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An improved test of latent-variable model misspecification in
structural measurement error models for group testing data
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SUMMARY

We consider structural measurement error models for group testing data. Likelihood inference based
on structural measurement error models requires one to specify a model for the latent true predictors.
Inappropriate specification of this model can lead to erroneous inference. We propose a new method
tailored to detect latent-variable model misspecification in structural measurement error models for group
testing data. Compared with the existing diagnostic methods developed for the same purpose, our method
shows vast improvement in the power to detect latent-variable model misspecification in group testing
design. We illustrate the implementation and performance of the proposed method via simulation and
application to a real data example. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Group testing, or pooled testing, is best known for its application in infectious disease screening [1].
In group testing design, the test of the presence of a disease is conducted on a pool of individuals
instead of each individual. Assuming perfect test (without testing error), a positive test can only
result if at least one individual in the pool is infected. When the disease is rare, group testing is
more cost-effective than individual testing. This, along with many other benefits, such as lowering
false positive rate in low prevalence settings [2, 3] and ensuring confidentiality of individuals,
makes group testing a compelling alternative to individual testing in infectious disease screening,
genetics, systems biology, and drug discovery [4–6].

Historically, research on group testing has focused on prevalence estimation, optimal design of
group testing to reduce cost and improve efficiency, and retesting strategies to identify infected
individuals. Most of these work assumes homogeneous population. About a decade ago researchers
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started to consider heterogeneous population. Vansteelandt et al. [7, 8] justified the necessity of
accounting for relevant individual covariate information in making inference about human immun-
odeficiency virus (HIV) prevalence based on pooled serum samples. They conducted regression
analysis on group testing data with individual covariates as predictors. Xie [9] also tackled a
regression model for group testing data with individual covariates and developed an EM algorithm
to estimate the regression parameters. As pointed out by these authors, it is common in the practice
of group testing that information about individual characteristics is collected besides the pooled
response, and it is sensible to use these information to improve efficiency of statistical inference.

However, as in many regression applications, individual covariates may be measured with error
in group testing design. In the group testing literature, measurement error is often referred to testing
error that causes misclassification of pooled response. Measurement error in the predictors, which
is our focus here, has not been studied in the context of group testing. To focus on the issue of
measurement error in covariates, we assume perfect test in this article. Relaxing this assumption
imposes little technical difficulty on our proposed method. It is well documented that ignoring
measurement error and using the contaminated covariates as if they were the true latent predictors
can bias inference. A popular strategy to account for measurement error in regression models
is to use structural measurement error models [10]. In the framework of structural measurement
error models, a measurement error model is used to relate the observed covariates to the latent
predictors, and a model for the latent variables is also assumed. A general concern of this framework
is the choice of latent-variable model, which often lacks solid support from the observed data.
Inappropriate specification of the latent-variable model can lead to erroneous inference [11].

To avoid stringent model assumptions on the latent variables, Carroll et al. [12] proposed
nonparametric approaches based on the idea of simulation-extrapolation (SIMEX) [13] and regres-
sion spline; Schafer [14] and Rabe-Hesketh et al. [15] considered nonparametric maximum likeli-
hood estimation where the latent-variable distribution is estimated by a discrete distribution with
nonzero probabilities at a finite set of points. The discrete nature the estimated latent-variable
distribution is unattractive when the distributional characteristics of true predictors are of interest.
In line with parametric modeling, Carroll et al. [16] used mixtures of a fixed number of normals as
the assumed latent-variable model. They admitted that the resulting inference might not be reliable
when the true distribution cannot be approximated well by normal mixtures or when the number of
normal components is large. Similar flexible parametric modeling was also adopted by Richardson
et al. [17] in a Bayesian framework, where the number of normal components in the mixtures
is left unknown. They pointed out that their approach is inadvisable in the absence of validation
data. These existing nonparametric approaches and flexible parametric approaches usually entail
complicated algorithms and heavy computation that limit their popularity. The complexity and
computational burden are expected to increase for group testing data as the likelihood function
is usually less tractable than that of individual testing data. Hence, diagnostic technique to guard
against model misspecification is especially valuable because, with an effective diagnostic tool,
one may find a parsimonious parametric model based on which reliable and efficient inference
can be achieved without invoking nonparametric methods or unnecessarily complex parametric
methods.

Thus far, there has been limited study on assessing latent-variable model specification in struc-
tural measurement error models. Without providing implementation details or theoretical justifica-
tion, Aitkin and Rocci [18] commented on using the bootstrap to compare the deviance resulting
from a normal assumed latent-variable model with the deviance resulting from nonparametric
maximum likelihood inference. They also outlined a comparison between the K -masspoint model
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with Gaussian quadrature model with K masspoints via the likelihood ratio test. Huang et al. [11]
proposed a remeasurement method based on the idea of SIMEX. The remeasurement method is
applicable to responses from either individual testing or group testing. Despite its general appli-
cability and satisfactory performance in individual testing design, the remeasurement method can
suffer very low power to detect model misspecification in group testing design, as evidenced in
later sections. This is not unexpected considering the loss in information due to pooling. Huang and
Tebbs [19] constructed another test motivated by the finding that the likelihood inference based on
individual testing data and that from the induced group testing data can distinctly disagree in the
presence of model misspecification. Their test relies on individual testing data thus is not directly
applicable in the current setting where only group testing data are observed.

In this article, we combine the idea of the remeasurement method and the idea behind the
diagnostic test in [19] to construct a more powerful diagnostic tool that does not require individual
testing data to be observed. The proposed method is elaborated in Section 3. Before presenting
the new diagnostic method, we define the structural measurement error models for the individual
testing data and group testing data in Section 2. The remeasurement method is also reviewed in
Section 2, which is used as the benchmark method that the new method is compared with. In
Section 4, we present simulation studies to illustrate the implementation and performance of the
new method. In Section 5, we apply the new method and the remeasurement method to a real data.
We conclude the article with discussions on the proposed method and future research in Section 6.

2. STRUCTURAL MEASUREMENT ERROR MODELS
AND REMEASUREMENT METHOD

2.1. Structural measurement error models

Denote by Yij the binary response of the j th individual in the i th pool, by Xij the values of
the associated unobservable predictors, and Wij the corresponding observed covariate values, for
i=1, . . . ,m, and j =1, . . . ,ni . Define by N =∑m

i=1 ni the total number of individuals in the
study. Define Yi =(Yi1, . . . ,Yini )

T, and similarly define Xi and Wi . In individual testing, the
observed data include {Yij,Wij, i=1, . . . ,m, j =1, . . . ,ni }. In group testing, the observed data are
{Y ∗

i ,Wi , i=1, . . . ,m}, where Y ∗
i =max1� j�ni Yij, i=1, . . . ,m. In the regression model, there may

exist observable predictors measured without error, say, V . In that case, our concern becomes
the assumed model of X conditional on V . For notational simplicity, we do not include V in
our example models. Because generalization from univariate covariate to multivariate covariate
is straightforward in our study, we assume univariate latent variable X , and thus univariate W .
Finally, random pooling, as opposed to homogeneous pooling [8], is assumed when forming the
pools, as often the case in practice.

Formulating a structural measurement error model entails specification of the following three
component models: (i) the primary regression model that relates the response and the true predictor;
(ii) the measurement error model that links the observed covariate to the true predictor; and (iii)
the assumed model for the true predictor. Denote by fX (x;�) the assumed model in (iii) indexed
by parameters �. For the second component model, we consider the classical additive measurement
error model ([10], Section 1.2),

Wij= Xij+Uij, i=1,2, . . . ,m, j =1, . . . ,ni (1)
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where Uij∼N (0,�2) are the independent nondifferential measurement error ([10], Section 2.5).
An implication of nondifferential measurement error is Uij⊥ Xij, and thus Yij⊥Wij conditioning on
Xij, i=1, . . . ,m, j =1, . . . ,ni . The structural measurement error model for the individual testing
data and that for the group testing data have the same second and third component models. But they
differ in the first component model. Suppose that the primary regression model for the individual
testing response is a generalized linear model given by

P(Yij=1|Xij;�)=h(�0+�1Xij), i=1,2, . . . ,m, j =1, . . . ,ni (2)

where h(.) is a known inverse link function and �=(�0,�1)
T are the regression parameters. By

the definition of Y ∗
i , the primary regression model for the group testing response can be induced

from (2) and is given by

P(Y ∗
i =1|Xi ;�)=1−

ni∏
j=1

{1−h(�0+�1Xij)} (3)

We assume throughout the article that the first two component models are correctly specified.
With the three component models specified, the joint density of the observed datum in individual

testing, (Yij,Wij), is given by, for i=1, . . . ,m, j =1, . . . ,ni ,

fY,W (Yij,Wij;�,�,�2)=
∫

fY |X (Yij|Xij;�) fW |X (Wij|Xij;�2) fX (x;�)dx (4)

where fY |X (Yij|Xij;�)=h(�0+�1Xij)
Yij{1−h(�0+�1Xij)}1−Yij , fW |X (Wij|Xij;�2)=�−1�{�−1

(Wij−Xij)}, and �(.) denotes the standard normal probability density function. The joint density
of the observed datum in group testing, (Y ∗

i ,Wi ), can be shown to be, for i=1, . . . ,m,

fY ∗,W (Y ∗
i ,Wi ;�,�,�2) = Y ∗

i

ni∏
j=1

∫
1

�
�

(
Wij−x

�

)
fX (x;�)dx+(1−2Y ∗

i )

×
ni∏
j=1

∫
{1−h(�0+�1x)}

1

�
�

(
Wij−x

�

)
fX (x;�)dx (5)

The dependence between the primary regression model and the assumed latent-variable model
within the integrands in (4) and (5) suggests that the choice of the assumed model for X can affect
the likelihood-based inference for �.

For simplicity, we assume herein that �2 is known. In practice, the measurement error variance �2

can be easily estimated when there are replicate measures for each value of the true predictor ([10],
Section 4.4.2). The diagnostic methods discussed in this article still apply with minor modification
when �2 is estimated. Let �=(�T,�T)T denote the vector of all unknown parameters. The central
interest of inference lies in �, and in particular, the maximum likelihood estimator (MLE), �̂. It is
worth pointing out that the likelihood-based inference is consistent if the latent-variable model is
correctly specified or if �2=0.

2.2. The remeasurement method

The remeasurement method [11, 20] exploits the potential dependence of �̂ on �2 implicitly indi-
cated by (4) and (5). More specifically, when the model for the observed data is correct, �̂ is
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consistent for � regardless of the magnitude of �2, whereas in the presence of model misspecifi-
cation, �̂ can be inconsistent with bias depending on �2. To reveal this potential dependence, one
generates the so-called �-remeasured data defined by, for a chosen �>0,

Wb,i j =Wij+
√

��Zb,i j (6)

where Zb,i j are independent standard normal random errors, for b=1, . . . , B, i=1, . . . ,m,
j=1, . . . ,ni . The definition in (6) is in accordance with the assumption of classical additive
measurement error model, which suggests that, conditional on Xi ,Wb,i (�)={Wb,i j (�), j=1, . . . ,ni }
follows the same distribution as Wi ={Wij, j =1, . . . ,ni }, except that the measurement error
variance of the former is equal to (1+�)�2. Using the remeasured data along with the original
binary responses, � is estimated by maximizing the likelihood function, in which �2 is replaced
by (1+�)�2. Denote the resulting MLE for � by �̂(�) and similarly denote by �̂(�) the MLE for
� based on the �-remeasured data. Varying the value of � over a range, [0,�max], and repeatedly
estimating � yields a realization of a random function �̂(�) for �∈[0,�max]. When the model is
correct, �̂(�) is expected to be nearly a constant function, but it can exhibit a nonconstant pattern
in the presence of model misspecification.

Following the above idea, Huang et al. [11, 20] defined a statistic to examine the change of �̂(�)

as � changes. Let � be one of the parameters in �. Huang et al. [11, 20] proposed a t test to detect
model misspecification via the following t statistic, t={�̂(�)− �̂(0)}�̂−1, where �̂(0) denotes the
MLE computed from the observed data and �̂ is an estimator for the standard error of �̂(�)− �̂(0).
A value of t that significantly differs from zero provides evidence of model misspecification. The
formula and derivation of �̂ are provided in [20].

3. AN IMPROVED DIAGNOSTIC TEST

3.1. The combined evidence test

Empirical evidence suggests that, when the sample size (N or m) is small or when the error contam-
ination is substantial, the performance of the remeasurement method can be severely degraded.
We now propose a new test that combines two sources of model-misspecification evidence to raise
the power of detecting model misspecification when only group testing data are observed. In the
sequel, we call the new test the combined evidence test (CET). The rationale of CET is as follows.

In the remeasurement method, the t statistic measures the discrepancy between �̂(0) and �̂(�)

that results from the interaction of model misspecification and the increase in measurement error
variance (from �2 to (1+�)�2). On the other hand, Huang and Tebbs [19] showed that, in the
presence of model misspecification, MLE for � based on the individual testing data, denoted

by �̂
(I )

, can differ significantly from its counterpart estimate based on the induced group testing

data, denoted by �̂
(G)

. They proposed a test for H0 : �̃(I ) = �̃
(G)

, where �̂
(I ) p→ �̃

(I )
as N →∞,

�̂
(G) p→ �̃

(G)
, as m→∞ at the rate of O(N ), and ‘

p→’ stands for ‘converge in probability.’ Evidence
sufficient enough to reject H0 can also be evidence of model misspecification. Heuristically, similar

to the implicit dependence of �̂ on �2 suggested by (4), (5) indicates dependence of �̃
(G)

on the
group size ni (unless all models are correct). It is important that, in the asymptotics for group
testing design, one assumes m→∞ while max1�i�m ni bounded so that the intrinsic dependence
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of �̂
(G)

on ni is retained in limit. Individual testing data can be viewed as a special case of group
testing data with ni =1. Now we have another indicator of model misspecification based on the

discrepancy between �̂
(I )

and �̂
(G)

, which results from the interaction of model misspecification
and the increase in group size (from 1 to ni ). The above two types of discrepancy indicators
are associated with different consequences of model misspecification. Interestingly, they are both
products of some form of information reduction. With N fixed, increasing the measurement error
variance conceals data information, and so does increasing the group size. The new test statistic
in CET, defined next, combines these two distinct evidences in the hope of a more powerful test.

3.2. Algorithm for the new test

Define the new test statistic by, for an unknown parameter � and a prespecified constant �>0,

C�(�)={�̂(G)
(�)− �̂(G)

(0)}2+{�̂(G)
(0)− �̂(I )

(0)}2 (7)

where �̂(G)
(0) denotes the MLE for � based on the observed group testing data, �̂(G)

(�) is the
MLE based on the �-remeasured group testing data, and �̂(I )

(0) is the MLE computed from the
pseudo-individual testing data simulated based on the observed group testing data. It is clear
from Section 2.2 how to obtain the first two estimators in (7). To obtain �̂(I )

(0), we simulate the
pseudo-individual testing data as follows.

We first estimate Xij by its best linear predictor ([10], Section A.4.1) given by

X̂ij=	x + �2x
�2x +�2

(Wij−	x ), i=1, . . . ,m, j =1, . . . ,ni (8)

where 	x and �2x are the mean and variance of the true predictor X , respectively. Note that the
derivation of the best linear predictor for Xij does not depend on the specification of fX (x;�).
Hence, the estimate X̂ij in (8) is the same for all candidate assumed models for X . Carroll et al. [21]
justified the use of best linear estimator for X when the disease is rare in structural measurement
error models. Because 	x and �2x are unknown parameters, we estimate them by the method of
moments and use 	̂x =W =N−1∑m

i=1
∑ni

j=1Wij and �̂2x = �̂2w −�2 in place of 	x and �2x in (8),

respectively, where �̂2w is the sample variance of W . Then we generate the pseudo-individual testing

data of size N according to (1) and (2), where � is evaluated at �̂
(G)

(0), {Xij, j =1, . . . ,ni }mi=1 are
replaced by the best linear predictors, and {Uij, j =1, . . . ,ni }mi=1 are generated from N (0,�2). To
reduce Monte Carlo variation, we repeat the data generation procedure B∗ times, and stack these
N×B∗ realizations in one big pseudo-individual testing data set, based on which the MLE of �

is computed. The resulting estimate is denoted by �̂
(I )

(0), and �̂(I )
(0) is one of the elements.

In order to use C�(�) for testing, the critical points associated with its null distribution are
needed. Here, the null hypothesis is H0 : �̃(I )(0)= �̃(G)(0)= �̃(G)(�). Correct model specification or
�2=0 necessarily implies H0. A large value of C�(�) casts doubt on the veracity of H0. Noting
the sum-of-squares form of C�(�), one may propose to approximate the null distribution of C�(�)

via a scaled 
2, with the scale constant and the degrees of freedom estimated by matching the first
two moments. But the complex correlation of �̂(G)

(0) and �̂(I )
(0) hinders explicit derivation of

the second moment of C�(�). Hence we resort to parametric bootstrap to obtain the approximated
critical points of the null distribution, or equivalently, to obtain an empirical p-value of the
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test. The algorithm of CET, including computing C�(�) and obtaining an empirical p-value, is
described next.

Step 1: Compute the MLE for � based on the observed group testing data, {Y ∗
i ,Wi , i=1, . . . ,m}.

The resulting MLE is �̂
(G)

(0).
Step 2: Generate B sets of remeasured data for a chosen �>0, {Y ∗

i ,Wb,i (�), i=1, . . . ,m}Bb=1.

Compute the MLE for � based on them. This gives �̂
(G)

(�).
Step 3: Compute {X̂ij, i=1, . . . ,m, j =1, . . . ,ni } according to (8).

Step 4: Use �̂
(G)

(0) and X̂ij in place of � and Xij, respectively, to generate B∗ sets of pseudo-
individual testing data according to (1) and (2), each of size N . Denote this collection of pseudo-
individual testing data by {Ŷb∗,i j , Ŵb∗,i j , i=1, . . . ,m, j =1, . . . ,ni }B∗

b∗=1. Compute the MLE for �,

denoted by �̂
(I )

(0), using the pseudo-individual testing data of size N×B∗.
Step 5: Compute the CET test statistic C�(�) in (7) for each element of �.
Step 6: For each q=1, . . . ,Q,

• Simulate X from the estimated assumed model fX {x; �̂(G)
(0)}. Denote the simulated X by

{Xq,i j , i=1, . . . ,m, j =1, . . . ,ni }.
• Generate W according to (1) with Xij replaced by Xq,i j and Uij generated from N (0,�2).

Denote these W by {Wq,i j , i=1, . . . ,m, j =1, . . . ,ni }={Wq,i , i=1, . . . ,m}.
• Generate Y according to (2) with � evaluated at �̂

(G)
(0) and Xij evaluated at Xq,i j , resulting

in {Yq,i j , i=1, . . . ,m, j =1, . . . ,ni }.
• Finally, form the group testing responses after random pooling, {Y ∗

q,i , i=1, . . . ,m}.
The above data generation procedure produces the qth parametric bootstrap sample of group testing
data, {Y ∗

q,i ,Wq,i , i=1, . . . ,m}, for q=1, . . . ,Q.
Step 7: For the qth bootstrap sample, q=1, . . . ,Q, repeat steps 1 through 5 treating

{Y ∗
q,i ,Wq,i , i=1, . . . ,m} as the ‘observed’ group testing data. In the end, one collects Q realiza-

tions of CET statistic, denoted by {C�,q(�)}Qq=1, for each element of �. The empirical p-value for

a test associated with � is defined by the proportion of {C�,q(�)}Qq=1 that exceed C�(�).
The statistic C�(�) in (7) can be easily revised to define a test based on the entire vector of

MLE for � as follows,

C�(�)={�̂(G)
(�)−�̂

(G)
(0)}T{�̂(G)

(�)−�̂
(G)

(0)}+{�̂(G)
(0)−�̂

(I )
(0)}T{�̂(G)

(�)−�̂
(G)

(0)}
which can serve as an omnibus test of model misspecification when one is not interested in the
effect on each estimator of certain model assumption.

Implementation of this algorithm is straightforward. With some price in computation time, we
show in the next section that, CET can realize great gain in power compared with the remeasurement
method.

4. SIMULATION STUDY

We now investigate the performance of CET in comparison with the remeasurement method via
simulation. In the simulation, we apply the remeasurement method to the simulated individual
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testing data and the induced group testing data in turn to show the decrease in power when group
testing data are used, and also to show that CET can achieve much higher power.

The individual testing data are generated according to (1) and (2), where, in (2), we use the probit
link. The integrals in (4) and (5) can be derived explicitly in this case. We choose the true latent-
variable model to be a mixture normal, 0.1N (2.35,0.41)+0.9N (−0.26,0.38), resulting in 	x =0
and �2x =1. The true values of the other parameters are �0=−2, �1=1, and �2=0.25 and 0.33.
The current choices of �2x and �2 result in two levels of reliability ratio ([10], Section 3.2.1),
r =�2x/(�

2
x +�2), which are 0.8 and 0.75. We set N =500 and 800, with ni =5, for i=1, . . . ,m,

leading to m=100 and 160, respectively. In the remeasurement method and CET algorithm, we
let �=1, B= B∗ =50, Q=200, and use 200 Monte Carlo replicates for each scenario. It is
recommended in the SIMEX literature that �∈[1,�max] with �max�3. Because large � gives very
noisy data that can make numerical procedure unstable, we start with small � such as �=1. The
operating characteristics of the remeasurement method and CET are fairly stable over a range of
� where the numerical optimization in obtaining MLE is not too problematic.

For each of the four scenarios with different levels of N and r , we specify two assumed latent-
variable models, a normal and a two-component mixture normal. The first assumed model leads
to a case with model misspecification, allowing one to study the power of the tests; the second
assumed model produces a scenario of correct model specification, allowing one to study the size
of the tests. The MLEs of � when r =0.8 are presented in Table I. The rejection rates of the t
statistic, C�(1), and C�(1) are given in Table II.

Results in Table I reinforce that MLEs for the primary regression parameters can be severely
biased when the model for X is misspecified. And the nonrobustness of MLEs is evident as more
noise is added to W . Also the estimates from the individual testing data tend to disagree with
their counterpart estimates based on the group testing data. The bias does not diminish when
group testing data are used as opposed to the individual testing data. However, when the group
testing data are used, the rejection rates of t are much lower than the same test applied to the

Table I. Monte Carlo averages of MLEs for the regression parameters computed from the
individual testing data and the group testing data across 200 Monte Carlo replicates.

N =500 N =800

Normal Mixture normal Normal Mixture normal

�̂
(I )
0 (0) −2.29 (0.021) −2.02 (0.013) −2.29 (0.016) −2.03 (0.010)

�̂
(I )
1 (0) 1.30 (0.018) 1.02 (0.010) 1.30 (0.013) 1.02 (0.007)

�̂
(I )
0 (1) −2.65 (0.042) −2.03 (0.014) −2.63 (0.026) −2.03 (0.010)

�̂
(I )
1 (1) 1.63 (0.034) 1.03 (0.011) 1.60 (0.021) 1.02 (0.007)

�̂
(G)

0 (0) −2.43 (0.032) −2.04 (0.018) −2.44 (0.025) −2.06 (0.015)

�̂
(G)

1 (0) 1.42 (0.026) 1.04 (0.013) 1.41 (0.019) 1.04 (0.010)

�̂
(G)

0 (1) −3.10 (0.082) −2.03 (0.014) −3.14 (0.089) −2.06 (0.015)

�̂
(G)

1 (1) 1.99 (0.064) 1.03 (0.011) 1.99 (0.062) 1.04 (0.010)

The reliability ratio is 0.8. Numbers in parentheses are the Monte Carlo standard error of the
averages. The true parameter values are �0=−2 and �1=1.
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Table II. Rejection rates of the tests (with �=1) associated with remeasurement method
and CET across 200 Monte Carlo replicates.

N =500 N =800

Normal Mixture normal Normal Mixture normal

Reliability Ratio=0.8
Remeasurement method �0 0.37 0.04 0.92 0.04
(Individual testing data) �1 0.72 0.05 0.99 0.03
Remeasurement method �0 0.01 0.00 0.15 0.02
(Group testing data) �1 0.14 0.01 0.49 0.03
CET �0 0.68 0.02 1.00 0.02
(Group testing data) �1 0.93 0.03 1.00 0.01

� 0.82 0.06 1.00 0.03

Reliability Ratio=0.75
Remeasurement method �0 0.07 0.02 0.50 0.03
(Individual testing data) �1 0.34 0.03 0.75 0.04
Remeasurement method �0 0.01 0.00 0.02 0.01
(Group testing data) �1 0.04 0.01 0.10 0.03
CET �0 0.55 0.01 0.97 0.02
(Group testing data) �1 0.79 0.02 1.00 0.03

� 0.67 0.05 0.98 0.04

individual testing data when the model is misspecified. When N or m is moderate, the power can
be unacceptably low even when the adverse effect of misspecification is severe. In contrast, CET
attains high power to detect the misspecification, and the power can be even substantially higher
than that of the remeasurement method applied to individual testing data. Table II also suggests
that CET confers the nominal 0.05 size.

5. APPLICATION TO FRAMINGHAM HEART DATA

We now apply the remeasurement method and CET to a data set from the Framingham Heart
Study [22], where one of the interest is the relationship between systolic blood pressure and the
risk of coronary heart disease. Even though this is not a group testing application, the availability
of individual response data enables us to compare the performance of CET and the remeasurement
method, with the latter applied to both individual testing data and group testing data. The group
testing data can be simulated from the raw data via random pooling. The data set consists of
N =1615 male subjects who were followed for the development of coronary heart disease over
six examination periods. At each of the second and third examination periods, each subject’s
systolic blood pressure is measured twice during two clinic visits. Additionally, the first evidence
of coronary heart disease within the eight-year follow-up period from the second examination
period is recorded for each subject.

Define Y as the binary indicator of the first evidence of coronary heart disease within this follow-
up period and the true predictor X as the long-term systolic blood pressure, which is unobserved.
We use the first systolic blood pressure reading measured in the second examination as a noisy
surrogate of X , W , and use the first systolic blood pressure reading from the third examination
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Table III. Values of the test statistics (with �=1) for a data from the Framingham Heart
Study when the latent-variable model is assumed to be normal or mixture normal.

Normal Mixture normal

Remeasurement method �0 −2.81 (0.005) 0.52 (0.603)
(Individual testing data) �1 2.87 (0.004) −0.51 (0.608)
Remeasurement method �0 −1.55 (0.122) 0.83 (0.407)
(Group testing data) �1 1.59 (0.113) −0.83 (0.409)
CET �0 0.10 (0.046) 0.01 (0.146)
(Group testing data) �1 0.05 (0.044) 0.01 (0.168)

� 0.15 (0.046) 0.03 (0.280)

Numbers in parentheses are the associated p-values or empirical p-values.

period as a replicate measurement of X so that we can estimate the measurement error variance
�2, as in [10] (Section 5.4.2.1). The prevalence rate of heart disease in this sample is Y ≈0.08,
and �̂2≈0.04, with an estimated reliability ratio of 0.73. The simulated group testing data is
formed by randomly pooling five subjects into a group, producing m=323 groups with ni =5, for
i=1, . . . ,323. The probit link is used in the primary regression model. For the assumed model of
X , we experiment on two distributions, a normal distribution and a two-component mixture normal
distribution. Then we apply CET to the induced group testing data, and use the remeasurement
method with both data sets to assess the appropriateness of each assumed latent-variable model.
In the remeasurement method, we use B=50; in CET, we set B= B∗ =50 and Q=500. In both
methods � is equal to one. The values of the test statistics resulting from two methods and the
associated p-values or empirical p-values are presented in Table III.

Under the assumption of normal latent variable, the tests from the remeasurement method
applied to the individual testing data are highly significant, providing strong evidence of model
misspecification. This finding agrees with the analyses in [11, 19]. However, when the group testing
data is used, the remeasurement method does not find sufficient evidence of model misspecification.
In contrast, using the same group testing data, the tests from CET are significant enough (at
0.05 significance level) to suggest that X is not likely to be normally distributed. Under the
assumption of mixture normal latent variable, none of the tests strongly suggest presence of model
misspecification.

6. DISCUSSION

Regression analysis of group testing data when covariates are measured with error is a natural
extension of the work by Vansteelandt et al. [7, 8] and Xie [9]. A common concern with struc-
tural measurement error models is lack of justification for the assumed latent-variable model.
We proposed a new method, CET, to detect latent-variable model misspecification in structure
measurement error models for group testing data. Compared with the existing method, CET enjoys
a much higher power to detect model misspecification. It is encouraging to observe in simulation
that CET is even more powerful than the remeasurement method applied to individual testing data.
This leads us to believe that, even for individual testing design, CET can be an attractive alternative
to the existing diagnostic methods when N or r is moderate. Of course, in that case, one does not
need to generate pseudo-individual testing data and the CET algorithm can be greatly simplified.
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The proposed test gains high testing power at the expense of computation time. Depending on
the size of Q (the number of bootstrap samples), the CET can take much longer to implement than
the remeasurement method. For instance, in the simulation example in Section 4 with N =800, it
takes a few seconds to implement the remeasurement method once whereas it takes a couple of
minutes for CET with Q=200. This is expected with the paucity of information in group testing
data and it is a price worth paying for such dramatic improvement in testing power.

The idea behind CET is very different from most existing goodness-of-fit tests. It makes use
of two types of model-misspecification evidence as discussed in Section 3.1. Different as they
are, these two types of evidence can be unified in the same framework of information reduction,
which is against the usual intention of striving for maximum use of data information. This counter-
intuitive strategy leads to two indicators of model misspecification, which CET combines to achieve
excellent performance as a diagnostic tool even when rich data information is lacking. The idea
of information reduction has the potential to solve more general model selection problems and
merits further investigation.
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