
Biometrika (2006), 93, 1, pp. 53–64

© 2006 Biometrika Trust

Printed in Great Britain

Latent-model robustness in structural measurement error
models

B XIANZHENG HUANG, LEONARD A. STEFANSKI
 MARIE DAVIDIAN

Department of Statistics, North Carolina State University, Raleigh,
North Carolina 27695-8203, U.S.A.

xhuang@ncsu.edu stefanski@ncsu.edu davidian@ncsu.edu

S

We present methods for diagnosing the effects of model misspecification of the true-
predictor distribution in structural measurement error models. We first formulate latent-
model robustness theoretically. Then we provide practical techniques for examining the
adequacy of an assumed latent predictor model. The methods are illustrated via analytical
examples, application to simulated data and with data from a study of coronary heart
disease.
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1. I

In a structural measurement error model (Carroll et al., 1995, § 1·2) the true predictor
is a latent variable measured with error. Parametric modelling requires specification of
a distribution for the unobserved latent variable, and issues of model misspecification
naturally arise. We propose a framework for studying robustness to misspecification of
the latent-variable distribution. We call this latent-model robustness and argue that
latent-model robustness means lack of asymptotic bias in estimators for the parameters
of interest. Model fitting with data measured with error is subject to the same pitfalls as
model fitting without measurement error, and other aspects of robustness also come into
play. However, in this paper we focus on misspecification of the latent model and refer
to latent-model robustness to distinguish it from other aspects of robustness. Robustness
to asymptotic bias does not imply asymptotic efficiency. Two models can be equally
robust to bias, yet one might be more efficient. Our methods are useful for screening
out those models that are nonrobust. Efficiency will generally be attained by the most
parsimonious robust model.

2. S   

We consider the classical measurement error model. Let Y be the response, let X
q×1

and W
q×1
be the true and observed predictor, respectively, and let W=X+U, where

U
q×1
is a multivariate normal N(0, s2

U
) random vector with q×q covariance matrix s2

U
.

For now we assume that s2
U
is known. We assume that the conditional density of Y given

X=x is f
Y|X
(y|x; h), known up to h, and that the joint density of (Y , W ) given X=x



54 X. H, L. A. S  M. D

is f
Y,W|X

(y, w|x; h)= f
Y|X
(y|x; h) f

W|X
(w|x; s2

U
), where f

W|X
(w|x; s2

U
) is the N(x, s2

U
) density.

Inference about h is of central interest.
Let {Y

j
, W
j
}n
j=1
denote independent realisations from the measurement error model.

Two ways of viewing {X
j
}n
j=1
lead to two types of measurement error model (Carroll

et al., 1995, § 1·2). In a functional model, {X
j
}n
j=1
are viewed as unknown parameters,

and the likelihood of the observed data is L (h, X
1
, . . . , X

n
)=Xn

j=1
f
Y,W|X

(Y
j
, W
j
|X
j
; h).

In a structural model, {X
j
}n
j=1
are regarded as random variables. Under the assumption

that the density of X is f (a)
X
(x; t(a) ), depending on a parameter vector t(a), the likelihood is

L (h, t(a) )= a
n

j=1
f
Y,W
(Y
j
, W
j
; h, t(a) )= a

n

j=1
P fY|X (Yj |x; h) fW|X (Wj |x; s2U ) f (a)X (x; t(a) )dx. (1)

Functional modelling makes minimal assumptions about the set of unobserved pre-
dictors and thus is generally applicable. However, maximising L (h, X1 , . . . , Xn ) with
respect to h and {X

j
}n
j=1
is often difficult and seldom results in a consistent estimator

for h. Consequently, many functional-model inference methods are moment methods or
conditional likelihood methods (Fuller, 1987; Carroll et al., 1995). Much recent emphasis
has been on structural models and methods. Inference based on (1) is often simpler than
that in functional modelling, and maximum likelihood estimation offers the attraction of
asymptotic efficiency when f (a)

X
(x; t(a) ) is a correct model for X.

A reason often cited for avoiding parametric structural modelling is that misspecification
of the model for X can result in inconsistent estimators for h. With regard to the issue of
robustness of inference on h to misspecification of this model, semiparametric modelling
methods (Roeder et al., 1996; Schafer, 2001) and flexible-parametric modelling methods
(Carroll et al., 1999; Richardson, 2002) provide some solutions. However, it is usually
more difficult to implement them and their efficiency is not practically greater than care-
fully chosen parametric structural methods when the latter are robust. Hence, parametric
structural modelling is appealing in practice because of its simplicity and potential
efficiency, provided inferences are robust to misspecification of the distributional model.

3. T 

3·1. Full latent-model robustness

Henceforth we take the true predictor X and its measurement W to be scalars (q=1),
which suffices to illustrate the proposed methods. Asymptotic bias is possible only if
s2
U
>0 and the latent model for X is misspecified. Thus, according to our definition of

robustness, nonrobustness can be regarded as an interaction between two factors, measure-
ment error variance and the model for X. We first define full latent-model robustness.
Consider the structural-model likelihood (1). The maximum likelihood estimators for
(h, t(a) ), denoted by (h@ , t@(a) ), under this assumed structural model are the values maximising
(1). Denote by h* the true value of h in f

Y|X
(y|x; h). Let

y
S
(y, w, h, t(a) )={∂/∂(h, t(a) )} log{ f

Y,W
(y, w; h, t(a) )}

and define h( . ) and t(a) ( . ) as functions of s
U
implicitly via

E[y
S
{Y, W, h(s

U
), t(a) (s

U
)}]=0. (2)

The expectation is with respect to the distribution of (Y , W ) with density

f *
Y,W
(y, w; h)=P fY|X (y|x; h) fW|X (w|x; s2U ) f *X (x)dx,



55Structural measurement error models

where f *
X
(x) is the true density of X. The structural model maximum likelihood estimator

for h is robust provided

h(s
U
)¬h* (s

U
�0). (3)

It is worth pointing out that the model for X does not have to be correctly specified
for robustness of h@ to obtain. For certain regression models, if the assumed model for X
is sufficiently flexible that the moments of the true model, on which h(s

U
) depends, are

estimated consistently, then full latent-model robustness is possible. Two examples given
next illustrate the consequence of using models with different degrees of flexibility for X.

Example 1: Y given X follows a normal distribution with mean b0+b1X. Assume that
Y |X=x~N(b0+b1x, s2e ), so that h= (b0 , b1 , se )T. If one assumes X to be normal, then
normality of X is not necessary for consistency of h@ (Fuller, 1987, p. 17). The explanation
lies in the facts that the regression coefficients are functions of the first two moments and
that the population moments are consistently estimated regardless of the true distribution
of X. The key to this positive finding is that the normal model assumed for X is flexible
enough to permit consistent estimation of all required moments.
We now consider a less flexible normal model. Suppose that the distribution of X is

assumed to be normal N(t(a), t(a) ), that is with mean equal to the variance. The functions
h( . ) and t(a) ( . ) defined through (2) give the probability limits, as n�2, of h@ and t@(a). If
the true distribution of X is not normal with mean and variance equal, then the assumed
model is incorrect and is too restrictive to permit consistent estimation of the first
two moments of the true distribution of X. This will lead to potential bias in h@ , whose
magnitude is expected to increase with the magnitude of s

U
.

Figures 1(a) and (b) display b0 ( . ) and b1 ( . ) against sU for three true distributions of X,
N (1, 1), N (0·5, 1) and N (1·5, 1), when h*= (0, 1, 1)T. In the latter two cases, the assumed
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Fig. 1. (a) and (b) show b0 (sU ) and b1 (sU ), respectively, for
assumed model N(t(a), t(a) ) and three true X distributions,
N(1, 1), solid line, N(0·5, 1), dashed line, and N(1·5, 1), dashed-
dotted line. (c) and (d) show single-sample remeasurement

versions of (a) and (b) as described in Example 5.
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model is incorrect and too restrictive compared to the true density. As shown in the
plots, the misspecification and lack of flexibility in modelling X result in asymptotic
biases in b@0 and b

@
1 that increase in magnitude with sU . The plot of se ( . ) is similar and is

omitted.
In Example 1, we considered three true distributions of X while fixing the assumed

model for X at a very restrictive distribution. In the next example, we fix the true
distribution of X and compare h( . ) and h@ under several assumed models for X.

Example 2: Y given X follows a Bernoulli distribution with mean probit(b0+b1X).
Assume that Y is binary and that pr(Y=1|X=x)=W (b0+b1x), h= (b0 , b1 )T, where
W ( . ) is the standard normal cumulative distribution function, and the true distribution
of X is the mixture of two normals, N(m

i
, s2
i
), for i=1, 2, with mixing proportion

aµ(0, 0·5). Suppose h*= (0, 1)T and t*= (2·35, 0·64,−0·26, 0·62, 0·1)T, the true values of
(m1 , s1 , m2 , s2 , a)T. The true density curve of X is right skewed with a small secondary
mode.
Three assumed models for X are used to construct the likelihood in (1). First, assume
that X~N(m

x
, s2
x
). Secondly, assume that X has the second-order seminonparametric

density

1

g
wAx−jg Bqa0+a1Ax−jg B+a2Ax−jg B2r2, (4)

where w( . ) is the standard normal density function, (j, g, a0 , a1 , a2 ) are unknown para-
meters, and (a0 , a1 , a2 ) are constrained so that (4) integrates to one (Zhang & Davidian,
2001). Thirdly, assume that X follows a normal mixture distribution. Compared to the
true model for X, the first assumed model is incorrect and probably too restrictive,
the second assumed model is also incorrect but much more flexible than the first one, and
the third one is correct.
Denote by f (n)

Y,W
(y, w; h, t(n), s

U
), f (s)
Y,W
(y, w; h, t(s), s

U
) and f (m)

Y,W
(y, w; h, t(m), s

U
) the

joint densities of (Y , W ) when X is assumed to follow the normal, seminonparametric
and normal mixture distributions, where t(n)= (m

x
, s
x
)T, t(s)= (j, g, a0 , a1 , a2 )T and t(m)=

(m1 , s1 , m2 , s2 , a)T. Similarly, denote by h(n) (sU ), h(s) (sU ) and h(m) (sU ) the h(sU )’s defined
by (2) under these assumed models for X. Theoretically, h(m) (s

U
)¬h*, as it results from

the correct modelling. Hence we use it as the gold standard to which h(n) and h(s) are
compared. The differences, h(n)−h(m) and h(s)−h(m), are plotted against s

U
in Figs 2(a)

and (b). The plots indicate that h(s) (s
U
) is much more robust than h(n) (s

U
) and closely

matches h(m) (s
U
).

Figures 2(c) and (d) are Monte Carlo estimated finite-sample versions of Figs 2(a) and
(b). In the simulation study, 100 datasets each of size 500 were generated from the true
structural measurement error model with the same parameter values as given above. For
each dataset, h@ was computed by maximising (1), depending on the assumed model for X.
The expectations, E(h@ (.) ), are estimated by the corresponding Monte Carlo averages.
Clearly, no procedure can do better than the true-model estimator, h@ (m), and we use it as
the gold standard to which h@ (n) and h@ (s) are compared. The Monte Carlo averages of the
differences, h@ (n)−h@ (m) and h@ (s)−h@ (m), plotted against s

U
in Figs 2(c) and (d), indicate the

robustness of h@ (s) and the nonrobustness of h@ (n).



57Structural measurement error models

0.00

_0.06

_0.12
0.0 0.5 1.0

0.00

_0.06

_0.12

0.00

_0.15

_0.30

0.00

_0.15

_0.30

sU

(c) (d)

(a) (b)

0.0 0.5 1.0
sU

0.0 0.5 1.0
sU

0.0 0.5 1.0
sU

b
1 

 _ 
b

1
(.

)
(m

)

b
0 

 _ 
b

0
(.

)
(m

)
(.

)
b

0 
_ 
b

0(m
)

^
^

b
1 

 _ 
b

1
(.

)
(m

)
^

^

Fig. 2: Plots for Example 2 with Y |X linear-probit. (a) and (b) show
h(n) (s

U
)−h(m) (s

U
) and h(s) (s

U
)−h(m) (s

U
). (c) and (d) show Monte

Carlo estimates based on 100 replicates, of finite-sample, n=500,
version of (a) and (b). The solid line and the dashed line corre-
spond to the normal modelling and seminonparametric modelling,

respectively. The dotted line is the reference line.

3·2. First-order latent-model robustness

The condition for full latent-model robustness (3) is not easily verified except in very
simple models. Also, it is not obvious that it can be satisfied in general without making
some assumptions about the true distribution of X, except in simple models. Thus its
utility is limited.
However, note that, if (3) is satisfied, then the derivatives of h(s

U
) with respect to s

U
of

any order are identically 0. More generally, whether (3) is satisfied or not, h(s
U
) has the

MacLaurin series expansion h(s
U
)=h*+s2

U
h◊(0)/2+o(s2

U
). Thus, a necessary, first-order

condition for robustness is that h◊(0)=0. This condition is somewhat easier to verify
than (3). The required derivatives h◊(0) can be obtained by implicit differentiation as in
Stefanski (1985). The following two examples illustrate this condition.

Example 3: First-order latent-model robustness of location-scale models in simple
linear regression. Consider the simple linear regression model in which Y given X is
N(b0+b1X, s2e ), so that h= (b0 , b1 , se )T. Suppose that the distribution of X is modelled
with a location-scale family, f

X
(x; t)=t2h(t1+t2x), for some fixed, known, but otherwise

arbitrary density h ( . ). For this model it can be shown that h◊(0) is a nonsingular matrix
multiple of the vector

At*2 b*1 Eqh∞(t*1+t*2X)h(t*
1
+t*
2
X)r , b*1+t*2 b*1 EqXh∞(t*1+t*2X)h(t*

1
+t*
2
X) r , 0BT, (5)

where b*
1
is the true value of b1 , and t*1 and t*2 are the probability limits of the maximum

likelihood estimators for t1 and t2 when sU=0. Regardless of whether or not the true
density of X is in the assumed location-scale family, t*

1
and t*

2
satisfy the asymptotic
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location-scale likelihood equations

Eqh∞(t*1+t*2X)h(t*
1
+t*
2
X)r=0, EqXh∞(t*1+t*2X)h(t*

1
+t*
2
X) r+ 1t*

2
=0. (6)

Note that equations (6) imply that (5) is equal to 03×1 . Thus, h
@ is first-order robust

for arbitrary location-scale models for X. The robustness of the normal distribution
assumption in Example 1 is a special case of the first-order latent-model robustness of
location-scale families.

Example 4: First-order latent-model robustness of the normal distribution model in
quadratic regression. Consider the quadratic regression model in which Y given
X~N(b0+b1X+b2X2, s2e ), so that h= (b0 , b1 , b2 , se )T. Suppose that X is modelled as
N(t1 , t2 ). For this model it can be shown that h◊(0) is a nonsingular matrix multiple of
the vector

A −2b*
2
t*
2
+b*
1
E(X)+2b*

2
E(X2 )−2b*

2
t*
1
E(X)−b*

1
t*
1

−b*
1
t*
2
−4b*

2
t*
2
E(X)−b*

1
t*
1
E(X)−2b*

2
t*
1
E(X2 )+b*

1
E(X2 )+2b*

2
E(X3 )

−6t*
2
b*
2
E(X2 )−2t*

2
b*
1
E(X)+b*

1
E(X3 )+2b*

2
E(X4 )−b*

1
t*
1
E(X2 )−2b*

2
t*
1
E(X3 )

0 B ,
(7)

where b*
1
and b*

2
are the true values of b1 and b2 , and t*1 and t*2 are the probability limits

of the maximum likelihood estimators for t1 and t2 when sU=0. Thus t*1=E(X) and
t*
2
=E(X2 )−{E(X)}2. Further simplification shows that the first component of (7) is

identically 0, the second reduces to 2b*
2
s3
X
k
X,3
, and the third equals

b*
1
s3
X
k
X,3
+2b*

2
{s4
X
(k
X,4
−3)+3m

X
s3
X
k
X,3
},

where k
X,3
and k

X,4
are the skewness and kurtosis ofX. Thus, estimation of the coefficients

in the quadratic model with an assumed normal model for X is first-order robust in
general only if the true distribution of X has k

X,3
=0 and k

X,4
=3. These conditions are

satisfied for X normal, but not in general.
Full latent-model robustness and first-order latent-model robustness are useful

analytical constructs for understanding sensitivity of inference to model misspecification.
The latter is easier to assess but still quite involved for many models. The more relevant
problem for data analysis is assessing the robustness to a choice of model for X in a
particular application.

4. E  

4·1. T he remeasurement method

Our discussion of theoretical robustness shows that, when an inadequate model for X
is assumed, the bias in h@ is manifested by a nonconstant plot of h(s

U
) that generally

increases in absolute value as s
U
increases. We now show how to construct empirical

versions of these plots and how to check for lack of robustness, using remeasured data
generated as in the simulation step of the simulation-extrapolaton, , method (Cook
& Stefanski, 1994; Stefanski & Cook, 1995; Carroll et al., 1995, Ch. 4). Remeasurement is
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a simulation-based technique for determining the effects of measurement error, such as
bias and variance, on a statistic. The idea is that the effects of measurement error from a
particular dataset are determined by computing the statistic on simulated ‘remeasured’
datasets, in which the variables measured with error are further contaminated with
Monte-Carlo-generated pseudo-measurement errors. We use remeasurement to reveal
nonrobustness in the assumed model for X.
Our method exploits the fact that, if ∆ f

Y|X
(y|x; h) f

W|X
(w|x; s2

U
) f (a)
X
(x; t(a) )dx is a correct

model for (Y , W ), then ∆ f
Y|X
(y|x; h) f

W|X
{w|x; (1+l)s2

U
} f (a)
X
(x; t(a) )dx is a correct model

for (Y, W+lDs
U
Z ) for all l>0, where Z~N (0, 1) independently of (Y , W ). Consequently,

if the assumed model for X is correct or robust in the sense defined in § 3, an estimator
for h derived from the latter model fitted to remeasured data {Y

j
, W
j
+lDs

U
Z
j
}n
j=1
should

be consistent regardless of the size of l, and therefore should exhibit no dependence on l.
Conversely, if the model is incorrect and nonrobust, then absolute bias will tend to increase
with increasing measurement error, and this will be manifested by a dependence on l.
In our method, the bth l-remeasured dataset (b=1, 2, . . . , B) is constructed by replacing

W
j
with W

b,j
(l)=W

j
+lDs

U
Z
b,j
, for j=1, . . . , n, where the Z

b,j
are independent and

identically distributed as N (0, 1). Based on the bth l-remeasured dataset {Y
j
, W
b,j
(l)}n
j=1
,

compute the bth l-contaminated, pseudo-estimate, h@
b
(l). Averaging over b gives

h@B (l)=W
B
b=1
h@
b
(l)/B, which is an estimator for h when the measurement error variance of

the remeasured data is (1+l)s2
U
. Nonconstancy in the plot of h@B (l) indicates lack of

robustness in the assumed model for X. For simulation-extrapolation estimation, Carroll
et al. (1995) recommend taking lµ[0, lmax] with 1∏lmax∏3. For our diagnostic
purposes, we take lmax=1 or 3. Note that the added variance is ls2U . Thus, if s2U is small,
the amount of added noise will also be small provided l is not extremely large.
Note that our method is not specific to parametric likelihood estimation. For example,

if W y(Y
j
, W
j
, h, s2
U
) is a correct or robust estimating equation for h, the same is true for

W y{Y
j
, W
b,j
(l), h, (1+l)s2

U
}, and robustness of y can be checked as described above.

4·2. Simulation studies

Example 5: Y given X follows a normal distribution with mean b0+b1X. This
example complements Example 1. For each of the true distributions for X, N (1, 1),
N (0·5, 1) and N (1·5, 1), a random sample {Y

j
, W
j
}500
j=1
was generated according to

Y |X~N(b
0
+b
1
X, s2
e
) with b0=0, b1=1, se=1, and W |X~N(X, s2U ) with s2U=0·5. In

all three cases the assumed model for X is N(t(a), t(a) ). For each fixed l varying from 0
to 1, B=500 l-remeasured datasets were generated. Figures 1(c) and (d) display plots of
h@B (l) versus l. Note that, as l ranges from 0 to 1, var{W (l)|X} ranges from 0·5 to 1, where
W (l)=W+lDs

U
Z.

For the case X~N (1, 1) when the assumed model is correct, the curves of b@0,B (l) and
b@1,B (l) are almost horizontal lines, as expected. For the other two cases, the assumed
model is incorrect and too restrictive, which in general should result in nonhorizontal
curves of b@0,B (l) and b

@
1,B (l). These cases are also readily identified in the plots of the

regression parameters.

Example 6: Y given X follows a Bernoulli distribution with mean probit(b0+b1X). A
random sample {Y

j
, W
j
}2000
j=1
was generated from the true measurement error model defined

in Example 2 with s2
U
=0·16. For each fixed l ranging from 0 to 3, B=100 l-remeasured

datasets were generated. The three assumed models chosen in Example 2 were used to
construct (1).
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Fig. 3. (a) and (b) show plots for Example 6 with Y |X linear-probit,
h@ (n)B −h

@ (m)B , solid line, and h
@ (s)B −h

@ (m)B , dashed line, resulting from the
remeasurement method with B=100. (c) and (d) show plots for
Example 7 with Y |X linear-logistic, h@ (n)B , solid line, h

@ (s)B , dashed line,
h@ (m)B , dashed-dotted line, and h

@ (c)B , long-short-dashed line, result-
ing from the remeasurement method with B=100. The dotted lines

in plots (a)–(d) are the reference lines.

With the superscript notation introduced in Example 2, Figs 3(a) and (b) depict
h@ (n)B (l)−h

@ (m)B (l) and h
@ (s)B (l)−h

@ (m)B (l). The implications with regard to robustness of estimates
resulting from different modellings agree with those suggested by Fig. 2. Moreover,
the estimated moments, not shown, from seminonparametric modelling are virtually
unbiased for the moments of the true model up to high orders, implying that the estimated
seminonparametric density approximates the true mixture normal density very well.

Example 7: Y given X follows a Bernoulli distribution with mean equal to the logistic
transformation of b0+b1X. The specifications of the measurement error model and
the three assumed models for X are identical to those in Example 6, except that now
pr(Y=1|X=x)={1+exp(−b0−b1x)}−1.
In addition to h@ (n)B (l), h

@ (s)B (l) and h
@ (m)B (l), the conditional score estimator for h (Stefanski &

Carroll, 1987), denoted by h@ (c)B (l), was also computed. The conditional score equation for
this linear-logistic measurement error model is derived from the conditional density of
Y |D, where D=W+Y s2

U
b
1
. The conditional distribution of Y |D does not depend on X,

and thus conditional score estimators satisfy our definition of full latent-model robustness.
We include it here to show that our proposed methods also suggest its robustness.
From the same simulation set-up as in Example 6 but with the logistic model, h@ (n)B (l),
h@ (s)B (l), h

@ (m)B (l) and h
@ (c)B (l) were computed for the generated l-remeasured datasets. Figures

3(c) and (d) display these estimates as functions of l. As expected, h@ (c)B (l) appears to be
robust; moreover, h@ (s)B (l) and h

@ (m)B (l) are very similar to h
@ (c)B (l), while h

@ (n)B (l) is the least robust.
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4·3. T est of latent-model robustness

So far, the claims of robustness or lack of robustness in the examples are based on
visual assessment of the plots of h@B (l)=W

B
b=1
h@
b
(l)/B. In practice, an objective assessment

of robustness is required. The statistic t(l* )={h
@
B (0)−h

@
B (l* )}/n@* , where n@2* is an estimator

of var{h@B (0)−h
@
B (l* )}, provides a large-sample test of H0 : E{h

@
B (0)−h

@
B (l* )}=0, with

large values of |t(l* )| indicating lack of robustness. The variance estimator n@2* is derived
in the Appendix. The choice of l* is partly related to B. Ideally, l* should be small to be
consistent with the notion of first-order latent-model robustness in § 3·2. However, for l*
too small, the Monte Carlo variation associated with B<2 would render the statistic
powerless. For the choices of B used in this paper, we have investigated l*=1, 2, 3 and
found very little difference in performance of the test statistics. Hence we report results
for only l*=3.
Corresponding to the simulation presented in Figs 3(a) and (b) for Example 6, the upper

half of Table 1 gives the t(l* ) statistics for evaluating the evidence regarding the changes
in b@0,B and b

@
1,B for each assumed model for X. Only the statistics for the normal model

exceed the asymptotic critical value of 1·96. The lower half of Table 1 gives the t(l* )
statistics for the simulation presented in Figs 3(c) and (d) for Example 7. The statistics
are consistent with the claims made previously regarding robustness.

Table 1. Statistics, t(l* ), assessing robustness of the parameter estimators
for l*=3 under three ways of modelling for the simulated data from the
linear-probit measurement error model in Example 6, and for the simulated
data from the linear-logistic measurement error model in Example 7.

Example 7 also considers the conditional score estimator.

Normal Seminonparametric Normal mixture Conditional score

Example 6
Change in b@0,B 6·91 0·12 −0·83 –
Change in b@1,B 4·99 −0·20 −0·32 –

Example 7
Change in b@0,B 5·26 0·65 0·61 0·12
Change in b@1,B 3·45 0·72 0·73 −0·66

Under the model and parameter settings in Example 2, we examined operating charac-
teristics of t (3) via a Monte Carlo simulation study. In the simulation, 100 datasets of
size 1000 were generated from the measurement error model with s2

U
=0·16. For each

dataset, the remeasurement method was applied with B=50 and l varying from 0 to 3,
and t (3) statistics were computed for testing the robustness in b@0,B and b

@
1,B . From the

simulation, when X is modelled as normal, seminonparametric and normal mixture, the
proportions of 100 datasets with |t (3)|>1·96 are 1·00, 0·08, 0·07 for b@0,B and 0·99, 0·1, 0·1
for b@1,B . The maximum standard error for these estimated rejection rates was 0·03. The
results indicate that the proposed statistic has the desired operating characteristics.

5. C     

We apply the remeasurement method and testing procedure to data on 1615 individuals
from the Framingham study (Kannel et al., 1986). This study followed subjects for develop-
ment of coronary heart disease over several examination periods, with one of the objectives
being to characterise the relationship between a response Y , an indicator of evidence of
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coronary heart disease at the end of an eight-year follow-up period after the second
examination visit, and unobservable long-term systolic blood pressure X. We take W to
be the systolic blood pressure from examination 2 with s2

U
estimated using examination 2

and examination 3 measurements as in Carroll et al. (1995).
We assume that pr(Y=1|X)=W (b0+b1X), with X modelled in the same three ways
as in Example 2. For each fixed l varying from 0 to 3, B=100 l-remeasured datasets
were generated. Figure 4 presents the plots of b@0,B (l) and b

@
1,B (l) versus l for the three

ways of modelling and shows that the seminonparametric modelling leads to the most
robust estimates while the normal modelling results in the least robust estimates. It suggests
a gain in robustness via flexible modelling for X.

_2.9

_3.2
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1.2

1.4

1.6
(a) (b)

0
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1 2 30
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1 2 3
b

1,
B

^b
0,

B
^

Fig. 4. Plots of h@ (n)B , solid line, h
@ (s)B , dashed line, and h

@ (m)B , dashed-
dotted line, resulting from applying the remeasurement method

with B=100 to data from the Framingham study.

The values of t (3) for assessing robustness when X is assumed to follow the normal,
seminonparametric and normal mixture distributions are 3·16,−0·18 and−0·81 for b@0,B ,
and−3·21, 0·19 and 0·81 for b@1,B . That the seminonparametric modelling gives the smallest|t (3)| and normal modelling yields the largest |t (3)| justifies the visual conclusions drawn
from Fig. 4.

6. D

In this paper we have proposed methods for diagnosis of robustness to the distributional
specification of the true predictor in structural measurement error modelling, either by
checking formal analytic robustness conditions or empirically via the remeasurement
method and a testing procedure. Although we studied only the classical error model, the
remeasurement method can be applied with any error model whose effects on the observed
data can be simulated, such as multiplicative error models. When there are additional
observable covariates V in the model for Y , the relevant issue is about the specification
of the model for X|V instead of the model for X. Of course, the data analyst should always
bear in mind that a finding of latent-model robustness using these methods does not
preclude lack of robustness to other modelling assumptions.
The principles underlying both the theoretical and empirical methods are applicable

to general structural latent variable models. One example, which can be viewed as a
generalisation of the structural measurement error model, is that of so-called joint models,
which link a longitudinal response and a primary endpoint through shared dependence
on latent random effects (Henderson et al., 2000). We are currently studying adaptation
of the proposed techniques to these more complex models, including joint models for an
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error-prone longitudinal response and a primary endpoint that may be either a simple
response (Li et al., 2004) or a censored time-to-event (Song et al., 2002; Tsiatis &
Davidian, 2004).
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A

Estimation of var{h@
B
(0)−h@

B
(l* )} in § 4·3

Let h be the vector of unknown parameters under the assumed measurement error model. We
now derive an estimator for var{h@B (0)−h

@
B (l* )}, where l*>0. For brevity, this variance is denoted

by var(h@ (0)−h@ (l
*
) ), where

h@ (k)=
1

B
∑
B

b=1
h@ (k)
b
, (A1)

and h@ (k)
b
solves Wn

j=1
y(Y
j
, W
j
+k1/2s

U
Z
j,b
; h)=0, for k=0, l* and b=1, . . . , B. Here y( . ) is the

score function under the assumed measurement error model. Approximating the estimator with
the average of influence functions (Casella & Berger, 2002, p. 517) gives

h@ (k)
b
jh(k)+

1

n
A(h(k) )−1 ∑

n

j=1
y(Y
j
, W
j
+k1/2s

U
Z
j,b
; h(k) ) (b=1, . . . , B, k=0, l

*
), (A2)

where h(k) is an unknown parameter vector, and A(h(k) )=E{−(∂/∂hT )y(Y , W+k1/2s
U
Z; h(k) )},

which is estimated by AC (h@ (k)
b
)=n−1 Wn

j=1
{−(∂/∂hT )y(Y

j
, W
j
+k1/2s

U
Z
j,b
; h@ (k)
b
)}. Replacing A(h(k) )

with AC (h@ (k)
b
) and the unknown h(k) in y( . ) with h@ (k)

b
, and considering that the score function evaluated

at h@ (k)
b
may not be exactly zero because of the numerical inaccuracy of the algorithm used to find

the maximum likelihood estimator for h(k), yields an adjusted version of (A2), given by

h@ (k)
b
jh(k)+

1

n
∑
n

j=1
AC (h@ (k)
b
)−1{y(Y

j
, W
j
+k1/2s

U
Z
j,b
; h@ (k)
b
)−y: (k)

b
}, (A3)

where y: (k)
b
=n−1 Wn

j=1
y(Y
j
, W
j
+k1/2s

U
Z
j,b
; h@ (k)
b
), for b=1, . . . , B and k=0, l* . It follows by

(A1) and (A3) that h@ (k)jh(k)+B−1 WB
b=1
n−1 Wn

j=1
AC (h@ (k)
b
)−1{y(Y

j
, W
j
+k1/2s

U
Z
j,b
; h@ (k)
b
)−y: (k)

b
}, for

k=0, l* . Therefore,

h@ (0)−h@ (l
*
)jh(0)−h(l

*
)+
1

n
∑
n

j=1

1

B
∑
B

b=1
[AC (h@ (0)
b
)−1{y(Y

j
, W
j
; h@ (0)
b
)−y: (0)

b
}

−AC (h@ (l
*
)

b
)−1{y(Y

j
, W
j
+l1/2
*
s
U
Z
j,b
; h@ (l
*
)

b
)−y: (l

*
)

b
}].

(A4)

Define

T
j
=B−1 ∑

B

b=1
[AC (h@ (0)
b
)−1{y(Y

j
, W
j
; h@ (0)
b
)−y: (0)

b
}−AC (h@ (l

*
)

b
)−1{y(Y

j
, W
j
+l1/2
*
s
U
Z
j,b
; h@ (l
*
)

b
)−y: (l

*
)

b
}],

for j=1, . . . , n. At l=0, the influence functions are equal for all b=1, . . . , B, and T
j
simplifies to

T
j
=AC (h@ (0) )−1{y(Y

j
, W
j
; h@ (0) )−y: (0)}−B−1 ∑

B

b=1
AC (h@ (l

*
)

b
)−1{y(Y

j
, W
j
+l1/2
*
s
U
Z
j,b
; h@ (l
*
)

b
)−y: (l

*
)

b
},
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for j=1, . . . , n. Substituting T
j
in (A4) gives h@ (0)−h@ (l

*
)jh(0)−h(l

*
)+Wn

i=1
T
i
/n. Since {T

j
}n
j=1
are

independent, var (h@ (0)−h@ (l
*
) )jvar (T

1
)/n. Finally, var (h@ (0)−h@ (l

*
) )jS2

T
/n, where S2

T
denotes the

sample variance-covariance matrix of {T
j
}n
j=1
.
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