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Abstract
In the framework of generalized linear models for binary responses, we develop

parametric methods that yield estimators for regression coefficients less compro-

mised by an inadequate posited link function. The improved inference are obtained

without correcting a misspecified model, and thus are referred to as wrong-model

inference. A byproduct of the proposed methods is a simple test for link misspec-

ification in this class of models. Impressive bias reduction in estimators for the

regression coefficients from the proposed methods and promising power of the

proposed test to detect link misspecification are demonstrated in simulation studies.

We also apply these methods to a classic data example frequently analyzed in the

existing literature concerning this class of models.

Keywords Bias � Binary response � Logistic regression � Model misspecification �
Reclassification

1 Introduction

Since the seminal paper of Nelder and Wedderburn (1972), the class of generalized

linear models (GLM) has received wide acceptance in a host of applications

(McCullagh and Nelder 1989). It provides a practically interpretable and mathe-

matically flexible platform for studying the association between a non-normal

response and covariates of interest. In this study we focus on GLM for a binary

response. The most popular GLM for binary responses assume a logit link, or probit,
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complementary log-log, etc., mainly due to ease of interpretation and convenient

implementation using standard software. However, it has come to practitioners’

attention that a symmetry link, such as logit and probit, may not be reasonable in

many applications; and the asymmetric complementary log-log link only allows a

fixed negative skewness, making it too rigid for many scenarios. Many theoreticians

concur with this concern regarding routine use of these popular links. For instance,

Czado and Santner (1992) considered GLM for binary responses and showed that

the maximum likelihood estimators (MLE) of regression coefficients obtained under

an inappropriate link can be biased and inefficient.

There are two ways to avoid an inadequate link function. The more explored way

is employing a flexible class of link functions (Aranda-Ordaz 1981; Guerrero and

Johnson 1982; Morgan 1983; Whittemore 1983; Stukel 1988; Kim et al. 2007; Jiang

et al. 2013). With a nonstandard link involved, inference results from methods along

this line are usually harder to interpret than those from methods that use a standard

link function. But, when a standard link is inadequate, methods adopting flexible

links can better preserve certain integrity of covariate effects. This is especially

important when the question of interest is whether or not there exists a significant

covariate effect. Another way is to stick to one of the routinely used links, such as

the logit link, and assume a more flexible functional form through which covariates

enter the conditional mean model of the response. This approach can be unattractive

to practitioners when a specific simple form of the linear predictor in GLM is

desirable for meaningful interpretations of a covariate effect. This is the case in, for

example, models in the item response theory as discussed in Samejima (2000).

There, the author showed that the MLE for regression coefficients based on a

logistic regression produces results that contradict with the psychological reality. As

a remedy, she proposed a family of models with asymmetric links without revising

the functional form of the linear predictor.

In this study, we develop parametric methods to achieve estimators for regression

coefficients less compromised by link misspecification without correcting the

assumed link or adopting a nonlinear predictor. Similar to methods that employ

flexible link functions, the main benefit of the proposed methods is to avoid

distorting inference for covariate effects due to a misspecified link, even though one

sacrifices simple interpretation for the estimated covariate effects. To gain insight

on the impact of link misspecification on regression coefficients estimation, we

investigate asymptotic bias in the MLE for regression coefficients in the presence of

link misspecification in Sect. 2. Results from the bias analysis motivate the first

proposed bias reduction method we present in Sect. 3, followed by a second

proposed method that also leads to substantial bias reduction in the MLE for

regression coefficients in the presence of link misspecification. Section 4 reports

simulation studies designed to illustrate the implementation and performance of the

proposed methods. In Sect. 5, a simple yet powerful test for link misspecification is

developed using byproducts of the proposed estimation methods, which unifies

parameter estimation and model verification in one round of analysis based on

maximum likelihood. The bias reduction methods and the new test for link

misspecification are applied to a classic real-life data example in Sect. 6. Finally, we
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address some practical considerations, refinement of the proposed methods, and

future research agenda in Sect. 7.

2 Effects of local link misspecification

2.1 Models and data

Suppose that one has a random sample consisting of n realizations of the response-

covariate pair, (Y, X), and the mean of the binary response Y given X is

EðYijXiÞ ¼ Gðb0 þ b1XiÞ, for i ¼ 1; . . .; n, where the regression coefficients b ¼
ðb0; b1Þ

T
are of central interest, and G(t) is a non-decreasing differentiable link

function. Denote by H(t) the link one assumes for the mean model EðYijXiÞ that

differs from G(t). For notational simplicity, we assume a scalar covariate in this

section. Generalization to multivariate regression models will be addressed in the

next two sections.

Denoted by ~b ¼ ð~b0; ~b1ÞT the naive MLE for b resulting from the misspecified

model. To obtain an estimator less biased than ~b, we propose two strategies making

use of a reclassified response Y� generated according to

PðY� ¼ Y jY ;XÞ ¼ p: ð1Þ

In principle, one may let p depend on (Y, X). For simplicity, a constant p is used in

the sequel. Combining (1) and the assumed GLM, one has the assumed model for Y�

given X specified by EðY�
i jXiÞ ¼ ð2p� 1ÞHðb0 þ b1XiÞ þ 1� p, for i ¼ 1; . . .; n. It

has been shown that p and b are identifiable using the reclassified data fðY�
i ;XiÞgni¼1

when p 6¼ 0:5 (Carroll et al. 2006, Section 15.3). Denote by p̂ and b̂ðpÞ the resulting
MLEs for p and b based on the assumed model, respectively.

Since p is a known constant in the user-designed reclassification model, one can

literally see the finite sample bias in p̂. Moreover, p̂ and b̂ðpÞ are entwined in the

sense that the bias in one estimator correlates with the bias in the other estimator.

This connection is the gateway to an estimator for b that is less biased than ~b. We

develop the first bias reduction strategy by exploiting this connection explicitly. Our

second proposed strategy makes use of this connection implicitly. In particular, the

first strategy is developed based on the following bias analysis of b̂ðpÞ under mild

link misspecification.

2.2 Asymptotic bias

Denote by p and b ¼ ðb0; b1ÞT the limiting MLEs for p and b, respectively, under

the assumed model based on the reclassified data as n ! 1. According to the

theories of MLEs resulting from misspecified models (White 1982), under regularity

conditions, ðp; bÞ is the point in the parameter space associated with ðp; bÞ where the
Kullback-Leibler distance between the true model likelihood and the assumed

model likelihood for the reclassified data is minimized. Equivalently, ðp; bÞ solves
the following normal score equations, which we derive in the ‘‘Appendix’’,
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where the expectation is with respect to the distribution of X, g ¼ b0 þ b1X,

H0ðgÞ ¼ ðd=dgÞHðgÞ,

l ¼ ð2p� 1ÞHðgÞ þ 1� p; ð3Þ

is the mean of Y� given X under the assumed model evaluated at the limiting MLEs,

ðp; b0; b1Þ, and

l0 ¼ ð2p� 1ÞGðg0Þ þ 1� p ð4Þ

is the mean of Y� given X under the correct model evaluated at the true parameter

values, ðp; b0; b1Þ, in which g0 ¼ b0 þ b1X.
To gain insight on the properties of b, we first consider a local model

misspecification where the link misspecification is mild. More specifically, suppose

that the true link relates to the assumed link via

GðtÞ ¼ ð1� �ÞHðtÞ þ �GcðtÞ; ð5Þ

for some small � 2 ½0; 1�, where GcðtÞ can be interpreted as the contamination link.

In the presence of outliers in data, (5) can be interpreted as that, had there been no

outliers (corresponding to � ¼ 0), H(t) would be an adequate link function in a GLM

characterizing the data; with more extreme outliers (corresponding to a larger �),
one has to modify one’s favorite link function, such as the logit link, to construct a

less popular link G(t) in order to better capture the data with outliers as a whole.

Following this interpretation, one essentially alleviates influence of outliers on

regression coefficient estimation when one reduces bias in ~b, and the resultant bias-

reduced covariate effect estimators can be interpreted in the same way as if the logit

link, or other assumed H(t) one chooses, were the true link for outlier-free data.

Under the formulation of (5), GcðtÞ and � together control the discrepancy

between the true link and the assumed link. To signify the dependence of p and b on

the severity of link misspecification and the level of data coarsening, one may view

these limiting MLEs as functions of � and p, denoted by pð�; pÞ and bð�; pÞ,
respectively. Because setting � ¼ 0 in (5) gives GðtÞ ¼ HðtÞ, i.e., the case without

link misspecification, one has pð0; pÞ ¼ p and bð0; pÞ ¼ b. With a small � in the

presence of a mild link misspecification, we consider a first order Taylor expansion

of the two elements in bð�; pÞ, b0ð�; pÞ and b1ð�; pÞ, around � ¼ 0,

b0ð�; pÞ ¼ b0 þ b00ð0; pÞ�þ oð�Þ;

b1ð�; pÞ ¼ b1 þ b01ð0; pÞ�þ oð�Þ;
ð6Þ

where b00ð0; pÞ is equal to ðo=o�Þb0ð�; pÞ evaluated at � ¼ 0, which can be inter-

preted as a first order bias factor associated with b0, and thus an asymptotic first

order bias factor associated with b̂0ðpÞ; b01ð0; pÞ is similarly defined and has a
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similar interpretation relating to b1 and b̂1ðpÞ. We next derive these two bias factors

by exploring an approximated solution to (2).

Solving (2) for ðp; bÞ cannot be done explicitly in general. To simplify the

equations to be solved, we assume that ðp; bÞ is a point in the parameter space such

that l0 � l ¼ 0 with probability one over the support of X. Such point may not exist

in the parameter space except in some special model settings. This assumption is

made for the sole purpose of envisioning an approximated solution to (2) that allows

one to obtain some approximated first order bias factors in (6), which can shed some

light on the effects of link misspecification. Following this assumption and defining

d ¼ p� p, one has

0 ¼ l0 � l

¼ ð2p� 1ÞGðg0Þ þ 1� p� ð2p� 1ÞHðgÞ þ 1� pf g; by ð3Þ and ð4Þ;
¼ ð2p� 1Þfð1� �ÞHðg0Þ þ �Gcðg0Þ � HðgÞg � 2dHðgÞ þ d; by ð5Þ;
¼ ð2p� 1Þ �fGcðg0Þ � Hðg0Þg þ Hðg0Þ � HðgÞ½ � þ 1� 2HðgÞf gd:

ð7Þ

Bearing in mind the dependence of ðp; bÞ on ð�; pÞ, we differentiate (7) with respect

to � to yield

0 ¼ ð2p� 1ÞfGcðg0Þ � Hðg0Þg þ f1� 2HðgÞg opð�; pÞ
o�

þ H0ðgÞ ob0ð�; pÞ
o�

�

þ ob1ð�; pÞ
o�

X

�
ð1� 2pÞ:

ð8Þ

Setting � ¼ 0 in (8) gives

0 ¼ ð2p� 1Þ Gcðg0Þ � Hðg0Þf g þ 1� 2Hðg0Þf gp0ð0; pÞ
þ H0ðg0Þ b00ð0; pÞ þ b01ð0; pÞX

� �
ð1� 2pÞ;

ð9Þ

where p0ð0; pÞ is equal to ðo=o�Þpð�; pÞ evaluated at � ¼ 0. Now that it is assumed

that (9) holds with probability one over the support of X, one may evaluate X at any

value in the support in this equation. Suppose that the support contains zero and one.

By first setting X ¼ 0 and then setting X ¼ 1 in (9), one obtains the two bias factors

in (6) given by

b00ð0; pÞ ¼
Gcðb0Þ � Hðb0Þ

H0ðb0Þ
þ 1� 2Hðb0Þf gp0ð0; pÞ

ð2p� 1ÞH0ðb0Þ
; ð10Þ

b01ð0; pÞ ¼
Gcðb0 þ b1Þ � Hðb0 þ b1Þ

H0ðb0 þ b1Þ
þ f1� 2Hðb0 þ b1Þgp0ð0; pÞ

ð2p� 1ÞH0ðb0 þ b1Þ
� b00ð0; pÞ:

ð11Þ

These first order bias factors can reveal some effects of link misspecification on the

MLE for b. For instance, if b0 ¼ 0 and H(t) is a symmetric link, then (10) reduces to

b00ð0; pÞ ¼ fGcð0Þ � 0:5g=H0ð0Þ, for all p. This simple result of b00ð0; pÞ suggests

that, if GcðtÞ is left-skewed (right-skewed), then b00ð0; pÞ\0ð[ 0Þ, and thus b0
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tends to be smaller (bigger) than the truth. If G(t) is also symmetric, which means

that GcðtÞ has to be symmetric unless � ¼ 0, then b00ð0; pÞ ¼ 0, suggesting that the

asymptotic bias in b̂0ðpÞ is of order oð�Þ for all p. These patterns of b0 are indeed

observed for b̂0ðpÞ, as well as ~b0, in our simulation study. Moreover, according to

(11), b1 ¼ 0 implies b01ð0; pÞ ¼ 0 for all p. This is in line with the well established

fact that b1 ¼ 0 implies b1 ¼ 0 even in the presence of link misspecification.

Besides these implications on the direction of bias in b̂ðpÞ and ~b, these bias factors
along with (6) reveal a bias correction method we elaborate next.

3 Bias reduction using reclassified data

3.1 Explicit bias reduction

Evaluating (10) at two different values of p, p1 and p2, and forming the difference

between the two resultant equations yields

b00ð0; p1Þ � b00ð0; p2Þ ¼
1� 2Hðb0Þf g
H0ðb0Þ

p0ð0; p1Þ
2p1 � 1

� p0ð0;p2Þ
2p2 � 1

� �
;

hence, by (6),

b0ð�; p1Þ � b0ð�; p2Þ �
1� 2Hðb0Þf g
H0ðb0Þ

p0ð0; p1Þ
2p1 � 1

� p0ð0; p2Þ
2p2 � 1

� �
�

�Rðb0Þ
p1 � p1
2p1 � 1

� p2 � p2
2p2 � 1

� �
;

ð12Þ

where Rðb0Þ ¼ f1� 2Hðb0Þg=H0ðb0Þ, pk ¼ pð�; pkÞ, for k ¼ 1; 2, and the substi-

tution leading to the last equation is based on a first order Taylor expansion of

pð�; pÞ around � ¼ 0, pð�; pÞ ¼ pþ p0ð0; pÞ�þ oð�Þ. Inspired by (12), we propose

the following estimator for b0,

b̂
ð1Þ
0 ¼ R�1 b̂0ðp1Þ � b̂0ðp2Þ

n o p̂1 � p1
2p1 � 1

� p̂2 � p2
2p2 � 1

� ��1
" #

; ð13Þ

where b̂0ðpkÞ is the MLE for b0 under the assumed model based on the reclassified

data with p ¼ pk, for k ¼ 1; 2, and R�1ð�Þ is the inverse function of Rðb0Þ. For
instance, if the assumed link H(t) is the logit function, then

R�1ðsÞ ¼ log 2� logð
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 4

p
þ sÞ.

Using (11) and following similar derivations that inspire b̂
ð1Þ
0 , we construct the

following estimator for b1,
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b̂
ð1Þ
1 ¼ R�1 b̂0ðp1Þ � b̂0ðp2Þ þ b̂1ðp1Þ � b̂1ðp2Þ

n o p̂1 � p1
2p1 � 1

� p̂2 � p2
2p2 � 1

� ��1
" #

� b̂
ð1Þ
0 ;

ð14Þ

where b̂1ðpkÞ is the MLE for b1 under the assumed model based on the reclassified

data with p ¼ pk, for k ¼ 1; 2.

How effectively the first proposed estimator b̂ð1Þ ¼ ðb̂ð1Þ0 ; b̂
ð1Þ
1 ÞT reduces bias in ~b

depends on how severe the link misspecification is, since the construction of b̂
ð1Þ

originates from the Taylor expansion around � ¼ 0 in (6). In addition, b̂
ð1Þ

is derived

based on the assumption that the solution to (2) solves a much simpler equation,

l0 � l ¼ 0. This assumption allows us to derive the approximated bias factors in

(10) and (11) without directly finding or approximating the solution to (2). If the so-

obtained bias factors are misleading representations of the direction or magnitude of

the true bias, b̂
ð1Þ

can be more biased than ~b. This can happen, for example, when

X is a vector covariate, making the assumption that l0 � l ¼ 0 with probability one

over the support of X further from reality. However, when X is a scalar whose

support contains zero and one, b̂
ð1Þ

can substantially improve over ~b as evidenced in

the simulation study in Sect. 4.

3.2 Implicit bias reduction

The connection between b̂ðpÞ and p̂ is only marginally exploited in the first

proposed estimator because b̂
ð1Þ

only uses two levels of reclassification, p1 and p2.
More substantial bias reduction can be achieved by more fully exploiting the

relationship between b̂ðpÞ and p̂, or, equivalently, the connection between b̂ðpÞ and
d ¼ p̂� p. Instead of viewing b̂ as a function of p, now it is more helpful to view it

as a function of d, writing it as b̂ðdÞ. Since p is a user-specified parameter in the

reclassification model, one can empirically explore the connection between b̂ðdÞ
and d by setting p at a sequence of K values over (0.5, 1), denoted by fpkgKk¼1, and

computing dk ¼ p̂k � pk and b̂ðdkÞ for each k 2 f1; . . .;Kg. Using the sequence,

fb̂ðdkÞ; dkgKk¼1, one may apply an extrapolant on b̂ðdÞ to extrapolate to b̂ð0Þ. This
extrapolation is intuitively sensible if one believes that p̂ is inconsistent for p unless

the model for Y� given X is correctly specified, in which case b̂ðdÞ is also consistent

for b. In what follows, we summarize this proposed method in an algorithm that

leads to our second proposed estimator for b, denoted by b̂
ð2Þ ¼ ðb̂ð2Þ0 ; b̂

ð2Þ
1 ÞT.

RC-1 For each ðj; kÞ 2 f1; . . .; Jg � f1; . . .;Kg, generate reclassified responses

fY�
ijk; i ¼ 1; . . .; ngJj¼1 according to (1) with p ¼ pk.

RC-2 For each ðj; kÞ 2 f1; . . .; Jg � f1; . . .;Kg, compute the MLEs for p and b

based on data fðY�
ijk;XiÞgni¼1, resulting in estimates denoted by p̂k;j and b̂k;j.
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Compute p̂k ¼ J�1
PJ

j¼1 p̂k;j, dk ¼ p̂k � pk, and b̂ðdkÞ ¼ J�1
PJ

j¼1 b̂k;j, for

k ¼ 1; . . .;K.

RC-3 View fb̂ðdkÞ; dkgKk¼1 as K realizations of the response-predictor pair

ðb̂ðdÞ; dÞ. Use these realizations to carry out regression analysis assuming

a user-specified regression function.

RC-4 Use the regression results from RC-3 to extrapolate the response b̂ðdÞ at

d ¼ 0, leading to the proposed estimate for b, b̂
ð2Þ
.

Figure 1 gives a pictorial illustration of the rationale behind this implicit bias

reduction method. To produce plots in the upper panels, we fix the true model, from

which a data set of size n ¼ 600 is generated, as a GLM with the link

GðtÞ ¼ 1=½1þ expf�hðtÞg�, in which hðtÞ ¼ 10fexpða1tÞ � 1gIðt� 0Þ �
10 logð1þ a2tÞIðt\0Þ with ða1; a2Þ ¼ ð0:1;�0:1Þ. This link function is depicted

(as the dashed curve) in contrast to the logit link (as the solid curve) in Fig. 2. It is

an example of generalized logit links (Stukel 1988) to be introduced more formally

in Sect. 4. The true values of the regression coefficients are b ¼ ð�1; 1ÞT. The upper
panels show MLEs for b and p based on reclassified data induced from this one raw
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Fig. 1 Upper panels show b̂ versus d ¼ p̂� p and p̂ versus p based on reclassified data induced from a
data set of size n ¼ 600 generated according to a GLM with a generalized logit link with
ða1; a2Þ ¼ ð0:1;�0:1Þ, where the reclassified data correspond to p varying over the range

½0:1; 0:4� [ ½0:6; 0:9�. Lower panels show b̂ versus d and p̂ versus a as a varies within [0, 0.5] based
on one reclassified data with p ¼ 0:9 at each level of a induced from a data set of size n ¼ 600 generated

from a GLM with the generalized logit link with ða1; a2Þ ¼ ða;�aÞ. In the four panels regarding b̂, solid
lines imposing on the scatter plots result from the loess fit, red dotted lines are the reference lines
highlighting d ¼ 0 and the truth of b. The solid line in the plot of p̂ versus p is a 45	 reference line. The
solid line in the plot of p̂ versus a is the reference line signifying the true value of p, 0.9
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data set with p varying over the range ½0:1; 0:4� [ ½0:6; 0:9�, while always assuming

a logistic model for Y given X. The nearly symmetric pattern with respect to the

center point of the presented range of the horizontal axis shown these estimates

indicates that varying p over only the upper region above 0.5, such as [0.6, 0.9], can

lead to a simpler and more effective extrapolation. More importantly, p ¼ 0:5 is a

singularity where b is not identifiable based on the corresponding reclassified data,

even though the scatter plot of p̂ versus p suggests that p̂ approaches 0.5 (the truth)

as p tends to 0.5, and hence d ¼ p̂� p approaches zero. This is consistent with the

implication of the estimating equations in (2). By (4), l0 ¼ EðY�jX ¼ x; bÞ ¼ 0:5
for all x and b; and thus, by (3), p ¼ 0:5 in conjunction with any value for b solves

(2) for all b. This is why b̂ becomes ill-behaved as d approaches zero (due to p
approaching 0.5). Despite this singularity point of p ¼ 0:5, the first two upper

panels do imply certain dependence of b̂ on d that motivates the implicit bias

reduction method. To show such dependence from a different angle, we design

another experiment where we fix p at 0.9 when generating reclassified data, and

vary the true GLM from which the raw binary responses are simulated, where the

link functions in these models are generalized logit links with ða1; a2Þ ¼ ða;�aÞ, in
which a varies from 0 to 0.5. As pointed out in Sect. 4, the generalized logit link

with ða1; a2Þ ¼ ð0; 0Þ is simply the logit link, producing a case where the assumed

logistic model coincides with the true model. Using the reclassified data induced

from each raw data set at a fixed a-level, we obtain the MLEs for b and p shown in

the lower panels in Fig. 1. Like those seen in the upper panels, the dependence of b̂

on d is evident, and the former becomes closer to the truth as d gets closer to zero,

but without the concern of ill-behaved b̂ near the singularity point of p ¼ 0:5
observed in the upper panels.

Certainly, in a given application with one observed data set for (Y, X), one cannot

vary the underlying true model as we did to create plots in the lower panels in

t

G
(t

)

−4 0 4

0
.0

0
.5

1
.0Fig. 2 Three generalized logit

links, with ða1; a2Þ ¼
ð0:1;�0:1Þ (dashed line),
ð�0:1; 0:2Þ (dotted line), and
ð�0:5; 0:5Þ (dot-dashed line),
contrasting with the logit link
(solid line)
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Fig. 1. In order to empirically manifest the dependence of b̂ on d, one creates

movements in d by varying p when generating reclassified data based on one given

raw data set while avoiding the singularity point of p ¼ 0:5. One concern of

extrapolating at d ¼ 0 in RC-4 is that this direction of extrapolation is equivalent to

pushing p towards 0.5. Although this is a legitimate concern, the hope here is that

the dependence of b̂ on d observed in the lower panels of Fig. 1 can be preserved

well enough over the majority of the lower or upper half range of p so that one can

utilize the preserved dependence over such range to learn the underlying

dependence of b̂ and d as model misspecification diminishes (corresponding to

a shrinks to zero in the lower panels of Fig. 1.)

This proposed method shares some similarity with a bias reduction method well

received in the measurement error community, known as the simulation extrapo-

lation (SIMEX) method (Cook and Stefanski 1994; Stefanski and Cook 1995).

Consider a more general setting where one has a method to consistently estimate a

parameter, say, h, based on data fðYi;XiÞgni¼1. Suppose that fXigni¼1 are unobserved,

and the actual observed covariate values are fWigni¼1, where Wi ¼ Xi þ Ui, in which

Ui is the nondifferential measurement error (Carroll et al. 2006, section 2.5) for

i ¼ 1; . . .; n. If one ignores measurement error, one would apply the same estimation

method to data fðYi;WiÞgni¼1 to estimate h, resulting in a naive estimator denoted by
~h, which is typically inconsistent. To reduce bias in ~h, the SIMEX method exploits

further contaminated covariate data as in the following algorithm, where

k1\k2\. . .\kK are a sequence of user-specified positive constants.

SM-1 For each ðj; kÞ 2 f1; . . .; Jg � f1; . . .;Kg, generate further contaminated

covariate data, fW�
ijk ¼ Wi þ

ffiffiffiffiffi
kk

p
U�

ij; i ¼ 1; . . .; ngJj¼1, where fU�
ijg

n
i¼1 are

user-simulated pseudo errors that follow the same distribution as fUigni¼1,

and are independent across j ¼ 1; . . .; J.
SM-2 For each ðj; kÞ 2 f1; . . .; Jg � f1; . . .;Kg, compute the naive estimate for h

using data fðYi;W�
ijkÞg

n
i¼1, denoted by ĥk;j. Compute ĥðkkÞ ¼ J�1

PJ
j¼1 ĥk;j,

for k ¼ 1; . . .;K.

SM-3 View fĥðkkÞ; kkgKk¼0 as K þ 1 realizations of the response-predictor pair

ðĥðkÞ; kÞ, where k0 ¼ 0 and ĥð0Þ ¼ ~h. Use these realizations to carry out

regression analysis assuming a user-specified regression function.

SM-4 Use the regression results from SM-3 to extrapolate the response ĥðkÞ at

k ¼ �1, leading to a SIMEX estimate for h.

Heuristically, the case with k ¼ �1 is of interest because

VarðWi þ
ffiffiffi
k

p
U�

ijjXiÞ ¼ ð1þ kÞVarðWijXiÞ, which is equal to zero at k ¼ �1,

corresponding to data without measurement error. Thus, with a well chosen

extrapolant, ĥð�1Þ is expected to resemble the consistent estimate one would obtain

had one used data fðYi;XiÞgni¼1 to estimate h.
Both SIMEX and the implicit bias reduction method can be easily generalized to

models with a vector covariate X, with more caution when choosing an extrapolant,
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since the extrapolant is typically unknown. In the practice of SIMEX, simple

extrapolant such as the quadratic extrapolant has shown to work well in many

scenarios. Plots of b̂ in Fig. 1 along with the fitted loess curve (Cleveland and

Devlin 1988) also suggest that a quadratic extrapolant may be adequate in RC-3 and

RC-4 in the proposed implicit bias reduction algorithm. This will be the extrapolant

used in our second proposed method in the simulation study. The proposed method

differs from SIMEX in two aspects. First, in SM-1, in order to simulate pseudo

measurement error, one needs to estimate the distribution of fUigni¼1 based on

external data or replicate measures. In contrast, in RC-1, one knows the right model

according to which coarsened data are induced from the original data. Second, the

absence of measurement error translates to a correct model specification in the

context of SIMEX; but model misspecification remains even if one eliminates data

coarsening (by setting p ¼ 1) in our context. This, along with the fact that k is not

estimated in SIMEX but p is estimated along with b in our method, makes it more

challenging to develop an estimator for the variance of b̂
ð2Þ

following the strategy

for SIMEX estimators proposed in Stefanski and Cook (1995). One may adopt

bootstrap methods to estimate the variance of b̂
ð2Þ
, even though we do not pursue

this issue in the current study.

4 Simulation study

4.1 Finite sample performance of b̂
ð1Þ

A simulation study is conducted to compare the first proposed estimator b̂
ð1Þ

with

the naive estimator ~b when one assumes a logistic model whereas the truth is a

generalized logistic model (Stukel 1988), with b ¼ ð�1; 1ÞT. Here, HðtÞ ¼ 1=f1þ
expð�tÞg and GðtÞ ¼ 1=½1þ expf�hðtÞg�, where

hðtÞ¼
a�1
1 fexpða1tÞ�1gIða1[0Þþ tIða1¼0Þ�a�1

1 logð1�a1tÞIða1\0Þ; if t�0;

�a�1
2 fexpð�a2tÞ�1gIða2[0Þþ tIða2¼0Þþa�1

2 logð1þa2tÞIða2\0Þ; if t\0:

(

Note that, if a1¼a2¼0, G(t) reduces to the logit link; if a1¼a2, G(t) is symmetric;

otherwise, G(t) is asymmetric. The generalized logit link with ða1;a2Þ¼ð�0:1;0:2Þ
used in this experiment is depicted as the dotted curve in Fig. 2. We consider three

covariate distributions, all with mean zero and variance one: N(0, 1),

uniformð�
ffiffiffi
3

p
;

ffiffiffi
3

p
Þ, and a shifted gamma distribution with skewness equal to

ffiffiffi
2

p
.

These covariate distribution configurations encompass symmetric and asymmetric

distributions, as well as distributions with bounded support and unbounded support.

Given the simulated covariate values fXigni¼1, fYig
n
i¼1 are generated from the gen-

eralized logistic model, where n¼400, 600, 800, 1000. Based on each simulated

data set fðYi;XiÞgni¼1, we carry out logistic regression to obtain ~b; then two
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reclassified data sets are generated according to (1) with ðp1;p2Þ¼ð0:7;0:9Þ. Using
these two coarsened data sets, b̂

ð1Þ
is computed according to (13) and (14). This

experiment is repeated 1000 times at each simulation setting.

Table 1 presents summary statistics of the simulation results, including Monte

Carlo averages of the considered estimates, mean absolute deviations (MAD) of

these estimates from the corresponding truth, and empirical coverage probabilities

(CP) of 95% confidence intervals. The 95% confidence intervals for b0 based on ~b0
is obtained by invoking the asymptotic normality of MLE, leading to ~b0 
 1:96�
s.e.ð~b0Þ as the interval bounds, where s.e.ð~b0Þ is the estimated standard error of ~b0
resulting from the sandwich variance estimation for M-estimators (Boos and

Stefanski 2013, section 7.2.1). A 95% confidence internal for b1 based on ~b1 is

similarly obtained using each simulated data set. Also assuming asymptotic

normality for b̂
ð1Þ
, we construct 95% confidence intervals based on the first

proposed estimate, with estimated standard errors associated with each point

estimate obtained via a bootstrap method involving 100 bootstrap samples. Under

the current designed link misspecification, ~b is noticeably compromised, and b̂
ð1Þ

exhibits impressive bias reduction, at the price of inflated variability. Due to the

inflated variability, the MAD associated with b̂
ð1Þ

is typically around three times as

high as that associated with ~b in the current simulation settings. Thanks to the bias

correction, and also in part due to the inflated variability, the confidence intervals

based on b̂
ð1Þ

stay much closer to the nominal level compared to those based on ~b, of
which coverage probabilities drop quickly as sample size increases.

As discussed in Sect. 3.1, b̂
ð1Þ

can deteriorate in the presence of severe link

misspecification, and its quality depends on factors irrelevant to the primary model

configuration, such as the distribution of X and the choice of ðp1; p2Þ. Among all

three covariate distributions experimented in the presented simulation study, we see

the proposed estimator achieve bias reduction to some extent. When choosing

ðp1; p2Þ, we suggest selecting two values in (0.5, 1) so that the reclassified responses
do not lose too much information in the original responses. Another guideline we

have found practically useful in the empirical study is to choose ðp1; p2Þ so that the

common denominator appearing in (13) and (14), i.e.,

ðp̂1 � p1Þ=ð2p1 � 1Þ � ðp̂2 � p2Þ=ð2p2 � 1Þ, is not too close to zero, say, is above

0.01. Even with the above practical considerations one needs to bear in mind when

applying the proposed explicit bias reduction method, it is still an appealing and

convenient way to correct the naive estimates for bias because of the closed-form

expressions for such correction once the naive estimates are computed via

straightforward maximum likelihood estimation.

Even though all derivations in Sects. 2.2 and 3.1 still go through when b1 is a

vector slope parameter, with Taylor approximation in (6) and other derivations

relating to b1 done elementwise, we do not recommend generalizing the explicit

bias reduction method to models with a vector covariate for reasons pointed out at

the end of Sect. 3.1.
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Table 1 Averages of parameter estimates for b, denoted by ~b, and the corresponding mean absolute

deviations (MAD) and empirical coverage probabilities (CP) of 95% confidence intervals across 1000

Monte Carlo replicates when assuming a logistic model for Y given X, and the counterpart quantities

associated with the proposed explicit bias-reduced estimates, b̂
ð1Þ
. The true parameter values are

b ¼ ð�1; 1ÞT. Numbers in parentheses are Monte Carlo standard errors (s.e.) associated with the averages

Estimate (s.e.) MAD (s.e.) CP Estimate (s.e.) MAD (s.e.) CP

X�Nð0; 1Þ
n ¼ 400 n ¼ 600

~b0 �1:177 (0.004) 0.185 (0.004) 0.780 �1:168 (0.003) 0.172 (0.003) 0.687

~b1 1.166 (0.005) 0.185 (0.004) 0.833 1.162 (0.004) 0.171 (0.004) 0.762

b̂
ð1Þ
0

�0:977 (0.036) 0.672 (0.029) 0.955 �0:924 (0.034) 0.652 (0.027) 0.933

b̂
ð1Þ
1

1.129 (0.047) 0.889 (0.038) 0.952 1.050 (0.043) 0.827 (0.034) 0.944

n ¼ 800 n ¼ 1000

~b0 �1:178 (0.003) 0.179 (0.003) 0.554 �1:179 (0.003) 0.179 (0.003) 0.439

~b1 1.175 (0.003) 0.179 (0.003) 0.634 1.170 (0.003) 0.173 (0.003) 0.580

b̂
ð1Þ
0

�0:936 (0.034) 0.645 (0.027) 0.943 �0:977 (0.034) 0.626 (0.027) 0.931

b̂
ð1Þ
1

1.010 (0.044) 0.808 (0.035) 0.944 1.028 (0.039) 0.769 (0.031) 0.948

X� uniformð�
ffiffiffi
3

p
;

ffiffiffi
3

p
Þ

n ¼ 400 n ¼ 600

~b0 �1:210 (0.004) 0.214 (0.004) 0.698 �1:193 (0.004) 0.196 (0.003) 0.606

~b1 1.201 (0.005) 0.211 (0.004) 0.749 1.185 (0.004) 0.189 (0.003) 0.670

b̂
ð1Þ
0

�1:017 (0.037) 0.711 (0.029) 0.951 �0:930 (0.035) 0.687 (0.028) 0.945

b̂
ð1Þ
1

1.025 (0.041) 0.777 (0.033) 0.948 0.967 (0.043) 0.778 (0.036) 0.938

n ¼ 800 n ¼ 1000

~b0 �1:201 (0.003) 0.202 (0.003) 0.467 �1:200 (0.003) 0.200 (0.003) 0.377

~b1 1.192 (0.003) 0.194 (0.003) 0.537 1.190 (0.003) 0.191 (0.003) 0.455

b̂
ð1Þ
0

�0:962 (0.034) 0.651 (0.027) 0.942 �0:962 (0.032) 0.629 (0.025) 0.933

b̂
ð1Þ
1

0.936 (0.036) 0.655 (0.030) 0.946 0.989 (0.036) 0.664 (0.029) 0.949

X� shifted gamma

n ¼ 400 n ¼ 600

~b0 �1:179 (0.004) 0.187 (0.004) 0.749 �1:179 (0.003) 0.182 (0.003) 0.633

~b1 1.138 (0.005) 0.164 (0.004) 0.877 1.137 (0.004) 0.151 (0.003) 0.837

b̂
ð1Þ
0

�1:036 (0.039) 0.803 (0.030) 0.948 �0:985 (0.035) 0.687 (0.027) 0.936

b̂
ð1Þ
1

1.060 (0.048) 0.921 (0.039) 0.960 1.064 (0.046) 0.835 (0.037) 0.953

n ¼ 800 n ¼ 1000

~b0 �1:177 (0.003) 0.180 (0.003) 0.527 �1:172 (0.003) 0.173 (0.003) 0.460

~b1 1.138 (0.003) 0.147 (0.003) 0.749 1.128 (0.003) 0.134 (0.003) 0.737

b̂
ð1Þ
0

�0:970 (0.033) 0.624 (0.026) 0.937 �0:973 (0.030) 0.576 (0.024) 0.932

b̂
ð1Þ
1

1.049 (0.043) 0.774 (0.036) 0.952 1.016 (0.038) 0.694 (0.031) 0.959
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4.2 Finite sample performance of b̂
ð2Þ

To demonstrate the performance of the implicit bias reduction method, we carry out

simulation experiments under similar settings as those in Sect. 4.1, except that the

true link function in the data generating process takes a sequence of generalized

logit links. More specifically, we consider true links as generalized logit link

G(t) with ða1; a2Þ ¼ ð�a; aÞ; where a varies from 0.1 to 0.5 at increments of 0.1.

The generalized logit link that deviates from the logit link the most in this sequence,

at a ¼ 0:5, is shown in Fig. 2. When implementing this method, we estimate b

based on reclassified data generated according to (1) with p varying from 0.6 to 0.9

at increments of 0.005, with J ¼ 100 in the algorithm described in Sect. 3.2; and we

use the quadratic extrapolant in RC-3 and RC-4 to obtain b̂
ð2Þ
. Based on 1000 Monte

Carlo replicates, Fig. 3 provides pictorial comparisons between b̂
ð2Þ

and ~b when

n ¼ 800, with covariate X�Nð0; 1Þ. Figure 4 shows the same comparisons when

X follows a shifted gamma distribution with mean zero, variance one, and skewnessffiffiffi
2

p
. The substantial bias reduction achieved by b̂

ð2Þ
using a quadratic extrapolant is

evident in both figures. Although, like b̂
ð1Þ
, b̂

ð2Þ
is more variable than ~b (but much

less variable than b̂
ð1Þ
), which is expected when coarsened data are used to compute
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Fig. 3 Upper panels show Monte Carlo averages of relative bias of b̂
ð2Þ

(dashed line) and those of ~b (solid

line). Lower panels show MSE of b̂
ð2Þ

(dashed line) and MSE of ~b (solid line). True links are generalized
logit links with ða1; a2Þ ¼ ð�a; aÞ. The covariate X follows N(0, 1)
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the bias-reduced estimator and an additional parameter needs to be estimated

simultaneously. Accounting for both bias and variance, the mean squared error

(MSE) of b̂
ð2Þ

is significantly lower than that of ~b.
Applying the implicit bias reduction method to regression models with multiple

covariates does not add extra complication, even though a larger sample size is

needed to obtain improved inference. Figure 5 shows the comparison of b̂
ð2Þ

and ~b
obtained from logistic regression with two covariates. In particular, we generate 300

Monte Carlo replicate data sets, each of size n ¼ 1000, from the true models with

the aforementioned sequence of generalized logit models, which involves one

continuous covariate X1 �Nð0; 1Þ and one binary covariate X2 that takes value one

with probability 0.5. The true regression coefficients are

b ¼ ðb0; b1; b2ÞT ¼ ð�1; 0:5; 0:5ÞT. In this case, the proposed method with the

quadratic extrapolant shows signs of over correcting ~b for bias when the link

misspecification is mild (when a ¼ 0:1 and 0.2), producing estimates more biased

than ~b. This may suggest the need to explore a different extrapolant. In practice, we

recommend one plot b̂
ð2ÞðdÞ (elementwise) versus d to gain some visual hints on the

choice of an extrapolant. Regardless, using the quadratic extrapolant in this
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Fig. 4 Upper panels show Monte Carlo averages of relative bias of b̂
ð2Þ

(dashed line) and those of ~b (solid

line). Lower panels show MSE of b̂
ð2Þ

(dashed line) and MSE of ~b (solid line). True links are generalized
logit links with ða1; a2Þ ¼ ð�a; aÞ. The covariate X follows a shifted gamma distribution with mean zero,

variance one, and skewness
ffiffiffi
2

p
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experiment, the gain from the proposed method again stand out once the link

misspecification is more severe (e.g., when a[ 0:2).
Up to this point, the true links G(t) in the data generating processes in the

simulation studies for the two proposed methods are all asymmetric. In ‘‘Appendix

A’’ in the supplementary materials we present additional simulation study where

symmetric generalized logit links are used in the data generating process. These

additional results provide convincing empirical evidence that both proposed

methods yield estimators less biased than ~b when the assumed link and the true link

are both symmetric.

5 A test for link misspecification

Here we propose a simple t test for link misspecification using byproducts of the

proposed bias reduction methods. Hosmer et al. (1997) compared nine tests for link

misspecification in the context of logistic regression and found none of them exhibit

satisfactory power. Among these tests, eight of them are goodness-of-fit (GOF) tests

in nature constructed based on prediction error, and one is Stukel’s score test based

on fitting a generalized logit model (Stukel 1988). This score test is a test of

H0 : ða1; a2Þ ¼ ð0; 0Þ, where the score is the normal score derived from the

likelihood of a generalized logistic model. Compared with the eight GOF tests,

Stukel’s score test exhibits the highest power to detect link misspecification. We

believe the reason for this is that, although inference on covariate effects can be very

a

0.1 0.2 0.3 0.4 0.5

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Re
la

tiv
ev

 B
ia

s(
β 0

)

a

0.1 0.2 0.3 0.4 0.5

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Re
la

tiv
ev

 B
ia

s(
β 1

)

a

0.1 0.2 0.3 0.4 0.5

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Re
la

tiv
ev

 B
ia

s(
β 2

)

a

0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

M
SE

(β
0)

a

0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

M
SE

(β
1)

a

0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

M
SE

(β
2)

Fig. 5 Upper panels show Monte Carlo averages of relative bias of b̂
ð2Þ

(dashed line) and those of ~b (solid

line). Lower panels show MSE of b̂
ð2Þ

(dashed line) and MSE of ~b (solid line). True links are generalized
logit links with ða1; a2Þ ¼ ð�a; aÞ. The covariates X1 follows N(0, 1) and X2 follows Bernoulli(0.5)
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misleading in the presence of link misspecification, the impact on predictions is

often more subtle. Hence, a residual-based GOF test tends to be less sensitive to link

misspecification.

A more sensitive indicator of link misspecification is readily available from the

proposed estimation procedures for b, which is simply p̂, since p̂ inconsistently

estimate p in the presence of link misspecification. Hence, fixing p at a value one

chooses, one can easily construct a t test with test statistic t ¼ ðp̂� pÞ=m̂, where m̂ is
the sandwich standard error estimator associated with p̂. Following the asymptotic

theory of MLE, it is straightforward to show that the null distribution of the test

statistic is a t distribution with n� dimðbÞ � 1 degrees of freedom, where dimðbÞ
denotes the dimension of b. A test statistic value that deviates significantly from

zero indicates an inadequate assumed link.

Like Stukel’s score test, our proposed test is not based on prediction error. To

compare the operating characteristics of Stukel’s test and our test, we carry out

simulation study under settings similar as those in the experiments in Sect. 4, with

the sample size n varying from 200 to 1000 at increments of 200. We consider four

true links in this experiment, including the logit link and three generalized logit

links with ða1; a2Þ ¼ ð�0:5; 0:5Þ; ð0:5; 0:5Þ; ð1; 1Þ. The setting with the logit link as

the truth allows one to assess the size of a test. We let p ¼ 0:9 in the t test. Setting

the significance level at 0.05, Fig. 6 depicts the empirical power defined by the

rejection rate across 1000 MC replicates associated with each test versus n under

each of the true link configurations. Clearly, our test outperforms the Stukel’s test in

all scenarios, and both retain the right size. Stukel’s test appears to be more

promising when the true link is asymmetric, whereas the proposed t test is more

powerful in the presence of more severe link misspecification even when the true

link is also symmetric as the assumed link. ‘‘Appendix B’’ in the supplementary

materials provides QQ plots of the test statistics collected from the case without link

misspecification, which suggest close agreement between the claimed null

distribution of the proposed test statistic and a t distribution. Due to the typically

moderate to large sample size n when comparing with the dimension of b in most

applications where this proposed test is designed for, one may simply view the

standard normal as the null distribution of the test statistic in practice.

6 A real data example

We now entertain a classic data example reported in Bliss (1935) that has been

analyzed by many researchers since then, who were mostly concerned about the

adequacy of the logistic model for this date set. The data were collected in an

experiment where the association between mortality of adult beetles and exposure to

gaseous carbon disulfide is of interest. In particular, the data include logarithm (with

base 10) of dosages of carbon disulfide exposure for a total of 481 adult beetles, and

the status (being killed or surviving) of each beetle after five hours’ exposure. Let Yi
denote the indicator of being killed after exposure to carbon disulfide for the ith

beetle, and denote by Xi the log10dose this beetle was exposed to, for i ¼ 1; . . .; 481.
Pregibon (1980) applied his test for link specification and found strong evidence to
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support an asymmetric link as opposed to the logit link. Aranda-Ordaz (1981)

showed that the complementary log-log link is more appropriate for the data. Stukel

(1988) first used the likelihood ratio GOF test, resulting in a p-value of 0.0815; she

then followed up with her score test and found stronger evidence against the logit

link, with a p-value of 0.0125; lastly, she used the likelihood ratio test to compare

the logistic model and her proposed skewed generalized logistic model for this data,

and obtained a p-value of 0.0077.

Using our test proposed in Sect. 5, with p ¼ 0:95, we also reject the assumed

logit link, with p-value equal to 0.0001. We then repeatedly estimate b assuming the

logit link and using reclassified data simulated from the raw data according to (1)

with p ranging from 0.75 to 0.95 at increments of 0.001. Applying a quadratic

extrapolant on the sequence of ^bðdÞ leads to b̂
ð2Þ ¼ ð�57:99; 32:62ÞT, with the
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Fig. 6 Rejection rates of Stukel’s test (solid lines) and the proposed t test (dashed lines) across 1000
Monte Carlo replicates versus the sample size n when the true link is logit (in (a)) and when the true link
is a generalized logit link with three different configurations for ða1; a2Þ (in (b), (c), (d))
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estimated (via bootstrap) standard errors equal to (10.23, 5.41). In Stukel’s analysis

based on a generalized logistic model, her estimates of b0 and b1 are �47:4 (6.47)

and 26.6 (3.66), respectively, with the corresponding estimated standard error in

parentheses. And the standard logistic regression gives ~b ¼ ð�60:71; 34:27ÞT, with
the estimated standard errors equal to (5.18, 2.91). In comparison, b̂

ð2Þ
lies between

~b and that obtained by Stukel, who attempted to correct for the potentially

inadequate logit link. This can suggest that the implicit bias reduction method

effectively reduce some bias in ~b even though we still analyze the (reclassified) data

assuming a logit link. We did not apply the explicit bias reduction method to this

data because the support of X excludes zero and one, the two values one evaluates

X at when deriving b̂
ð1Þ
.

7 Discussion

The conventional model building and inference routine is to first test suspicious

assumptions in a posited model using some diagnostic tools; and if inadequate

model assumptions are detected, one makes attempts to correct the model and draw

inference again using the updated model. If one has little ground for verifying or

correcting the posited model, one often resorts to semi-/non-parametric methods to

draw inference. As rich as the body of existing semi-/non-parametric methods, most

of them are computationally demanding and can be inefficient. In this study we

present a different take on parametric inference that leads to more reliable inference

even without guessing the ‘‘right’’ model. Moreover, we unify parametric inference

and model diagnosis under the same framework based on simulated reclassified

data. If the test for the assumed link does not reject the null, one has some

reassurance for ~b; otherwise, one may adopt the proposed bias-reduced estimates. In

fact, we would not recommend one use the proposed bias reduction methods when

one lacks sufficient evidence to indicate presence of model misspecification. The

first bias reduction estimator for b0 in (13) comes from (12), which becomes an

identity that sheds no light on b0 when the assumed model is not misspecified since

now one has, on the left-hand side of (12), b0ð0; p1Þ � b0ð0; p2Þ ¼ 0 for all p1 and

p2, and the factor following Rðb0Þ on the right-hand side is also zero. Consequently,

(13) does not yield a sensible estimator for b0. For the second bias reduction

estimator for b, the problem with it in the absence of model misspecification lies in

the fact that dk is expected to be close to zero for all k’s, and the sequence

fb̂ðdkÞ; dkgKk¼1 will provide little information on the dependence of b̂ on d, and thus

regressing b̂ðdkÞ on dk can be subject to high variability.

We provide in ‘‘Appendix C’’ in the supplementary materials the SAS PROC

IML code for implementing the proposed estimation methods and the test.

Computationally, the implicit bias reduction method is more demanding than the

explicit bias reduction method mainly because the former entails computing the

MLEs of unknown parameters for a large number of times. This makes using

bootstrap methods, such as those described in Section A.9.4 in Carroll et al. (2006),
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to estimate the variance of b̂
ð2Þ

more cumbersome. To develop new variance

estimation methods for these estimators that are computationally less burdensome is

among our upcoming research agenda.

Although we consider the assumed link in GLM as the source of model

misspecification in the current study, the implicit bias reduction method and the

proposed t test are also applicable when a different model assumption is violated,

such as those considered in Hosmer et al. (1997). To illustrate the rationale of the

proposed methods, we keep the reclassification mechanism as simple as (1), but

different data coarsening mechanisms are certainly worth systematic investigation.

This is especially needed in order to generalize these methods to GLM for responses

other than a binary response. Even in the context of our study, different coarsening

mechanisms that lead to induced data allowing stronger identificability of p can be

beneficial, as Copas (1988) pointed out, who used a missclassification model similar

to ours, that p is hard to estimate unless when n is very large. This inherent weak

identifiability of p causes little numerical difficulty in implementing the proposed

methods when one uses the true value of p as the starting value when obtaining its

MLE, which is feasible since the truth is known for this user-specified parameter.

But, for a more complex GLM when such parameter becomes harder to estimate,

one may generate coarsened data that allow part of the raw data free of error to

alleviate the nonidentifiability issue. This is similar in spirit to having validation

data or external data to allow identifiability of measurement error distributions.

Furthermore, with the reclassfication mechanism given by (1), the proposed t test

can be improved by using supp2ð0:5;1Þðjp̂� pj=m̂Þ as the test statistic, instead of fixing
p at one value as is done in Sects. 5 and 6. The drawback of this supreme-type test

statistic is that its null distribution is no longer as trivial as before, which may need

to be estimated using some simulation-based methods. For instance, one may

approximate the null distribution of tp ¼ jp̂� pj=m̂ by a Gaussian process indexed

by p, and use some bootstrap method to obtain an estimate for the covariance

function under an assumed covariance structure for the process.

The introduction of an extraneous parameter as a device to calibrate estimates for

parameters of interest can be applied to other models more complex than GLM,

which can be more vulnerable to model misspecification. Since ‘‘...all models are

wrong but some are useful...’’ (George Box), rather than attempting to guess the

right model, a more productive approach to draw inference is to embrace a useful

wrong model and then strive for inference results that remain reliable under the

wrong model. This is the very philosophy we follow in this study and also in our

follow-up research.
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Appendix: Proof of equation (2)

Because the assumed GLM is specified by PðY ¼ 1jXÞ ¼ HðgÞ, where

g ¼ b0 þ b1X, and the reclassified response is generated according to

PðY� ¼ Y jY;XÞ ¼ p, one has

PðY� ¼ 1jXÞ ¼ PðY� ¼ 1; Y ¼ 0jXÞ þ PðY� ¼ 1; Y ¼ 1jXÞ
¼ PðY ¼ 0jXÞPðY� 6¼ Y jY ;XÞ þ PðY ¼ 1jXÞPðY� ¼ Y jY;XÞ
¼ f1� HðgÞgð1� pÞ þ HðgÞp
¼ ð2p� 1ÞHðgÞ þ 1� p:

ð15Þ

It follows that the likelihood function based on the assumed primary model for Y�

evaluated at one data point ðY�;XÞ is

Lðp; bÞ ¼ PðY� ¼ 1jXÞY
�
f1� PðY� ¼ 1jXÞg1�Y�

, and the log-likelihood function is

‘ðp; bÞ ¼ Y� logPðY� ¼ 1jXÞ þ ð1� Y�Þ logf1� PðY� ¼ 1jXÞg.
Differentiating (15) with respect to each element in ðp; bÞ gives

oPðY� ¼ 1jXÞ
op

¼ 2HðgÞ � 1;

oPðY� ¼ 1jXÞ
ob0

¼ ð2p� 1ÞH0ðgÞ;

oPðY� ¼ 1jXÞ
ob1

¼ ð2p� 1ÞH0ðgÞX:

ð16Þ

Using (16), one can show that the three normal score functions associated with

‘ðp; bÞ are given by

o‘ðp; bÞ
op

¼ Y� 2HðgÞ � 1

PðY� ¼ 1jXÞ � ð1� Y�Þ 2HðgÞ � 1

1� PðY� ¼ 1jXÞ ;

o‘ðp; bÞ
ob0

¼ Y� ð2p� 1ÞH0ðgÞ
PðY� ¼ 1jXÞ � ð1� Y�Þ ð2p� 1ÞH0ðgÞ

1� PðY� ¼ 1jXÞ ;

o‘ðp; bÞ
ob1

¼ Y� ð2p� 1ÞH0ðgÞX
PðY� ¼ 1jXÞ � ð1� Y�Þ ð2p� 1ÞH0ðgÞX

1� PðY� ¼ 1jXÞ :

To further simplify notations, let l ¼ PðY� ¼ 1jXÞ. The above three score functions
can be re-expressed as
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o‘ðp; bÞ
op

¼ Y� � l
lð1� lÞ f2HðgÞ � 1g;

o‘ðp; bÞ
ob0

¼ Y� � l
lð1� lÞ ð2p� 1ÞH0ðgÞ;

o‘ðp; bÞ
ob1

¼ Y� � l
lð1� lÞ ð2p� 1ÞH0ðgÞX:

ð17Þ

The expectation of the first score in (17) with respect to the true distribution of

ðY�;XÞ is

E
Y� � l
lð1� lÞ f2HðgÞ � 1g

	 

¼ E E

Y� � l
lð1� lÞ f2HðgÞ � 1g

����X
	 
� �

¼ E
l0 � l
lð1� lÞ f2HðgÞ � 1g

	 

;

where g0 is equal to g evaluated at the true value of b, and

l0 ¼ ð2p� 1ÞGðg0Þ þ 1� p, as defined in (4), is the mean of Y� given X under the

correct model evaluated at the true parameter values. Setting this expectation equal

to zero gives the first estimating equation in (2). Similarly, the expectations of the

second and the third score functions in (17) with respect to the true distribution of

ðY�;XÞ are given by

E
Y� � l
lð1� lÞ ð2p� 1ÞH0ðgÞ

	 

¼ E

l0 � l
lð1� lÞH

0ðgÞ
	 


ð2p� 1Þ;

E
Y� � l
lð1� lÞ ð2p� 1ÞH0ðgÞX

	 

¼ E

l0 � l
lð1� lÞH

0ðgÞX
	 


ð2p� 1Þ;

respectively. Setting these two expectations equal to zero gives the second and the

third equations in (2).
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