗2(1)
are, 0.08, 0.12, and 0.06 for γ̃

(m )
B , γ̃

(n )
B , and γ̃

(s)
B , respectively,

which suggests some gain in robustness from flexible modeling
on X when the true model deviates from normal.

One complication arises when computing the proposed test
statistics for joint models with time-to-event endpoint due
to the dimensionality of Ω. Strictly speaking, the nuisance
parameter ζ in the first component model is the baseline haz-
ard function, λ0(u), which is infinite dimensional. Because
the observed data likelihood is maximized when λ0(u) =
0 at nonevent time u (Song et al., 2002), we define ζ =
{λ0(u1), . . . , λ0(uL )}T , where (u1, . . . , uL ) is the set of ob-
served times to event, and L is the number of distinct times
to event in the data set. This treatment of ζ yields a finite
yet large dimension of Ω, because L is usually large. As shown
in Web Appendix B, computing t∗1(λ) and t∗2(λ) involves the
d × 1 score vector and d × d Hessian matrix. It is formidable
to implement the computation when d is large. Our current
solution to this computational obstacle is to drop ζ from the
parameter space when computing the score or Hessian. The
tradeoff is that the variance estimators, ν̂1 and ν̂2, may be
biased downward. The extent of underestimation depends on
model configuration. For instance, in the foregoing simulation
with 100 MC replicates, the ratio of the average of

√
ν̂2 over

the empirical standard deviation of the numerator of t∗2(1)
are 0.94, 0.97, and 1.00 associated with γ̃

(m )
B , γ̃

(n )
B , and γ̃

(s)
B ,

respectively, with standard error (estimated via the jackknife
method) around 0.07 for each ratio. To compare with the
variance estimators when there is no such complication, we
summarize in Table 3 the ratio of the mean of

√
ν̂l averaging

across 100 MC replicates over the empirical standard devia-
tion of the numerator of t∗l (1) from the simulation in Section
5.1, for l = 1, 2. The results in Table 3 indicate that ν̂1 and
ν̂2 are reasonably reliable variance estimators in the setting
of joint models with simple endpoint.

Due to the complication in variance estimators in joint
models with time-to-event endpoint, even though an insignif-
icant value of t∗1(λ) or t∗2(λ) still indicates lack of evidence for

Table 3
Ratio of the average of

√
ν̂l over the empirical standard

deviation of the numerator of t∗l (1) from 100 MC replicates,

for l = 1, 2, associated with θ̃
(c )
B , θ̃

(m )
B , and θ̃

(n )
B from the

simulation in Section 5.1. The numbers in parentheses are the
jackknife estimates for the standard errors of the ratios.

Mixture
Statistic Parameter CSE BVN–MLE BVN–MLE
√

ν̂1 β 0 1.00 (0.07) 1.02 (0.08) 1.00 (0.09)
β 11 0.99 (0.07) 1.04 (0.07) 1.00 (0.09)
β 12 0.98 (0.06) 1.00 (0.07) 1.00 (0.07)

√
ν̂2 β 0 1.07 (0.07) 1.03 (0.06) 0.99 (0.06)

β 11 1.02 (0.07) 1.05 (0.07) 1.01 (0.06)
β 12 1.07 (0.08) 1.04 (0.07) 1.01 (0.07)
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nonrobustness, one should be cautious when interpreting sig-
nificant values of the test statistics. In that case, one needs
to explore further whether or not the significant results are
caused by overoptimistic variance estimators. For instance,
one can use the bootstrap procedure to obtain a more reli-
able variance estimator, as outlined in Hsieh et al. (2006).

6. Application to SWAN and ACTG 175
6.1 SWAN
We now apply the diagnostic methods to the SWAN data. For
simplicity, we exclude the observable covariates Hi from the
first component model for the simple endpoint in equation (3)
and posit the logistic model given by Pr(Yi = 1 |Xi ) = {1 +
exp(−β 0 − β1Xi )}−1. Three estimators for the primary re-
gression parameter θ = (β 0, βT

1 )T are considered, includ-
ing the CSE, the MLE when assuming Xi follows a two-
component location mixture BVN, and the MLE resulting
from a BVN assumed model for Xi . We compute t∗1(1) and
t∗2(1) with B = 100 to assess the robustness of these three esti-
mators. The resulting test statistics are presented in Table 4.
The SIMEX plots for these three sets of estimates are given
in Web Appendix D.

The statistics t∗1(1) indicate little evidence of nonrobustness
for any of the three estimators for θ, which is also reflected by
the SIMEX plots in Web Appendix D. The statistics t∗2(1) do
not suggest strong evidence of nonrobustness either, but the
values of t∗2(1) associated with β̃

(n )
0,B and β̃

(n )
12,B are much closer

to being significant than those for the counterpart estimates
in θ̃

(c )
B and θ̃

(m )
B . Li et al. (2004) found that the estimated

density for Xi “does not deviate considerably from multivari-
ate normality.” Their finding may explain why our diagnostic
tools do not find strong evidence that θ̃

(n )
B is not robust.

6.2 ACTG 175
We now consider the ACTG 175 data with 2279 subjects and
350 events. This clinical trial found zidovudine alone to be
an inferior treatment compared to the other three therapies,
zidovudine plus didanosine, zidovudine plus zalcitabine, and
didanosine alone. We assume the PHM in equation (4) where
Hi = I(treatment �= zidovudine for subject i). There is an
average of 8.28 CD4 measurements per subject in this data
set.

We compute t∗2(1) with B = 30 associated with three
MLEs for θ = (γ, η)T , with assumed models for Xi as a

Table 4
Statistics t∗1(1) and t∗2(1) associated with θ̃

(c )
B , θ̃

(m )
B , and θ̃

(n )
B

for the SWAN data. The numbers in parentheses are the
p-values associated with the statistics.

Mixture
Statistic Parameter CSE BVN–MLE BVN–MLE

t∗1(1) β 0 −0.18 (0.86) −0.70 (0.48) 0.64 (0.52)
β 11 −0.12 (0.90) −0.67 (0.50) 0.57 (0.57)
β 12 0.17 (0.87) 0.68 (0.50) −0.82 (0.41)

t∗2(1) β 0 0.42 (0.67) 0.87 (0.38) 1.64 (0.10)
β 11 0.03 (0.98) 0.49 (0.62) −0.83 (0.41)
β 12 −0.02 (0.98) −0.35 (0.73) 1.63 (0.10)

two-component location mixture BVN, BVN, and the first-
order SNP, respectively. The resulting statistics t∗2(1) are, for
γ: γ̃(m ), 1.37 (0.17); γ̃(n ), 1.73 (0.08); and γ̃(s), 1.77 (0.08);
for η: η̃(m ), 0.98 (0.32); η̃(n ), 1.32 (0.19); and η̃(s) 0.42 (0.67).
Therefore, there is not sufficient evidence to imply nonrobust-
ness of the MLEs for θ under any of the three assumed random
effect models. This reconciles with the findings in Song et al.
(2002).

7. Discussion
We have presented a graphical method and two test statis-
tics for diagnosing latent-model robustness in joint models
for a primary endpoint and a longitudinal process. The meth-
ods are designed to reveal sensitivity of the target estimator
to model assumptions on the random effects in joint models.
With these diagnostic tools, it is hopeful to find an appro-
priate and parsimonious random effect model to implement
parametric inference as opposed to semiparametric inference
as in Li et al. (2004) and Song et al. (2002), which can be
less efficient. Our diagnostic methods are closely related to
the SIMEX method. Many authors (e.g., Li and Lin, 2003;
Greene and Cai, 2004; He, Yi, and Xiong, 2007) used SIMEX
for estimating regression parameters when covariates in sur-
vival models are measured with error, which is in line with
the initial motivation of SIMEX developed in the framework
of structural measurement error models. Our use of SIMEX
is a new application of it as we do not use it for parame-
ter estimation per se but mainly for assessing latent-model
robustness.

As noted in Section 5.2, the variance estimators in the test
statistics for joint models with time-to-event endpoint can be
overly optimistic. More refined variance estimators for con-
structing the test statistics to assess latent-model robustness
in these complicated joint models call for further investiga-
tion.

8. Supplementary Materials
Web Appendices referenced in Sections 3, 4.3, 5.2, and 6.1 are
available under the Paper Information link at the Biometrics
website http://www.biometrics.tibs.org.

Acknowledgements

This research was supported by NIH grants R01 CA085848
and R37 AI031789, and NSF grant DMS 0304900. The au-
thors thank the editor, the associate editor, and a referee for
their helpful comments and suggestions.

References

Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M.
(2006). Measurement Error in Nonlinear Models: A Modern Per-
spective. London: Chapman & Hall.

Cook, J. and Stefanski, L. A. (1994). Simulation extrapolation esti-
mation in parametric measurement error models. Journal of the
American Statistical Association 89, 1314–1328.

Greene, W. F. and Cai, J. (2004). Measurement error in covariates in
the marginal hazards model for multivariate failure time data.
Biometrics 60, 987–996.

Hammer, S. M., Katezstein, D. A., Hughes, M. D., Gundaker, H.,
Schooley, R. T., Haubrich, R. H., Henry, W. K., Lederman, M.
M., Phair, J. P., Niu, M., Hirsch, M. S., and Merigan, T. C., for



Latent-Model Robustness in Joint Models for a Primary Endpoint and a Longitudinal Process 727

the AIDS Clinical Group Study 175 Study Team. (1996). A trial
comparing nucleoside monotherapy with combination therapy in
HIV-infected adults with CD4 cell counts from 200 to 500 per
cubic millimeter. New England Journal of Medicine 335, 1081–
1089.

He, W., Yi, G. Y., and Xiong, J. (2007). Accelerated failure time mod-
els with covariates subject to measurement error. Statistics in
Medicine 26, 4817–4832.

Hsieh, F., Tseng, Y. K., and Wang, J. L. (2006). Joint modeling of sur-
vival and longitudinal data: Likelihood approach revisited. Bio-
metrics 62, 1037–1043.

Huang, X., Stefanski, L. A., and Davidian, M. (2006). Latent-model
robustness in structural measurement error models. Biometrika
93, 53–64.

Li, Y. and Lin, X. (2003). Functional inference in frailty measurement
error models for clustered survival data using the SIMEX ap-
proach. Journal of the American Statistical Association 98, 191–
203.

Li, E., Zhang, D., and Davidian, M. (2004). Conditional estimation
for generalized linear models when covariates are subject-specific
parameters in a mixed model for longitudinal parameters. Bio-
metrics 60, 1–7.

Rizopoulos, D., Verbeke, G., and Molenberghs, G. (2008). Shared
parameter models under random effects misspecification.
Biometrika 95, 1–12.

Song, X., Davidian, M., and Tsiatis, A. A. (2002). A semiparametric

likelihood approach to joint modeling of longitudinal and time-
to-event data. Biometrics 58, 742–753.

Sowers, M. R., Finkelstein, J., Ettinger, B., Bondarenko, I., Neer, R.,
Cauley, J., Sherman, S., and Greendale, G. (2003). The associ-
ation of endogenous hormone concentrations and bone mineral
density measures in pre- and peri-menopausal women of four eth-
nic groups: SWAN. Osteoporosis International 14, 44–52.

Stefanski, L. A. and Cook, J. (1995). Simulation extrapolation: The
measurement error jackknife. Journal of the American Statistical
Association 90, 1247–1256.

Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator
for the proportional hazards model with longitudinal covariates
measured with error. Biometrika 88, 447–458.

Wang, C. Y., Wang, N., and Wang, S. (2000). Regression analysis when
covariates are regression parameters of a random effects models
for observed longitudinal measurements. Biometrics 56, 487–495.

Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival
and longitudinal data measured with error. Biometrics 53, 330–
339.

Zhang, D. and Davidian, M. (2001). Linear mixed model with flexible
distribution of random effects for longitudinal data. Biometrics
57, 795–802.

Received March 2008. Revised August 2008.
Accepted August 2008.


