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We consider the problem of estimating a regression function when a covariate is measured
with error. Using the local polynomial estimator of Delaigle, Fan, and Carroll (2009) as a
benchmark, we propose an alternative way of solving the problem without transforming the
kernel function. The asymptotic properties of the alternative estimator are rigorously stud-
ied. A detailed implementing algorithm and a computationally efficient bandwidth selection
procedure are also provided. The proposed estimator is compared with the existing local
polynomial estimator via extensive simulations and an application to the motorcycle crash
data. The results show that the new estimator can be less biased than the existing estimator
and is numerically more stable.
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1. Introduction

The error-in-covariates problem has received great attention among researchers who
study nonparametric inference for regression functions over the past two decades. Schen-
nach (2004a,b) proposed an estimator of the regression function when the error-prone
covariate is measured twice. Her estimator does not require a known measurement error
distribution. Zwanzig (2007) proposed a local least square estimator of the regression
function, assuming a uniformly distributed error-prone covariate with normal measure-
ment error. Many more existing methods are developed under the assumption of a known
measurement error distribution and an unknown true covariate distribution. Among these
works, many follow the theme of deconvolution kernel pioneered in the density estima-
tion problem in the presence of measurement error (Carroll and Hall 1988; Stefanski
and Carroll 1990). In particular, starting from the well-known Nadaraya-Watson kernel
estimator developed for error-free case (Nadaraya 1964; Watson 1964), Fan and Truong
(1993) formulated the local constant estimator of a regression function using the decon-
volution kernel technique. Generalization of this estimator to local polynomial estimators
of higher orders was achieved by Delaigle et al. (2009) via introducing a complex trans-
form of the kernel function. This transform is the key step that allows for the extension
from the zero-order to a higher-order local polynomial estimator in error-in-variables
problems.
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In this study, we propose a new estimator motivated by an identity that relates the
Fourier transform of the functions to be estimated to the Fourier transform of the coun-
terpart naive functions. Here, a naive estimate refers to an estimate that results from
replacing the unobserved true covariate one would use in the absence of measurement
error with the error-contaminated observed covariate. This identity and the new esti-
mator are presented in Section 2, following a brief review of the estimator in Delaigle
et al. (2009), which we refer to as the DFC estimator henceforth. Sections 3, 4, and 5 are
devoted to studying the asymptotic distribution of the new estimator. The finite sample
performance of our estimator is demonstrated in comparison with the DFC estimator
in Section 6. We summarize our contribution and findings in Section 7. All appendices
referenced in this article are provided in the Supplementary Materials.

2. Existing and proposed estimators

Denote by {(Yj ,Wj), j = 1, . . . , n} a random sample of size n from a regression model
with additive measurement error in the covariate specified as follow,

E(Yj |Xj) = m(Xj), Wj = Xj + Uj , (1)

where Xj is the unobserved true covariate following a distribution with probability den-
sity function (pdf) fX(x), Uj is the measurement error, assumed to be independent of
(Xj , Yj) and follow a known distribution with pdf fU(u), Wj is the error-contaminated
observed covariate following a distribution with pdf fW (w), for j = 1, . . . , n. The prob-
lem of interest in this study is to estimate the regression function, m(x), based on the
observed data. The index j is often suppressed in the sequel when a generic observation
or random variable is referenced.

2.1. The DFC estimator

In the absence of measurement error, the well-known local polynomial estimator of order
p for m(x) is given by (Fan and Gijbels 1996, Chapter 3)

m̂(x) = eT

1S−1
n Tn, (2)

where e1 is a (p+ 1)× 1 vector with 1 in the first entry and 0 in the remaining p entries,

Sn =

Sn,0(x) . . . Sn,p(x)
...

. . .
...

Sn,p(x) . . . Sn,2p(x)

 ,
and Tn = (Tn,0(x), . . . , Tn,p(x))T, in which

Sn,`(x) = n−1
n∑
j=1

(
Xj − x
h

)`
Kh(Xj − x), for ` = 0, 1, . . . , 2p,

Tn,`(x) = n−1
n∑
j=1

Yj

(
Xj − x
h

)`
Kh(Xj − x), for ` = 0, 1, . . . , p,

(3)
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and Kh(x) = h−1K(x/h) with K(·) being a symmetric kernel function and h being the
bandwidth.

Naive implementation of the above estimation in the presence of measurement error
is to replace Xj with Wj , for j = 1, . . . , n, in (3). Clearly, the resulting naive estimator
of m(x), denoted by m̂∗(x), is merely a sensible estimator of the naive regression func-
tion m∗(x) = E(Y |W = x). Following the rationale behind the corrected score method
(Carroll, Ruppert, Stefanski, and Crainiceanu 2006, Section 7.4), Delaigle et al. (2009)
sought some function, denoted by L`(·), that satisfies

E
{

(Wj − x)`L`,h(Wj − x)|Xj

}
= (Xj − x)`Kh(Xj − x), for ` = 0, 1, . . . , 2p, (4)

where L`,h(x) = h−1L`(x/h). The authors derived such function via solving the Fourier
transform version of (4), and showed that L`(x) = x−`KU,`(x), where

KU,`(x) = i−`
1

2π

∫
e−itx

φ
(`)
K (t)

φU(−t/h)
dt, for ` = 0, 1, . . . , 2p, (5)

in which i =
√
−1, φ

(`)
K (t) is the `-th derivative of φK(t) =

∫
eitxK(x)dx, and φU(x) is the

characteristic function of U . Throughout this article, φg denotes the Fourier transform
of a function g if g is a function, and it denotes the characteristic function of g if g is
a random variable. All integrals in this article integrate over either the entire real line
or a subset of it that guarantees the existence of relevant integrals, and we will make
remarks on such subset whenever it is needed for clarity. Now, besides substituting Xj

with Wj in (3), replacing Kh(Xj − x) there with L`,h(Wj − x) gives the DFC estimator,

m̂DFC(x) = eT

1Ŝ−1
n T̂n, where Ŝn and T̂n are similarly defined as Sn and Tn in (2) but

with the elements in the matrices given by
Ŝn,`(x) = n−1

n∑
j=1

(
Wj − x
h

)`
L`,h(Wj − x), for ` = 0, 1, . . . , 2p,

T̂n,`(x) = n−1
n∑
j=1

Yj

(
Wj − x
h

)`
L`,h(Wj − x), for ` = 0, 1, . . . , p.

The transform of K defined in (5) is a brilliant extension of the transform used in
Stefanski and Carroll (1990), based on which a deconvolution density estimator in the
presence of measurement error is constructed, and also in Fan and Truong (1993), where
the local constant estimator of m(x) under the setting of (1) is proposed. In particular,
the estimator in Fan and Truong (1993) is a special case of the DFC estimator with
p = 0.

2.2. An alternative estimator

Deviating from the theme of deconvolution kernel and its extension in (5), we propose
a new estimator that more directly exploits the naive inference as a whole. This di-
rect use of the naive inference is motivated by the following result proved in Delaigle
(2014), m∗(w)fW (w) = (mfX) ∗ fU(w), where (mfX) ∗ fU(w) is the convolution given by∫
m(x)fX(x)fU(w− x)dx. Applying Fourier transform on both sides of this identity, one
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has

φm∗fW (t) = φmfX (t)φU(t), (6)

where φm∗fW (t) is the Fourier transform of m∗(w)fW (w) and φmfX (t) is the Fourier
transform of m(x)fX(x). Immediately following (6), by the Fourier inversion theorem, one
has m(x)fX(x) = (2π)−1

∫
e−itxφm∗fW (t)/φU(t)dt. This motivates our local polynomial

estimator of order p for m(x) given by, assuming the relevant Fourier transforms well
defined,

m̂HZ(x) =
{
f̂X(x)

}−1 1

2π

∫
e−itx

φm̂∗f̂W
(t)

φU(t)
dt, (7)

where f̂X(x) is the deconvolution kernel density estimator of fX(x) in Stefanski and

Carroll (1990), and φm̂∗f̂W
(t) is the Fourier transform of m̂∗(w)f̂W (w), in which m̂∗(w)

is the p-th order local polynomial estimator of m∗(w), and f̂W (w) is the regular kernel
density estimator of fW (w) (Fan and Gijbels 1996, Section 2.7.1), i.e., the naive estimator
of fX(·).

By its appearance, the new estimator in (7) results from applying an integral transform

similar to that in (5) on the naive product m̂∗(·)f̂W (·) rather than on K. It can be shown
(via straightforward algebra omitted here) that, when p = 0, this new estimator is the
same as the DFC estimator, both reducing to the local constant estimator in Fan and
Truong (1993). Other than this special case, m̂HZ(x) differs from m̂DFC(x) in general.
A natural question is how they compare in terms of large sample properties and finite
sample performance. The upcoming three sections illustrate the asymptotic properties
of m̂HZ(x), and demonstration of the finite sample performance is deferred to Section 6.

2.3. Preamble for asymptotic analyses

The majority of the theoretical development presented in Delaigle et al. (2009) re-
volve around properties of the transformed kernel, KU,`(x), which is not surprising
as KU,`(x) is everywhere in the building blocks of their estimator. Because of the
close tie between our proposed estimator and the naive estimators, much of our the-
oretical development builds upon well established results for kernel-based estimators
of regression functions and density functions in the absence of measurement error.
This can be better appreciated by interchanging the order of the two integrals in
(7), assuming that φm̂∗f̂W

(t) is compactly supported on It (to allow the interchange),

m̂HZ(x)f̂X(x) =
∫
m̂∗(w)f̂W (w)(2π)−1

∫
It
e−it(x−w)/φU(t) dtdw. This identity can be re-

expressed more succinctly as

B(x) =

∫
A(w)D(x− w) dw = (A ∗D)(x), (8)

where A(w) = m̂∗(w)f̂W (w), B(x) = m̂HZ(x)f̂X(x), and D(s) = (2π)−1
∫
It
e−its/φU(t)dt.

Note that, in (8),A(w) and B(x) are random processes, and B(x) results from convoluting
A(w) and the non-random function D(s). Because understanding the asymptotic prop-

erties of B(x) = m̂HZ(x)f̂X(x) brings one very close to understanding the properties of
m̂HZ(x), one may first study B(x) as an entirety. And (8) suggests that the question boils
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down to, given the established results for the naive estimators in A(w), which are m̂∗(w)

and f̂W (w), what can be deduced for the counterpart non-naive estimator resulting from
a convolution of A and D? More specifically, how do the moments of A compare with
those of B? And, if A(w) is a Gaussian process asymptotically, is B(x) also a Gaussian
process asymptotically given this particular D? These questions about random process
convolution are of mathematical interest in their own rights besides being the key to
understanding m̂HZ(x).

For clarity of exposition and comparison with the theoretical development and results
for the DFC estimator, we dissect the asymptotic analyses of m̂HZ(x) into three parts,
first asymptotic bias, second asymptotic variance, and third asymptotic normality. Before
starting the analyses, we shall provide two definitions of smoothness of a distribution (Fan
1991a; Fan, 1991b; Fan 1991c) and two sets of conditions to be referenced later, most of
which are also stated in Delaigle et al. (2009).

Definition 1 The distribution of U is ordinary smooth of order b if

lim
t→+∞

tbφU(t) = c and lim
t→+∞

tb+1φ′U(t) = −cb

for some positive constants b and c.

Definition 2 The distribution of U is super smooth of order b if

d0|t|b0 exp(−|t|b/d2) ≤ |φU(t)| ≤ d1|t|b1 exp(−|t|b/d2) as |t| → ∞

for some positive constants d0, d1, d2, b, b0 and b1.

Condition O: For ` = 0, . . . , 2p+ 1, ‖φ(`)
K (t)‖∞ <∞ and

∫
(|t|b+ |t|b−1)|φ(`)

K (t)|dt <∞.

For 0 ≤ `1, `2 ≤ 2p,
∫
|t|2b|φ(`1)

K (t)||φ(`2)
K (t)|dt <∞. And, ‖φ′U(t)‖∞ <∞.

Condition S: For ` = 0, . . . , 2p, ‖φ(`)
K (t)‖∞ <∞, and φK(t) is supported on [−1, 1].

Besides the above conditions, we assume throughout the study that fX(x) > 0 and
φU(t) is an even function that never vanishes. We reach the convolution form in (8) un-
der the assumption that φm̂∗f̂W

(t) is compactly supported on It, where It is a region

that guarantees D(s) well defined. This assumption can be easily satisfied by choosing a
kernel of which the Fourier transform has a finite support. Even without this assumption
the asymptotic properties presented in the following three sections still hold, although
some of the proof need to be revised to use the estimator of its original form in (7). While
acknowledging the overlap between the regularity conditions needed in our asymptotic
analyses and those required for the DFC estimator, we also assume existence of the
Fourier transform of m∗(·)fW (·) and that of m(·)fX(·) to reach (6). To satisfy this as-
sumption, it suffices to have both products in L1, which is not a practically stringent
condition because, in practice, it is often a bounded support over which a regression
function is of interest. Finally, when asymptotic is concerned, we let n→∞, and assume
h→ 0 and nh→∞ as n→∞.

3. Asymptotic bias

We provide in Appendix A derivations of the asymptotic bias of m̂HZ(x) for p ≥ 0.
To better apprehend the distinction between our bias results and those of m̂DFC(x), we
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present in this section a brief derivation of the bias when p = 1.

3.1. Dominating bias when p = 1

Define µ` =
∫
u`K(u) du, for ` = 0, 1, . . . , 2p. Let A(w) = m∗(w)fW (w) and B(x) =

m(x)fX(x) be the non-random counterparts of A(w) and B(x) in (8), respectively. Then,
like (8), we have B(x) = (A ∗D)(x).

Under the conditions in Theorem 2.1 in Stefanski and Carroll (1990), the deconvolution

density estimator f̂X(x) is a consistent estimator of fX(x). Having f̂X(x)/fX(x) converge
to one in probability, we study the dominating terms in the bias, E{m̂HZ(x)−m(x)|W},
via elaborating E[{m̂HZ(x)−m(x)}f̂X(x)/fX(x)|W], where W = (W1, . . . ,Wn). Note that
the latter expectation is equal to

{fX(x)}−1
[
E {B(x)|W} −m(x)f̂X(x)

]
, (9)

where, by equation (1.9) and Theorem 2.1 in Stefanski and Carroll (1990),

f̂X(x) = fX(x) + µ2h
2f

(2)
X (x)/2 + oP (h2). (10)

To derive E{B(x)|W} appearing in (9), we invoke the following two results for kernel-
based estimators in the absence of measurement error (Fan and Gijbels 1996, Chapter
3),

E {m̂∗(w)|W} = m∗(w) + µ2m
∗(2)(w)h2/2 + oP (h2),

f̂W (w) = fW (w) + µ2f
(2)
W (w)h2/2 + oP (h2).

Following these two results, one can show that

E {A(w)|W} = A(w) + µ2M(w)h2/2 + oP (h2), (11)

where M(w) = m∗(w)f
(2)
W (w) + m∗(2)(w)fW (w). Then, assuming interchangeability of

expectation and integration, (8) and (11) imply

E{B(x)|W} = {E(A|W) ∗D} (x) = B(x) + µ2h
2(M ∗D)(x)/2 + oP (h2). (12)

Finally, by (10) and (12), (9) reduces to

µ2h
2

2fX(x)

{
(M ∗D)(x)−m(x)f

(2)
X (x)

}
+ oP (h2), (13)

which reveals the dominating bias of m̂HZ(x) of order h2.
Different from the bias analysis in Delaigle et al. (2009), deriving asymptotic bias here

mostly involve direct use of existing results associated with estimators in the absence of
measurement error, with (8) as the bridge leading one back to our estimator.
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3.2. Comparison with the bias of DFC estimator

By Theorem 3.2 in Delaigle et al. (2009), the dominating bias of m̂DFC(x) is the same
as that of m̂(x), which is µ2h

2m(2)(x)/2 when p = 1. To make the comparison of domi-
nating bias more tractable without being overly restrictive in the shape of regression
functions, we consider regression functions in the form of a polynomial of order r,
m(x) =

∑r
k=0 βkx

k. Furthermore, suppose X ∼ N(0, 1) and U ∼ N(0, σ2
u), resulting

in a reliability ratio (Carroll et al. 2006, Section 3.2.1) of λ = 1/(1 + σ2
u).

Under this setting, the dominating bias in (13) can be derived explicitly for any non-
negative integer r. Instead of comparing the dominating bias associated with the two
estimators directly for an arbitrary r, we focus on studying the number of x’s at which
each dominating bias is zero. The answer to this question for m̂DFC(x) reveals itself
because now m(2)(x) is a polynomial of order r − 2 provided that r ≥ 2, and thus
the dominating bias associated with m̂DFC(x) is zero at no more than r − 2 x’s for
r ≥ 2. In contrast, we show in Appendix A that the dominating bias in (13) reduces
to (µ2h

2 × a polynomial of order r), suggesting that the dominating bias of m̂HZ(x) can
be zero at r x’s. Suppose that the bias of each estimator is continuous in x, which is a
realistic assumption in many applications. Then having two more roots to the equation,
dominating bias = 0, for m̂HZ(x) indicates that this alternative estimator can have two
more regions in the support of m(x) within which m̂HZ(x) is less biased than m̂DFC(x),
where each region is a neighborhood of some root.

For example, when r = 2, clearly the dominating bias of m̂DFC(x) can never be zero.
It is shown in Appendix A that, the dominating bias of m̂HZ(x) is zero at the roots of
the equation 2(λ− 1)β2x

2 + (λ− 1)β1x+ (2λ2 − 2λ+ 1)β2 = 0. With λ ∈ (0, 1), one can
easily show that this quadratic equation has two roots. This is an interesting phenomenon
because m̂DFC(x) has the same dominating bias as that of m̂(x), thus the finding here
implies that m̂HZ(x) can be less biased than the local polynomial estimator obtained from
error-free data, at least asymptotically if not for a given finite sample. As counterintuitive
as it sounds, plenty empirical evidence from our extensive simulation experiments, some
presented in Section 6, suggest that m̂HZ(x) can outperform m̂DFC(x) in terms of bias.
Moreover, we also observe in simulation study impressive gain in accuracy from the new
estimator well beyond the regression function/covariate/measurement error configuration
considered in this subsection.

4. Asymptotic variance

Because

Var{m̂HZ(x)|W} = Var {B(x)|W} f−2
X (x) {1 + oP (1)} , (14)

we focus on deriving Var{B(x)|W} in order to study the asymptotic variance of m̂HZ(x).
Detailed derivations are provided in Appendix B, which consist of five steps. In what
follows, we provide a sketch of the derivations, where we highlight the connection between
our results and the counterpart results in the absence of measurement error, and how
our derivations differ from and relate to those in Delaigle et al. (2009).

7



August 10, 2016 Journal of Nonparametric Statistics DeconvProd(07-28-16)

4.1. Derivations of Var{B(x)|W}

First, we deduce from (8) that Var{B(x)|W} can be formulated as an iterative convolution
of the covariance of A(w) as follows,

Var{B(x)|W} =

∫
D(x− w1)

∫
D(x− w2)Cov {A(w1),A(w2)|W} dw2dw1. (15)

Here, since f̂W (w)/fW (w) converges to 1 in probability under regularity conditions,

Cov {A(w1), A(w2)|W} = Cov{m̂∗(w1), m̂∗(w2)|W}fW (w1)fW (w2){1 + oP (1)}. (16)

This leads us to the next step, where we study Cov{m̂∗(w1), m̂∗(w2)|W}.
In the second step, we view m̂∗(w) as a weighted least squares estimator (Fan and

Gijbels 1996, page 58), and show that

Cov{m̂∗(w1), m̂∗(w2)|W} = eT

1(GT

1W1G1)−1(GT

1Σ12G2)(GT

2W2G2)−1e1, (17)

where Σ12 = diag{Kh(W1 − w1)Kh(W1 − w2)ν2(W1), . . . ,Kh(Wn − w1)Kh(Wn −
w2)ν2(Wn)}, ν2(w) = Var(Y |W = w), and, for k = 1, 2, Wk = diag{Kh(W1 −
wk), . . . ,Kh(Wn − wk)},

Gk =

1 (W1 − wk) . . . (W1 − wk)p
...

...
. . .

...
1 (Wn − wk) . . . (Wn − wk)p

 .
Then we approximate the random quantities on the right hand side of (17) to establish
that

Cov{m̂∗(w1), m̂∗(w2)|W}

=
ν2 {(w1 + w2)/2} fW {(w1 + w2)/2}

nhfW (w1)fW (w2)
eT

1S−1S∗W ,hS
−1e1

{
1 + oP

(
1

nh

)}
,

(18)

where S = (µ`1+`2)0≤`1,`2≤p and S∗
W ,h = (ξ`1,`2((w1 − w2)/2, h))0≤`1,`2≤p, in which, for

`1, `2 = 0, 1, . . . , p,

ξ`1,`2(w, h) =

∫
(u− w/h)`1(u+ w/h)`2K(u− w/h)K(u+ w/h)du. (19)

The result in (18) is a counterpart result for Var{m̂(x)|X}, where X = (X1, . . . , Xn) (Fan
and Gijbels 1996, equation (3.7)).

Third, substituting (18) in (16) gives

Cov {A(w1), A(w2)|W} =
γ {(w1 + w2)/2}

nh
eT

1S−1S∗W ,hS
−1e1

{
1 + oP

(
1

nh

)}
, (20)
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where γ(w) = ν2(w)fW (w). And plugging (20) in (15) yields

Var {B(x)|W} =

∫
D(x− w1)

∫
D(x− w2)×[

γ {(w1 + w2)/2}
nh

eT

1S−1S∗W ,hS
−1e1

{
1 + oP

(
1

nh

)}]
dw2dw1.

(21)

Note that, among the matrices in (21), only S∗
W ,h depends on w1 and w2, of which the

entries are ξ`1,`2(w, h) in (19). This leads us to the fourth step of the derivations, where
we derive∫

D(x− w1)

∫
D(x− w2)γ

(
w1 + w2

2

)
ξ`1,`2

(
w1 − w2

2
, h

)
dw2dw1. (22)

The fourth step entails solving and approximating a multi-dimensional integral, by the
end of which we show that (22) is equal to

{γ(x) +O(h)}
∫
KU,`1(v)KU,`2(v) dv. (23)

Define κ`1,`2(h) =
∫
KU,`1(v)KU,`2(v) dv to highlight the dependence of this integral

on h (since KU,`(v) depends on h according to (5)), and define matrix K(h) =
(κ`1,`2(h))0≤`1,`2≤p. To this end, we can conclude that, by (21) and (23),

Var {B(x)|W} =
γ(x)

nh
eT

1S−1K(h)S−1e1

{
1 + oP

(
1

nh

)}
. (24)

This is where the path of our derivations meets that of Delaigle et al. (2009), as now
we need to incorporate the properties of κ`1,`2(h) as n → ∞ (and thus h → 0), for an
ordinary smooth U and for a super smooth U , respectively, to move forward from (24).
These properties are thoroughly studied in Delaigle et al. (2009) and summarized in their
Lemmas B.4, B.6, B.9, which are restated in Appendix B for completeness. Equipped
with these lemmas, we are ready to move on to the fifth step of the derivations.

By Lemma B.4, for an ordinary smooth U , under Condition O, κ`1,`2(h) = h−2bη`1,`2 +
o
(
h−2b

)
as n→∞, where

η`1,`2 = i−`1−`2(−1)−`2c−2(2π)−1

∫
|t|2bφ(`1)

K (t)φ
(`2)
K (t) dt,

in which b and c are constants in Definition 1. Define S∗ = (η`1,`2)0≤`1,`2≤p, then K(h) =
h−2bS∗+ o

(
h−2b

)
, and thus (24) implies (25) in Theorem 4.1 below. For a super smooth

U , by Lemma B.9, under Condition S, |κ`1,`2(h)| ≤ Ch2b2 exp(2h−b/d2), where b3 =
b0I(b0 < 0.5), b0, b and d2 are constants in Definition 2, and C is some generic non-
negative finite constant appearing in Lemma B.8 in Delaigle et al. (2009). This leads to
(26) in Theorem 4.1 below, which serves as a recap of our findings in this subsection.

Theorem 4.1 When U is ordinary smooth of order b, under Condition O, if nh2b+1 →

9
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∞, then

Var {m̂HZ(x)|W} = eT

1S−1S∗S−1e1
γ(x)

f2
X(x)nh2b+1

+ oP

(
1

nh2b+1

)
. (25)

When U is super smooth of order b, under Condition S, if n exp(2hb/d2)h1−2b3 → ∞,
then Var {m̂HZ(x)|W} is bounded from above by

eT

1S−1S−1e1
Cγ(x)h2b3−1

f2
X(x)n exp(2hb/d2)

+ oP

{
h2b3−1

n exp(2hb/d2)

}
. (26)

4.2. Comparison with the variance of DFC estimator

By Theorem 3.1 in Delaigle et al. (2009), when the distribution of U is ordinary smooth,
under Condition O, if nh2b+1 →∞, then

Var {m̂DFC(x)} = eT

1S−1S∗S−1e1
(τ2fX) ∗ fU(x)

f2
X(x)nh2b+1

+ o

(
1

nh2b+1

)
, (27)

where τ2(x) = Var(Y |X = x). One may notice that the asymptotic variance results
in Theorem 4.1, as well as the asymptotic bias results in Section 3, are conditional on
W whereas (27) is an unconditional variance. The conditional arguments in our moment
analysis originate from the direct use of asymptotic moments of the local polynomial esti-
mator of a regression function in the absence of measurement error, which are conditional
moments given X (Ruppert and Wand 1994). As pointed out in Ruppert and Wand (1994,
Remark 1, page 1351), because the dominating terms in these conditional moments are
free of W, they still have the interpretation of unconditional dominating moments. Once
this is clear, one can see that the difference between the dominating variance in (27)
and that in (25) lies in the distinction between (τ2fX) ∗ fU(x) and γ(x). It is shown in
Appendix B that γ(x) = (τ2fX) ∗ fU(x) + fW (x)Var{m(X)|W = x} ≥ (τ2fX) ∗ fU(x).
Hence, for an ordinary smooth U , the dominating variance of m̂HZ(x) is greater than or
equal to that of m̂DFC(x).

In Section 6, we will investigate via simulations to what extent the implication of
this large sample comparison take effect in the comparison of finite sample variances
associated with the two estimators. Also to be monitored in simulations are mean squared
errors of the two estimators, which is very much of interest now that the asymptotic bias
and variance analyses do not lead to one estimator that wins in both aspects.

5. Asymptotic normality

Under the conditions stated in Theorem 4.1, we show the asymptotic normality of m̂HZ(x)
in Appendix C. The logic behind the proof is similar to that in Delaigle et al. (2009).
More specifically, we first approximate B(x) − B(x) via an average, n−1

∑n
j=1 Ũn,j(x),

where {Ũn,j(x)}nj=1 is a set of independent and identically distributed (i.i.d.) random
variables at each fixed x. Then we show that, for some positive constant η,

lim
n→∞

E|Ũn,1|2+η

nη/2{E(Ũ2
n,1)}(2+η)/2

= 0,

10
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which is a sufficient condition for∑n
j=1 Ũn,j − nE(Ũn,j)√

nVar(Ũn,j)

L→ N(0, 1).

This in turn leads to the asymptotic normality of B(x)−B(x), and further suggests the
asymptotic normality of m̂HZ(x).

To this end, we have answered the questions raised in Section 2.3 regarding the proper-
ties of a random process B(x) resulting from the convolution of another random process
A(w) and the non-random function D(s). We now see that the first two moments of B(x)
are closely related to the the first two moments of A(w) via similar convolutions. Also,
if A(w) is asymptotically Gaussian, then under mild regularity conditions, B(x) is also
asymptotically Gaussian, and many of these conditions can be satisfied by choosing an
appropriate kernel function in A(w).

6. Implementation and finite sample performance

After a thorough investigation of asymptotic properties of the proposed estimator, we
are now in the position to look into its finite sample performance. By the construction
of m̂HZ(x), computing the estimate requires evaluating continuous Fourier transforms
(CFT) and an inverse CFT. In this section, we first describe the algorithm for these
evaluations, then we discuss bandwidth selection. Finally, we present experiments where
we compare our estimator with the DFC estimator under four settings where we simulate
data from the true models with our design of m(x), and one setting where error-prone
data are simulated from a motorcycle-crash data set with the underlying m(x) unknown.

6.1. Numerical evaluations

For an integrable function that maps the real line onto the complex space, f : R → C,
define the CFT of f as

F [f ](t) =

∫ ∞
−∞

f(s)e−itsds, ∀t ∈ R. (28)

In our study, we first approximate the CFT via a discrete Fourier transform (DFT), then
we use the fast Fourier transform algorithm (FFT, Bailey and Swarztrauber 1994) to
evaluate the corresponding DFT. For a sequence of G complex values z = {z0, . . . , zG−1},
the DFT is defined as Dk[z] =

∑G−1
g=0 zge

−i2πkg/G, for k = 0, . . . , G − 1, which can be
easily evaluated using FFT in standard statistical software. The approximation of CFT
using DFT is sketched next.

To prepare for the approximation, one first specifies a sequence of input values and
then specifies a sequence of output values accordingly. More specifically, let {sg =
(g−G/2)α1, g = 0, 1, . . . , G− 1} be the input values for the CFT, where G/2 is an even
integer, α1 = a/G is the increment, and a is chosen such that (28) can be well approx-

imated by
∫ a/2
−a/2 f(s)e−itsds. With the input values specified, the corresponding output

values are {tk = (k−G/2)α2, k = 0, 1, . . . , G−1}, where α2 = 2π/(Gα1). With the input

11
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and output values ready, we approximate the CFT as follows, for k = 0, 1, . . . , G− 1,

F [f ](tk) ≈
∫ a/2

−a/2
f(s)e−itksds

≈
G−1∑
g=0

f(sg)e
−itksgα1

= α1

G−1∑
g=0

f(sg)e
−i(k−G/2)α2(g−G/2)α1

= α1e
i(k−G/2)π

G−1∑
g=0

f(sg)e
iπge−i2πkg/G

= α1(−1)kDk [{(−1)gf(sg)}] .

This step function approximation converges to the truth very rapidly provided that
the Fourier coefficients of f rapidly decrease (Davis and Rabinowitz 1984). The values
of α1 and α2 determine the resolution of the input and output results, respectively.
Comparable resolutions in s and t are typically desired, which can be achieved by setting
α1 = α2 =

√
2π/G. A larger G tends to yield a more accurate approximation of the

CFT. Bailey and Swarztrauber (1994) computed the CFT of the standard normal density
function using G = 216 and achieved the root-mean-squared error of order 10−16. In the
simulations presented in this article, we set G = 216, resulting in α1 = α2 ≈ 0.01, and
both input and output values within [−320.8, 320.8]. In additional simulation studies
where we used a larger G, we found the results essentially unchanged. This algorithm
can be similarly applied to approximate the inverse CFT.

6.2. Bandwidth selection

It has been well acknowledged that the choice of bandwidth is crucial in kernel-based
nonparametric estimation. In our study, we adopt the method of cross-validation (CV)
in conjunction with simulation extrapolation (SIMEX, Carroll et al. 2006, Chapter 5)
as proposed by Delaigle and Hall (2008). To implement this method, one first randomly
divides the observed data, {(Yj ,Wj)}nj=1, into δ subsamples of (nearly) equal size. De-
note by Dk the kth subsample, and Ik the set of subject indices corresponding to the
observations in Dk, for k = 1, . . . , δ. Then one carries out two rounds of δ-fold cross
validation using further contaminated data. In the first round, one generates further
contaminated data according to W ∗b,j = Wj + U∗b,j , for b = 1, . . . , B and j = 1, . . . , n,

where {U∗b,j , b = 1, . . . , B}nj=1 are i.i.d. according to fU(u). Viewing W as the “unobserved

true” covariate values, and m∗(x) = E(Y |W = x) as the target regression function to
be estimated using the “observed” data, {(Yj ,W ∗b,j)}nj=1, for b = 1, . . . , B, one may use

the proposed method to estimate m∗(x). Denote this estimator by m̂∗HZ(x). Now one
carries out the δ-fold cross validation to choose a bandwidth for estimating m∗(x) that
minimizes

CV1(h) =
1

nB

B∑
b=1

δ∑
k=1

∑
j∈Ik

{
Yj − m̂∗(−k)

HZ,b (Wj)
}2
w(Wi,j),

12
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where m̂
∗(−k)
HZ,b (x) is the estimate m̂∗HZ(x) computed using the further contaminated

data excluding Dk, for k = 1, . . . , δ, and w(·) is a suitable weight function. Define

ĥ1 = argminh>0CV1(h). In the second round of δ-fold cross validation, another set
of further contaminated data is produced according to W ∗∗b,j = W ∗b,j + U∗∗b,j , where

{U∗∗b,j , b = 1, . . . , B}nj=1 are i.i.d. according to fU(u), for b = 1, . . . , B and j = 1, . . . , n,

also independent of {U∗b,j , b = 1, . . . , B}nj=1. Similar to the first round, one views

W∗ = {W ∗b,j , b = 1, . . . , B}nj=1 as the “unobserved true” covariate values, and consid-

ers estimating another target regression function m∗∗(x) = E(Y |W ∗ = x) using the
proposed method based on the “observed” data {(Yj ,W ∗∗b,j)}nj=1, for b = 1, . . . , B. Denote

this estimator by m̂∗∗HZ(x). To select a bandwidth for estimating m∗∗(x), one minimizes
the following criterion with respect to h,

CV2(h) =
1

nB

B∑
b=1

δ∑
k=1

∑
j∈Ik

{
Yj − m̂∗∗(−k)

HZ,b (W ∗b,j)
}2
w(W ∗b,j),

where m̂
∗∗(−k)
HZ,b (x) is the estimate m̂∗∗HZ(x) computed using the data {(Yj ,W ∗∗b,j)}nj=1 ex-

cluding Dk, for k = 1, . . . , δ. Define ĥ2 = argminh>0 CV2(h). Finally, one sets ĥ = ĥ2
1/ĥ2

as the bandwidth used in m̂HZ(x) for estimating m(x) based on the original observed
data {(Yj ,Wj)}nj=1.

This bandwidth selection procedure can be computationally cumbersome because, first,
in search of ĥ1 and ĥ2, one evaluates CV1(h) and CV2(h) on a fine grid of candidate
bandwidths; second, as recommended in most SIMEX applications, one needs a B not too
small in order to control the Monte Carlo variability when generating further contami-
nated data and drawing inference based on them repeatedly. To lessen the computational
burden, we propose a procedure to refine the search region of h. Take the first round
of cross validation described above as an example. Recall that, during this round, W is
viewed as the unobserved true covariate values whereas W∗ is the error-contaminated
version of the true covariate values. To narrow down the search region of h when min-
imizing CV1(h), we first find an initial bandwidth, h̃1. In particular, we obtain h̃1 by
minimizing the following approximated mean integrated squared error (MISE) for the
deconvolution kernel density estimator of fW (w) using W∗ (Stefanski and Carroll 1990),

MISE(h) =
1

2πnh

∫
|φK(t)|2

|φU(t/h)|2
dt+

h4

4

∫ {
f ′′W (w)

}2
dw

∫
x2K(x)dx, (29)

where
∫
{f ′′W (w)}2dw can be easily estimated using W. After h̃1 is found, we focus on

L grid points within [0.2h̃1, 2h̃1] when searching for ĥ1. This strategy of making use of

h̃1 to zoom in on a search region for ĥ1 is motivated by the theoretical finding that the
deconvolution kernel regression estimators have the same optimal rates as the deconvo-
lution kernel density estimators. In our extensive trial-and-error simulation experiments
under the model settings described in Section 6.3, we considered a wider search region
that encompasses [0.2h̃1, 2h̃1], and we observed all selected h indeed fall in the above
refined search region. Similarly, in the second round of cross validation where we search
for ĥ2 that minimizes CV2(h), we search across L grid points within [0.2h̃2, 2h̃2], where
h̃2 is chosen by minimizing (29), but, different from the first round, now

∫
{f ′′W (w)}2dw

there is replaced by
∫
{f ′′W∗(w)}2dw, which can be easily estimated using W∗.

One may legitimately question our choice of the multiplicative factors, 0.2 and 2, in the

13
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recommended refined search region of h. For a given application, the safe and conservative
way to choose h usually involves some trial-and-error. We also recommend that, if the
optimal h found within this refined region is too close to one of the boundaries, one
may consider pushing that end of the region out slightly and adjusting the search region
accordingly. Even with this adjustment and seeking an optimal h in the adjusted region
once again, one often still saves some computation time than looking for an optimal
h over a wider region formed not based on h̃. Also observed in simulation studies is
that, with the so-obtained search region of h at each round of cross validation, one
can even use a much smaller B without noticeably compromising the quality of m̂HZ(x)
compared to when a much larger B is used. This refined bandwidth selection procedure
and the algorithm for approximating CFT and inverse CFT described in Section 6.1 are
implemented in an R package called lpme created and maintained by the second author,
which provides both m̂HZ(x) and m̂DFC(x).

6.3. Simulation study

In the simulation experiments, we compare realizations of m̂HZ(x) and m̂DFC(x) (with
p = 1) obtained under the following four model configurations:

(C1) [Y |X = x] ∼ N(m(x), 0.22), where m(x) = 2x exp(−10x4/81), X = 0.8X1 +
0.2X2, X1 ∼ fX1

(x) = 0.1875x2I[−2,2](x), X2 ∼ uniform(−1, 1), and U ∼
Laplace(0, σu/

√
2).

(C2) [Y |X = x] ∼ N(m(x), 0.52), where m(x) = (x + x2)/4, X ∼ N(0, 1), and U ∼
N(0, σ2

u).
(C3) [Y |X = x] ∼ N(m(x), 0.22), where m(x) = x6/30 − 5x4/6 + 9x2/2 + x, X ∼

uniform(−2, 2), and U ∼ Laplace(0, σu/
√

2).
(C4) [Y |X = x] ∼ N(m(x), 0.22), where m(x) = cos(x2) + sin(x), X ∼ uniform(−2, 2),

and U ∼ Laplace(0, σu/
√

2).

Among these configurations, (C1) is considered in Delaigle et al. (2009); (C2) creates a
scenario where the dominating bias of m̂DFC(x) never vanishes since m(x) is a second-
order polynomial; (C3), with m(x) being a higher order polynomial, results in zero dom-
inating bias for m̂DFC(x) within the support of X at ±1; and (C4) has m(x) out of the
polynomial family yet it can be expanded as a polynomial of infinite order. Besides the
model configuration, we also vary the reliability ratio λ = Var(X)/{Var(X) + σ2

u} from
0.7 to 0.95 at increments of 0.05 when generating W. And, under (C2), although the mea-
surement errors are simulated from a normal distribution, we computed the estimates
of m(x) assuming a normal U first, and then we repeated the estimation assuming U
follows a Laplace distribution. This exercise allows us to observe the effects of a misspec-
ified distribution for U on the estimates. Under each simulation setting, 500 Monte Carol
(MC) replicates of sample size n = 500 are generated from the true model of (Y,W ). For
both estimation methods, we used the kernel of which the Fourier transform is given by
φK(t) = (1− t2)8I[−1,1](t).

Denote by m̂[·](x) one of the two estimates under comparison generically. For the
majority of the simulation experiments, in order to mitigate the confounding effect of a
data-driven bandwidth selection method on the quality of m̂[·](x), we computed m̂[·](x)
using the theoretical optimal bandwidth obtained via minimizing an approximate of
the integrated squared error (ISE), ISE =

∫ xU
xL
{m̂[·](x) − m(x)}2dx, where [xL, xU] is

the interval of the true covariate value of interest. This approximated ISE is given by∑M
k=0{m̂[·](xk)−m(xk)}2∆, where ∆ is the partition resolution,M is the largest integer

14
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no greater than (xU − xL)/∆, and xk = xL + k∆, for k = 0, . . . ,M. For a small portion
of the presented simulation experiments, we used the CV-SIMEX bandwidth selection
strategy described in Section 6.2 to select a bandwidth for each of the two estimators.
Note that, when choosing a bandwidth for m̂DFC(x), one should change m̂∗HZ(x) and
m̂∗∗HZ(x) in Section 6.2 to the counterpart estimates m̂∗DFC(x) and m̂∗∗DFC(x), respectively.

We compare the performance of m̂HZ(x) and m̂DFC(x) with regard to the quality of the
entire regression curve estimation over [xL, xU], as well as the quality of the estimation
of m(x) at individual x’s. The quantity used to monitor the overall regression curve
estimation is the approximated ISE. And the quantity collected in the simulation to
assess the quality of m̂[·](x) at a particular point x = x0 is the pointwise absolute error
(PAE) defined by PAE(x0) = |m̂[·](x0) −m(x0)|. To better summarize the comparison
regarding the accuracy and precision of m̂HZ(x) and m̂DFC(x) at each of the M1 points
of x used to approximate the ISE across 500 MC replicates, we computed the following
three summary statistics: first, the pointwise mean absolute error ratio (PmAER) defined
by

PmAER(xk) =
MC average of |m̂HZ(xk)−m(xk)|
MC average of |m̂DFC(xk)−m(xk)|

;

second, the pointwise standard deviation of absolute error ratio (PsdAER) defined by

PsdAER(xk) =
MC standard deviation of |m̂HZ(xk)−m(xk)|
MC standard deviation of |m̂DFC(xk)−m(xk)|

;

and third, the pointwise mean squared error ratio (PMSER) defined by

PMSER(xk) =
MC average of |m̂HZ(xk)−m(xk)|2

MC average of |m̂DFC(xk)−m(xk)|2
.

These quantities are presented in Figures 1–4 for (C1)–(C4), respectively. Figure 5 shows
the counterpart results of Figure 2 under (C2) when it is (incorrectly) assumed that
U follows a Laplace distribution. These five figures depict results obtained when the
theoretical optimal h is used. Lastly, Figure 6 is the counterpart of Figure 4 under (C4)
with h chosen by the CV-SIMEX bandwidth selection procedure with B = 10 and L = 10.
Very similar performance of the two estimates are observed when larger values of B or
L are used in this round of experiment.

When the theoretical optimal bandwidth is used, as in Figures 1–5, m̂HZ(x) outperforms
m̂DFC(x) over the majority region of each considered range of x in regard to both accuracy
and precision. Even though it is shown in Section 4.2 that the dominating variance of
m̂HZ(x) is higher than that of m̂DFC(x) when U is ordinary smooth (such as when U follows
a Laplace distribution), this large sample trend does not take effect for the majority region
of x in these finite sample experiments. The regions where m̂DFC(x) performs better than
m̂HZ(x) in regard to bias, variance, and MSE are usually neighborhoods of the inflection
points of m(x). For instance, under (C3) (see panel (i) in Figure 3), m̂DFC(x) is less
biased than m̂HZ(x) at the small neighborhoods of ±1. It is worth pointing out that the
gain in accuracy and precision from our estimator compared to the DFC estimator is
especially promising at the boundary of x in (C3) and (C4) (see panels (c), (f), and (i)
in Figures 3 and 4). In both cases, data points relatively evenly spread over the domain
of m(x). Different from (C3) and (C4), in (C1), there are more data points near the
boundaries than elsewhere in the domain. Excluding (C2) (since the plotted range of x
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Figure 1. Simulation results under (C1) using the theoretical optimal h. Panels (a) & (d): boxplots of ISEs versus

λ for m̂HZ(x) and m̂DFC(x), respectively. Panels (b) & (e): boxplots of PAE(1) versus λ for m̂HZ(1) and m̂DFC(1),
respectively. Panels (c) & (f): boxplots of PAE(2) versus λ for m̂HZ(2) and m̂DFC(2), respectively. Panels (g) &

(h): quantile curves when λ = 0.85 for m̂HZ(x) and m̂DFC(x), respectively, based on ISEs (dashed lines for the

first quartile, dotted lines for the second quartile, and dot-dashed lines for the third quartile, solid lines for the
truth). Panel (i): PmAER (dashed line), PsdAER (dotted line), and PMSER (solid line) versus x when λ = 0.85;

the horizontal reference line highlights the value 1.

in Figures 2 and 5 is not the entire observed range), (C1) is the only case among all
considered cases here that m̂DFC(x) outperforms m̂HZ(x) near the boundaries in terms
of bias, although m̂HZ(x) is still substantially less variable there, and its MSE is lower
than that of the competing estimator (see panels (c), (f), and (i) of Figure 1). Finally,
contrasting Figure 2 and Figure 5, one can see that both estimators are fairly robust to
the misspecification of the measurement error distribution.

When the bandwidth chosen by the refined CV-SIMEX method is used, as in Figure 6,
both estimates become more variable, with our estimates better than the DFC estimates
over most of the 500 MC replicates. As mentioned earlier, increasing B to a larger value
does not substantially change our estimate. More importantly, using a B smaller than ten
affects our estimator far less than it affects the DFC estimator, which suffers tremendous
numerical instability when B is smaller.
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Figure 2. Simulation results under (C2) using the theoretical optimal h. Panels (a) & (d): boxplots of ISEs versus

λ for m̂HZ(x) and m̂DFC(x), respectively. Panels (b) & (e): boxplots of PAE(0) versus λ for m̂HZ(0) and m̂DFC(0),
respectively. Panels (c) & (f): boxplots of PAE(−1) versus λ for m̂HZ(−1) and m̂DFC(−1), respectively. Panels

(g) & (h): quantile curves when λ = 0.85 for m̂HZ(x) and m̂DFC(x), respectively, based on ISEs (dashed lines for

the first quartile, dotted lines for the second quartile, and dot-dashed lines for the third quartile, solid lines for the
truth). Panel (i): PmAER (dashed line), PsdAER (dotted line), and PMSER (solid line) versus x when λ = 0.85;

the horizontal reference line highlights the value 1.

6.4. Motorcycle data

We now apply the two estimation methods to error-contaminated data sets created based
on the motorcycle crash data from a simulated motorcycle crash designed to test crash
helmets (available under R library MASS). The original data set consists of 133 measure-
ments of head acceleration measured in standard gravity acceleration (gs) at various
times in milliseconds after impact. It is of interest to estimate the underlying head ac-
celeration, Y , as a function of time after impact, X. Having the error-free data in this
example allows us to have a reference estimate of the regression function with which the
estimates based on error-prone data compare.

Following the same treatment of this data set in Silverman (1985), we assume indepen-
dent model errors of the model of Y given X. Based on the original data, we first obtain
the local linear estimate of m(x) using the R function locpol in the locpol package,
with the bandwidth chosen by cross validation (Wang and Jones 1995) implemented by
function regCVBwSelC in the same R package. Compared to the fitted curves using error-
prone data, this m̂(x) can be viewed as the “ideal” estimate in the sense that, intuitively,
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Figure 3. Simulation results under (C3) using the theoretical optimal h. Panels (a) & (d): boxplots of ISEs versus

λ for m̂HZ(x) and m̂DFC(x), respectively. Panels (b) & (e): boxplots of PAE(1) versus λ for m̂HZ(1) and m̂DFC(1),
respectively. Panels (c) & (f): boxplots of PAE(2) versus λ for m̂HZ(2) and m̂DFC(2), respectively. Panels (g) &

(h): quantile curves when λ = 0.8 for m̂HZ(x) and m̂DFC(x), respectively, based on ISEs (dashed lines for the

first quartile, dotted lines for the second quartile, dot-dashed lines for the third quartile, and solid lines for the
truth). Panel (i): PmAER (dashed line), PsdAER (dotted line), and PMSER (solid line) versus x when λ = 0.8;

the horizontal reference line highlights the value 1.

one cannot do better than this with error-contaminated data. We use this ideal curve
as the reference curve in our follow-up experiments, where we contaminate X with sim-
ulated independent Laplace measurement errors to achieve different levels of estimated
reliability ratio λ. At each level of λ, we use the error-contaminated data to estimate the
acceleration curve using the two estimation methods, both assuming Laplace U . This
experiment of curve estimation following data contamination is repeated 500 times at
each level of λ. We obtained very similar results when we contaminated X with simulated
normal U while assuming Laplace U when estimating the curves using both methods.

Figure 7 depicts results from this experiment, including boxplox of ISE at each λ level
across 500 estimates associated with each estimator viewing the ideal curve as the “truth”
of m(x), the fitted curves when λ = 0.95 selected according to quantiles of ISE when the
approximated theoretical optimal h is used for each method, and the counterpart fitted
curves when the refined CV-SIMEX method is used to select h with B = 10 and L = 10.
Using the ideal estimate as the benchmark, our estimate again appears to be less biased
and less variable at all considered levels of error contamination than the DFC estimate.
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Figure 4. Simulation results under (C4) using the theoretical optimal h. Panels (a) & (d): boxplots of ISEs versus

λ for m̂HZ(x) and m̂DFC(x), respectively. Panels (b) & (e): boxplots of PAE(1) versus λ for m̂HZ(1) and m̂DFC(1),
respectively. Panels (c) & (f): boxplots of PAE(2) versus λ for m̂HZ(2) and m̂DFC(2), respectively. Panels (g) &

(h): quantile curves when λ = 0.8 for m̂HZ(x) and m̂DFC(x), respectively, based on ISEs (dashed lines for the

first quartile, dotted lines for the second quartile, dot-dashed lines for the third quartile, and solid lines for the
truth). Panel (i): PmAER(dashed line), PsdAER (dotted line), and PMSER (solid line) versus x when λ = 0.8;

the horizontal reference line highlights the value 1.

And when the refined CV-SIMEX method is used to select h, our estimator suffers less
numerical instability compared to the competing method.

7. Discussion

In this study, we proposed a local polynomial estimator of the regression function when
the covariate is measured with error. The proposed estimator makes direct use of the
naive inference for the regression function and the covariate density as a whole, which
leads to relatively more transparent connections between the properties of the proposed
estimator and those of the inference from error-free data. Using these connections, we
rigorously derived the asymptotic properties of the proposed estimator in comparison
with the estimator proposed by Delaigle et al. (2009). Under very similar regularity
conditions, besides the asymptotic normality that both estimators possess, we compare
the asymptotic bias and variance of these estimators. These large sample comparisons
suggest that the new estimator can be less biased than the competing estimator. Results
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Figure 5. Simulation results under (C2) using the theoretical optimal h, with U -distribution misspecified as

Laplace. Panels (a) & (d): boxplots of ISEs versus λ for m̂HZ(x) and m̂DFC(x), respectively. Panels (b) & (e):
boxplots of PAE(0) versus λ for m̂HZ(0) and m̂DFC(0), respectively. Panels (c) & (f): boxplots of PAE(−1) versus

λ for m̂HZ(−1) and m̂DFC(−1), respectively. Panels (g) & (h): quantile curves when λ = 0.85 for m̂HZ(x) and

m̂DFC(x), respectively, based on ISEs (dashed lines for the first quartile, dotted lines for the second quartile, and
dot-dashed lines for the third quartile, solid lines for the truth). Panel (i): PmAER (dashed line), PsdAER (dotted

line), and PMSER (solid line) versus x when λ = 0.85; the horizontal reference line highlights the value 1.

from extensive simulation study also support this finding.
To implement the proposed method, we thoughtfully refined the CV-SIMEX bandwidth

selection method proposed by Delaigle and Hall (2008) to narrow the search region of h,
which in turn allows us to use a much smaller B in the SIMEX implementation without
compromising noticeably the estimate. This refinement greatly reduces the computational
burden for the otherwise intrinsically cumbersome bandwidth selection procedure due to
the marriage of cross validation and SIMEX.

The comparison between the proposed estimator and the DFC estimator at the bound-
ary of the support of X in our simulation study appears to depend on the distribution of
X. Even though the proposed estimator appears to suffer less numerical instability when
the refined CV-SIMEX method is used to select h compared to the competing method,
it can still be rather challenging to estimate the curve near the boundary. The properties
of our estimator near the boundary deserve further investigation, which can lead to ways
to improve its behavior near the boundary.

Another practically interesting follow-up research topic is to consider a similar strat-
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Figure 6. Simulation results under (C4) using CV-SIMEX bandwidth selection. Panels (a) & (d): boxplots of

ISEs versus λ for m̂HZ(x) and m̂DFC(x), respectively. Panels (b) & (e): boxplots of PAE(1) versus λ for m̂HZ(1)
and m̂DFC(1), respectively. Panels (c) & (f): boxplots of PAE(2) versus λ for m̂HZ(2) and m̂DFC(2), respectively.

Panels (g) & (h): quantile curves when λ = 0.8 for m̂HZ(x) and m̂DFC(x), respectively, based on ISEs (dashed

lines for the first quartile, dotted lines for the second quartile, and dot-dashed lines for the third quartile, solid
lines for the truth). Panel (i): PmAER (dashed line), PsdAER (dotted line), and PMSER (solid line) versus x

when λ = 0.8; the horizontal reference line highlights the value 1.

egy of estimating the regression function when the measurement error distribution is
unknown and replicate measures of the true covariate are available.

Supplemental materials

The supplement to this article contains Appendices A–C referenced in Sections 3, 4, and
5.
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