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Abstract

We develop a Bayesian method that simultaneously registers and clusters functional data of
interest. Unlike other existing methods, which often assume a simple translation in the time
domain, our method uses a discrete approximation generated from the family of Dirichlet
distributions to allow warping functions of great flexibility. Under this Bayesian framework,
a MCMC algorithm is proposed for posterior sampling. We demonstrate this method via
simulation studies and applications to growth curve data and cell cycle regulated yeast genes.
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1. Introduction

An important example of exploratory data analysis, cluster analysis involves grouping
observations that share similar characteristics. In many clustering methods, similarities or
dissimilarities between pairs of observations are measured by some relevant distance metric.
Methods based on dissimilarity measures include hierarchical clustering and the K-medoids
method (Everitt et al., 2011). Another major clustering technique, model-based clustering,
requires statistical assumptions about the observations. A popular model-based method
(Fraley and Raftery, 2002) assumes a multivariate normal distribution for the measurements
and assigns objects to clusters by comparing the posterior group probabilities given the
observations.

If the observations to be clustered are functional data, i.e., repeated measures over time or
some other domain, one may consider fitting a function to each observational unit using some
basis function expansion (Ramsay and Silverman, 2005). Throughout this paper, we use the
B-spline basis (De Boor, 2001). One advantage of functional data analysis over traditional
multivariate analysis is the ability to examine higher-order derivatives of fitted functions.
For example, the first-order derivative of a fitted monotone smoothing function (Ramsay and
Silverman, 2005) measuring children’s height over a given period represents the estimated
growth velocity, and the second-order derivative is the estimated growth acceleration, etc.

Recently, several methods have been developed for clustering functional data. Luan and
Li (2003) use mixed-effect models for time-course gene expression and cluster the curves
by calculating their posterior cluster probabilities via the EM algorithm. This mixed-effect
model is a special case of the model proposed by James and Sugar (2003).

A more challenging yet often-encountered problem is clustering the observations in the
presence of time distortions, also known as phase variation. The time distortion is usually
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modeled by a warping function h(·) (Ramsay and Silverman, 2005), which is a non-decreasing
continuous function defined on the time domain T satisfying the endpoint conditions h(a) =
a, and h(b) = b, where a and b are two endpoints of the time domain. Figure 1 shows
eight warping functions, while the bold dashed line is the 45◦ reference line representing an
identity warp. The cluster structure is blurred by the effect of the time distortions, which
should be eliminated for the purpose of clustering. However, it is not feasible to estimate
the warping functions without knowing the cluster memberships.
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Figure 1: Examples of warping functions

Liu and Yang (2009) propose the SACK model, which is capable of clustering functional
data when a simple time translation is presented. They translate the shift in the time domain
into variation in the measurement space by a first-order Taylor expansion on the B-spline
basis functions. The conditional cluster probabilities are calculated via the EM algorithm.
Also assuming a simple time translation, Sangalli et al. (2010) propose an iterative method
based on a dissimilarity measure called k-mean alignment, which iterates among a template
identification step, alignment and cluster step, and a normalization step until convergence.

To handle more realistic scenarios under arbitrary time warpings, Tang and Müller (2009)
propose a method based on pairwise warping. However, this method assumes the mean curves
in different clusters are well separated vertically to some degree, a condition potentially too
strong for some applications. Zhang and Telesca (2014) propose a hierarchical model for
joint curve clustering and registration. They use a reproducing kernel representation of
phase variability for registration.

In this paper, we develop a Bayesian method for simultaneous clustering and registration
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of functional data when both arbitrary time distortions and vertical shifts are possible. We
model the curves by B-spline basis functions and we approximate the time warping functions
by the cumulative sum of realizations from a Dirichlet distribution (following Cheng et al.,
2013). The posterior cluster memberships are based on a multinomial distribution. Details
of our Markov chain Monte Carlo algorithm are introduced in section 3. Our method of
choosing the number of clusters based on a log likelihood is discussed in section 4. Various
simulation studies indicate that our method is capable of estimating the time warpings and
curve clusters. We apply our method to the well-known Berkeley growth data and compare
our result with that of the SACK model by Liu and Yang (2009) and the kCFC model of
Chiou and Li (2007). We also apply our method to the cell-cycle data collected by Alter
et al. (2000).

2. Model Assumption

In a functional dataset, we assume that there are N objects, on which we take K mea-
surements over time. Given a certain number of repeated measurements, we may model the
response trajectory as a function of time using some basis (such as splines) in the context of
functional data analysis.

We assume that each observation is composed of a signal function and random error
terms, that is,

Y = af(t) + ϵ,

where a ∈ R+ is a stretching/shrinking factor (Zhang and Telesca, 2014), f(t) is the set of
underlying responses at the vector of time points t, and ϵ is an i.i.d. N(0, σ2) error vector.

When our observed data must be aligned, we model the effect of the warping function
associated with Y as Y = f [h(t)] + ϵ, where h is the underlying warping function, and
therefore,

Y|β, γ, σ2, a ∼ MVN(af [h(t)], σ2I).

For the purpose of clustering, we introduce notation for different groups. For a fixed number
of clusters C, we use the vector zi = (zi1, zi2, . . . , ziC) to denote the cluster membership
for the i-th observation. Note that only one element of zi equals 1 and the rest all equal
0. Throughout this paper, we will use B-splines with q basis functions to model the signal
curve. It follows that for a K-dimensional observation Y, we have f(t) ≈ ϕ(t)β, where ϕ
is a K × q matrix of coefficients of the B-spline basis evaluated at each time point. To be
more specific,

ϕ(t) =


ϕ1(t1) ϕ2(t1) . . . ϕq(t1)
ϕ1(t2) ϕ2(t2) . . . ϕq(t2)
. . . . . . . . . . . .

ϕ1(tK) ϕ2(tK) . . . ϕq(tK)

 ,

where ϕi(·) denotes the i-th B-spline basis function, and β is a vector of B-spline coefficients.
We use the same basis functions and assume the same variance σ2 across all groups. Let βi

denote the spline coefficients for the i-th group, i = 1, 2, . . . , C. The discretized mean curve
for the i-th cluster is represented as µi ≈ ϕ[γ(t)]βi, where γ(·) is the discrete approximation
of the corresponding warping function h, which will be discussed in the next section.
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3. Likelihood and Bayesian Analysis

3.1. Prior Distributions on Parameters

To estimate the warping function hi for the i-th observation, a discrete approxima-
tion generated by a Dirichlet distribution is utilized (Cheng et al., 2015). Without loss
of generality, let us assume that the time domain T = [0, 1]. Any general time domain
[T1, T2] may be converted into [0, 1] by the transformation g(t) = (t − T1)/(T2 − T1). Let
γi1, γi2, . . . , γiM ∼ Dir(α), where α is a M -vector of positive parameters.

For the Dirichlet distribution, we have
∑

j γij = 1, which suggests that the linear interpo-
lation of the cumulative sum over γij can serve as a discrete approximation of the continuous
warping hi. The parameter M controls the smoothness of the approximation. A large M
results in a smoother approximation, but more computational burden.

The hyperparameter α can be chosen to affect the “concentration” of the warping func-
tions relative to the 45◦ reference line, which corresponds to no warping. Small values in α
allow more variability in each step of the approximation, and vice versa. Figure 2 shows two
sets of discrete warping functions, each with 20 jumps, generated from Dir(0.8, 0.8, . . . , 0.8),
and Dir(5, 5, . . . , 5), respectively.
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Figure 2: Left: Warping functions from Dir(0.8, 0.8, . . . , 0.8). Right: Warping functions from
Dir(5, 5, . . . , 5).

If observation i is assigned to cluster j, then the cluster membership indicator zi is a
vector of size C containing a 1 in the j-th position and 0 elsewhere. We model zi with a
multinomial distribution, i.e., zi ∼ Multi (1, (p1, . . . , pC)), where p1, . . . , pC are the mem-
bership probabilities satisfying

∑
j pj = 1. We choose a conjugate Dirichlet prior for those

probabilities; i.e., p1, . . . , pC ∼ Dir(η), where η is a vector of hyperparameters.
For the i-th cluster, we assume that βi ∼ MVN(β0i,Γ). It will be seen later that the full

conditional distribution of βi is still multivariate normal. We model the precision parameter
τ = 1/σ2 with a (conjugate) gamma prior, i.e., τ ∼ Gamma(κ, θ).
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For functional observations, one possible source of amplitude variation is composed of
vertical shifts among observations in the same cluster. The left panel in Figure 3 shows a
set of simulated observations from the same cluster with phase variations; the right panel
shows the same observations with additional vertical shifts following Unif (−0.5, 0.5). The
bold curve is the true signal function generating the observations. Our prior model assumes

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2
3

4

clock time

m
ea

su
re

m
en

ts

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2
3

4

clock time

m
ea

su
re

m
en

ts

Figure 3: Left: Simulated data with phase variations. Right: Simulated data with additional vertical shifts
generated from Unif (−0.5, 0.5).

the vertical shift Si for the i-th observation is Unif (−ϕ, ϕ) for some positive ϕ. On the
stretching/shrinking factors ai, we place independent N(1, σ2

a) priors, i = 1, 2, . . . , N.

3.2. Likelihood and Posterior of the Model

Under the preceding model assumptions, for a vector of measurements taken on the same
functional observation, we have

Y = aϕ[γ(t)]β + S+ ϵ,

where S = S ⊗ 1 (⊗ is the Kronecker product) is a vector of size K containing the same
vertical shifts. Hence, the distribution of the i-th observation yi belonging to a specific
cluster in the presence of phase variation is given by

Yi|β, γi, zi, τ, s ∼ MVN

(
aiϕ[γi(t)]

C∏
c=1

βzic
c + si, τ

−1I

)
.

With the above prior distributions on the parameters, the joint distribution of the data
and parameters is

L(β1, . . . ,βC , γ1, . . . , γN , z1, . . . , zN , p1, . . . , pC , τ, s1, . . . , sN , a1, . . . , aN ,y1, . . . ,yN )
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=
N∏
i=1

P(yi|β, zi, γi, p1, . . . , pC , τ, s1, . . . , sN , a1, . . . , aN )
C∏
c=1

P(βc|βc
0,Γ)

N∏
i=1

P(γi|α)

N∏
i=1

P(zi|p1, . . . , pC)P(p1, . . . , pC |η)P(τ |κ, θ)
N∏
i=1

P(si|ϕ)
N∏
i=1

P(ai|σ2a)

∝
N∏
i=1

τK/2 exp

−1

2
τ

[
yi − aiϕ[γi(t)]

C∏
c=1

βzic
c − si

]′ [
yi − aiϕ[γi(t)]

C∏
c=1

βzic
c − si

]
C∏
c=1

exp

{
−1

2
(βc − βc

0)
′Γ−1(βc − βc

0)

} N∏
i=1

M∏
m=1

γαm−1
im

N∏
i=1

C∏
c=1

pzicc

C∏
c=1

pηc−1
c

τκ+1 exp{−τθ}
N∏
i=1

1{−ϕ<si<ϕ}

N∏
c=1

exp

{
−1

2
(ai − 1)2

}

∝ τKN/2 exp

−1

2
τ

N∑
i=1

∥∥∥∥∥yi − aiϕ[γi(t)]

C∏
c=1

βzic
c − si

∥∥∥∥∥
2


C∏
c=1

exp

{
−1

2
(βc − βc

0)
′Γ−1(βc − βc

0)

}
N∏
i=1

M∏
m=1

γαm−1
im

C∏
c=1

p
∑N

i=1 zic+ηc−1
c τκ−1 exp{−τθ}

N∏
i=1

1{−ϕ<si<ϕ} exp

{
−1

2

N∑
i=1

(ai − 1)2

}
.

This joint distribution will be used to obtain the relevant full conditional distributions for the
MCMC algorithm. The details of the sampling algorithm are given in Appendix A.

From experimentation using various simulated data, we note two concerns: (1) The posterior
cluster memberships converge quickly usually after several hundred iterations, and barely change
afterwards; (2) the “converged” cluster memberships depend on the initial values of the Markov
chain. These phenomena are partially due to the fact that the misclassified observations affect
the posterior sampling of coefficients β, and cluster memberships are in turn influenced by those
coefficients in the next iteration.

We need to “force” the individual curves to accept new group membership from time to time to
avoid the vicious circle described above. We adjust the sampling algorithm in the following way: In
the burn-in stage, every I iterations, p% of the curves in each group switch clusters at random (for
practical purposes, we recommend I = 10 to 100, p = 3 to 15). We make these switches only in
the burn-in stage, and thus we use an ordinary MCMC algorithm afterward with the initial values
obtained from the burn-in stage. This switch reduces the influence of initial values. Should the
switch result in a poorer clustering, we note based on experimentation that the chain can adjust
itself and is likely to recover individual classifications of the previous partitions that were correct.

Our proposed method can cluster observations under nonlinear time distortion and vertical
shifting and does not require or estimate any template for the purpose of registration.

4. Choosing the Number of Clusters

Determining the number of clusters is a common problem in cluster analysis. A wide variety of
solutions have been proposed. The “elbow criterion” examines the percentage of variation explained
as a function of the number of clusters, with the number of clusters chosen where when the plot levels
off. The variance ratio criterion (Caliński and Harabasz, 1974) chooses the number of clusters which
maximizes the ratio of the between-cluster and the within-cluster sum-of-squares. For model-based
clustering methods, information criteria such as AIC (Akaike, 1974) and BIC (Schwarz et al., 1978)
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are frequently employed as a measure of clustering quality. These information-theoretic approaches
are based essentially on the log-likelihood and penalize the number of parameters in the model.

For our method, it is simple to calculate the log-likelihood for a given cluster number C∗ at
each iteration. Recall that

Yi|β, γi, zi, τ, si, ai ∼ MVN

(
aiϕ[γi(t)]

C∏
c=1

βzic
c + si, τ

−1I

)
.

The likelihood is given by

L(y1, . . . ,yN |β1, . . . ,βC∗ , γ1, . . . , γN , z1, . . . , zN , s1, . . . , sN , a1, . . . , aN )

=

C∗∏
i=1

ni∏
j=1

(2π)K/2|τ−1I|−1/2 exp

{
−1/2τ ||yj − ajϕ[γj(t)]

C∏
c=1

β
zjc
c − sj)||2

}

= (2π)−K/2
C∗∏
i=1

ni∏
j=1

τK/2 exp

{
−1/2τ ||yj − ajϕ[γj(t)]

C∏
c=1

β
zjc
c − sj)||2

}
.

The log-likelihood follows as

logL(y1, . . . ,yN |β1, . . . ,βC∗ , γ1, . . . , γN ,z1, . . . , zN , s1, . . . , sN , a1, . . . , aN )

= constant +
KN

2
τ − 1

2
τ

C∗∑
i=1

ni∑
j=1

||yj − ajϕ[γj(t)]

C∏
c=1

β
zjc
c − sj)||2.

To be conservative, we start our algorithm with an excessive initial number of clusters (at least 1/4
of the total number of observations) and allow the number of non-empty clusters to decrease across
iterations. Such a decrease occurs when at iteration t, based on the last sampled parameter values,
no objects are assigned to some cluster in the Metropolis-Hastings cluster membership step.

We apply the following procedure to select the number of clusters during the initial (burn-in)
stage of the algorithm, in conjunction with the cluster membership-switching procedure described
at the end of Section 4. After this initial stage, we fix the number of clusters and proceed with
ordinary MCMC, using only the Gibbs step to assign cluster membership to each observation.

When the total number of non-empty clusters decreases from C∗ to C∗−1, we calculate the aver-
age log-likelihood for the most recent block of iterations with C∗ clusters (denoted by avg logLC∗)
and compare it to the average log-likelihood for the most recent block of iterations with C∗ + 1
clusters (denoted by avg logLC∗+1). If avg logLC∗ > avg logLC∗+1, we accept the decrease. Oth-
erwise, we reset the cluster membership to the first iteration in the most recent block of iterations
where the number of clusters is C∗ + 1. The pseudo code is given in Appendix B.

If the number of clusters remains constant for a long period of time, it either achieves the
optimal number of clusters in terms of average log-likelihood, or the algorithm is trapped at the
current number of clusters. Let MC∗ be number of consecutive iterations that the Markov chain
stays at the current number of clusters. If MC∗ is larger than some predetermined threshold, we
compare the average log-likelihood of the current block of iterations where C = C∗ to the average
log-likelihood of the most recent block of iterations with C = C∗ + 1. If the average log-likelihood
is smaller for the current C∗, we reset C = C∗ + 1, and reset the cluster membership to the first
iteration in the most recent block of iterations where the number of clusters is C∗ +1. The pseudo
code is given in Appendix B.
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5. Simulation Study

To illustrate our algorithm’s ability to estimate warping functions and cluster structure, we
generate a simulated dataset and apply our method to it.

On the domain T = [0, 1], we choose 6 B-spline basis functions of order 5 using an equally-
spaced knots sequence. We specify 5 clusters, and thus generate 5 sets of B-spline coefficients of
size 6 distributed as MVN(0, 2× I), which are shown in Table 1. We assign 10, 12, 11, 10, and 13
observations (56 total observations) to each cluster, respectively, and generate 56 warping functions
with 20 steps distributed as Dir(α = (1, . . . , 1)). We assume that 30 equally spaced measurements
on T are taken from each curve. The simulated warping functions are applied to the clock time
and the underlying process times are obtained for each observation. For the i-th observation, we
evaluate the B-spline function at its corresponding process times. A set of stretching/shrinking
factors of size 56 is generated as independent N(1, 0.052) and multiplied to the mean values of the
corresponding observations. Finally, we add white noise with σ2 = 0.01 to each observation at each
time point. A vertical shift generated from Unif (−1, 1) is added to each observation. A plot of
the simulated dataset is shown in the top left panel of Figure 4.

β1 β2 β3 β4 β5 β6

coef 1 2.38 0.46 -2.18 0.39 -2.56 1.81
coef 2 0.38 -2.89 -0.65 3.24 -1.38 4.08
coef 3 0.94 2.50 4.06 -2.79 0.59 -1.18
coef 4 -0.48 1.35 -4.88 2.48 -0.65 0.31
coef 5 -1.12 -0.00 0.83 2.62 4.48 0.70

Table 1: 5 sets of coefficients for the B-spline basis functions

To analyze the simulated data, we use a B-spline representation with 9 basis functions of order
6 with equally spaced knots. Our simulation experimentation indicates the clustering results are
insensitive to the choice of spline basis having reasonable number and order, which is also noted
by Liu and Yang (2009) and James and Sugar (2003). The means β0 of the B-spline are taken to
be 0, and we assume those coefficients are independent with variance 1, i.e., β|β0,Γ ∼ N(0, I).
Based on Appendix A, the posterior samples for those coefficients are dominated by the data
unless we have very strong prior knowledge. For the hyperparameters, we choose κ = 100, θ = 1
for the precision, ϕ = 1 for the vertical shifts, and α = 1 for the warping functions. Following our
algorithm for choosing the number of clusters, we start with C = 30 clusters having equal prior
cluster probabilities.

We perform 20000 iterations, with the first 10000 discarded as burn-in. There are 5859 iterations
in all whose number of non-empty clusters is 5, indicating that C = 5 is the most appropriate
choice for this simulated dataset. To find a good set of starting values, we run another chain
with C = 5 for 20000 iterations, with the first 10000 discarded as burn-in. We switch 15% of
the observations in each cluster every 20 iterations. Finally, a regular MCMC is performed using
the initial values obtained from the last step. The correct classification rate (cRate) (Liu and
Yang, 2009), defined as the maximum proportion of agreements between estimated and true cluster
memberships (among all labeling permutations), is a measure of clustering quality. The cRate of
our simulation study is 100%. We compare the result from joint registration and clustering to other
existing methods using these simulated data. Of methods involving only clustering, the K-means
method (Hothorn and Everitt, 2014), Ward’s hierarchical agglomerative method (Hothorn and
Everitt, 2014), and a model-based clustering method (Fraley and Raftery, 2002) produce a cRate
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of 83.93%, 85.71%, and 89.28%, respectively. To compare our result to a stepwise registration
and clustering approach, we apply the registration method of Ramsay and Silverman (Ramsay and
Silverman, 2005) implemented with the register.fd function in the fda package in R (Ramsay
et al., 2013) to smooth and register the curves. Applied to the resulting registered curves, the
cRate of the above three methods are 62.50%,75%, and 82.14%, respectively.

The lower left panel of Figure 4 displays the true signal curves (gray) and our posterior estimated
signal curves (black). We use means of the posterior samples having 5 clusters as the point estimates
of the B-spline coefficients. The estimated signal curves basically capture the characteristics of the
true signal curve. The lower right panel of Figure 4 shows the estimated warping functions.

To test the convergence of the chain, we use the Heidelberg-Welch stationarity test (Heidelberger
and Welch, 1981). One advantage of this method is that it does not require multiple chains with
different initial values, since our chain starts with the initial values determined by a preliminary
run. For our simulation study, the sample for τ passes the test; 85% of the spline coefficient samples
pass the test; 85% of the stretching/shrinking factor samples pass the test; 95% of the vertical shift
samples pass the test; 93% of the warping function jumps pass the test. Overall, the vast majority
of the posterior samples are considered to be drawn from their stationary distributions.
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Figure 4: (a) A set of 56 simulated observations with 5 clusters. (b) Simulated data with phase variation
removed, with superimposed posterior estimated mean curves (solid black). (c) True mean curves (gray)
and estimated mean curves (black). (d) Estimated warping functions for all 5 clusters.
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The goals of our study are estimating cluster membership and the warping functions associated
with each observation. For a given observation, each step of the discrete warping function is
estimated via the mean posterior jump at that step. The phase variation can be removed by
applying the estimated warping function to the clock time for each observation. For our simulated
dataset, the curves with phase variation removed are shown in the top right panel of Figure 4, from
which we see a clear cluster structure.

The user-chosen value of M determines the degree of discretization of the warping function.
Our philosophy is to achieve a balance between a reasonable approximation and affordable compu-
tational time. As a guide for the choice of M , we proposed the criterion

ψM,α =

N∑
i=1

∫ 1

0
|γM,α

i (t)− t|dt

to measure the concentration of the warping functions (as a function of the dimension M and
concentration parameter α) around the 45◦ reference line. If we change M , we need to adjust
α simultaneously so that the variabilities among the warping functions remain roughly the same
across different choices ofM and α. We may obtain a positive real K by specifying a base Dirichlet
distribution with M =M0 and α = α0, and then letting K = αM .

To inform the choice of M , we run 5 preliminary chains with 5000 iterations on our simulated
data. We hold all parameters and hyperparameters constant except M and α, which we vary.
We choose M = 20, α = 1 as the base distribution and thus K = 20. We examined the cases
of M = 5, 10, 20, 30, 40, and 50. Figure 5 shows a scatter plot of ψ against M . A value of M
around the “elbow” of this plot should be sufficiently large to represent well the true nature of
the distribution of warpings. We see that values of M ≥ 10 are acceptable, since the elbow of
Figure 5 is at M = 10. We still prefer using M = 20 due to more precise approximation and a still
reasonable computing time. Note that the classification rate (cRate) for M = 5 is only 68%, while
all other cases have cRate around 95% even for such a preliminary run.

We conduct a sensitivity analysis by examining the specifications of several hyperparameters.
We investigate the effect of various choices of α, ϕ, and σ2a. We vary the hyperparameters one at a
time, separately multiplying each by 10, then by 0.1. The original values for α, ϕ, and σ2a are 1, 1,
and 0.052, respectively.

Table 2 shows the cRate for different altered choices of hyperparameters. The alteration of
α only results in 1 and 3 incorrect curves, respectively. Using a large shift parameter ϕ = 10
misclassifies 3 curves, while the small shift misclassifies 5 curves. This makes sense since the
conditional posterior distribution of ϕ is a truncated normal bounded at −ϕ and ϕ. The small
choice of σ2a results in a much better cRate.

Based on our simulation study, our method seems to be insensitive to the specification of α.
One exception is for data like the Berkeley accelerations that we present in Section 6, for which all
the curves are similar and the phase variation contributes significantly to the cluster structure. In
such a case, α must be chosen with caution. We would recommend choosing ϕ fairly large rather
than small, since a small ϕ may be too restrictive to sample a proper shift. Finally, we would
recommend choosing σ2a relatively small when uncertain.
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Figure 5: ψ values for different choices of M .

Parameter Value cRate
α1 0.1 94.64%
α2 10 98.21%
ϕ1 0.1 91.07%
ϕ2 10 94.64%
σ2
a1

0.025 87.50%
σ2
a2

0.00025 100%

Table 2: Sensitivity analysis for simulated data

We perform another simulation study based on the previous setup but with only 10 evenly
spaced measurement points. The cRate is 100%, which suggests our method performs well for
sparsely sampled data.

6. Real Data Analysis

6.1. Berkeley Growth Curves

The Berkeley growth data (Tuddenham and Snyder, 1953) measured 54 girls and 39 boys at
31 time points from age 1 to age 18. In the literature, this dataset often serves as a benchmark
to test clustering accuracy. A monotone smoothing spline (Ramsay and Silverman, 2005) can be
applied to the original height data. If we evaluate the corresponding second order derivatives at
these 31 measurement time points, there exists obvious phase variation as shown in Figure 6. The
left panel shows the acceleration data; the right panel shows the acceleration values without first
5 timepoints excluded due to the bias of the function estimation near the boundary (Cheng et al.,
1997). Based on Figure 6, we assume that there are small vertical shifts with ϕ = 1.2 and the
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variation among observations is caused by both phase variation and random error ϵ. We choose
κ = 50 and θ = 10 to accommodate possible amplitude variation, and we choose α = 4 for the
Dirichlet approximation. We model the signal functions with 8 B-spline basis functions of order 6
defined on a equally spaced knot sequence. The prior means of the spline coefficients are generated
as N(1, 4), and the spline coefficients are assumed independent with variance 1. We switch 10
percent of the observations from each cluster every 10 iterations in the burn-in stage. The number
of clusters is fixed at 2 throughout the entire MCMC. The prior cluster probabilities are both 0.5
for males and females. We perform 20000 iterations, with the first 10000 discarded as burn-in.
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Figure 6: Left: original growth acceleration; Right: growth acceleration without first 5 measures.

The clustering results are shown in Table 3; only 5 females are misclassified to the opposite
gender, yielding overall cRate 94.6%. The clustering results are plotted in the second row of
Figure 7; the bold solid curves represent those boys who are misclassified as girls, and the bold
dashed curves represent the misclassified girls. The right panel shows the curves after registration.
For comparison, we apply Ward’s hierarchical clustering on the unregistered data (Hothorn and
Everitt, 2014), which produces a cRate of 75.26% with 23 girls misclassified as boys. A model-based
method (Fraley and Raftery, 2002) produces a 73.08% cRate with 23 girls misclassified as boys.
After registration, the Ward’s method and the model-based method yields a 63.44% and 68.82%
cRate, respectively.

True cluster
Male Female

Cluster I 37 3
Cluster II 2 51

Table 3: Clustering results for Berkeley acceleration curves.
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Figure 7: (a)-(b) Unregistered growth acceleration data for 39 boys (blue dashed) and 54 girls (pink dashed)
with cross-sectional mean superimposed. (c) Registered cluster 1 with 37 boys (blue dashed) and 3 girls
(pink solid). (d) Registered cluster 2 with 51 girls (pink dashed) and 3 boys (blue dashed). (e)-(f) Estimated
warping functions for cluster 1 and cluster 2, respectively.
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We also apply the proposed method to the original height data and velocity data. For the
original height curves, we set α = 100 and σ2a = 10−3, since there is no strong evidence of time
distortion and the vertical shifts constitute the majority of the variation. We put a strong precision-
related hyperparameter with κ = 5×104 and θ = 1 due to the highly precise height measurements.
Our corresponding cRate is 91.4%, while the SACK model (Liu and Yang, 2009) reports a 86%
accuracy rate, and KCFC (Chiou and Li, 2007) reports a 93.35% accuracy rate. For the velocity
curves, we apply our method with α = 10, κ = 50, θ = 10, ϕ = 5 and σ2a = 0.12. The cRate
produced is 84.9%, while Zhang and Telesca (2014) reported a cRate of 83%.

6.2. Elutriation-Synchronized Cell Cycle

The elutriation dataset, collected by Alter et al. (2000), measures ratios of gene expression levels
in log-scale 18 times, at 7-minute intervals. We apply our proposed Bayes method to a subset of 78
gene expressions. According to Spellman et al. (1998), this dataset is classified into five cell-cycle
subgroups: M/G1, G1, S, S/G2 and G1/M. Among these 78 gene expressions, genes 1 to 13, genes
14 to 52, genes 53 to 60, gene 61 to 67, and gene 68 to 78 are classified into these five respective
phases. Note that these different cycle phases are based on biologists’ beliefs, and therefore are
not absolutely true cluster structure. The trajectories of the dataset are shown in the left panel of
Figure 8.

First, we apply our method with five clusters to examine whether the clustering results agree
with the underlying biological process. Table 4 shows that 39 out of 78 genes are classified in their
corresponding cycle phases, highlighted by bold numbers. The gene expressions adjacent to each
other should behave similarly due to adjacent-phase correlation. Therefore, we also highlight in
italics cells adjacent to the diagonal elements. Note that 67 out of 78 gene expression profiles are
clustered on the tridiagonal positions.

Cluster M/G1 G1 S S/G2 G1/M
I (9) 5 1 0 2 1
II (26) 2 19 1 3 1
III (24) 1 15 7 1 0
IV (5) 0 4 0 0 1
V(14) 5 0 0 1 8
total 13 39 8 7 11

Table 4: Clustering results for cell cycle when C = 5

We next allow the algorithm to choose the number of clusters, initially using 20 clusters. The
mode of the number of non-empty clusters is 4, indicating 4 clusters. The clustered gene expression
profiles are shown in Figure 8 (right panel). The aligned curves show a clear cluster structure, and
all curves in the same cluster display roughly the same pattern.
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Cluster M/G1 G1 S S/G2 G1/M
I (9) 5 1 0 2 1
II (38) 0 27 8 2 1
III (13) 1 11 0 1 0
IV (18) 7 0 0 2 9
total 13 39 8 7 11

Table 5: Clustering results for cell cycle when C = 4
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Figure 8: (a) Raw gene expression with cluster structure determined by the biologists. (b) Registered curves
with 4 clusters. (c)-(f) Registered four clusters with their estimated mean curves superimposed.
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7. Discussion

We have developed a Bayesian clustering method for functional observations that works es-
pecially well for data having phase variations. If one believes the phase variations are important
characteristics in distinguishing different clusters or that there is no phase variation, one may spec-
ify large values of α to discourage the warping functions from departing from a 45◦ straight line. In
this case, our method approximates a Bayesian clustering of functional data without registration.

We demonstrate our algorithm’s ability to capture cluster structure and estimate warping func-
tions through simulation studies and real data analyses. Based on our simulation, we observe that
one should pick hyperparameters α carefully when phase variations contribute significantly to the
clustering structure. We recommend large ϕ and small σ2a when uncertain.

By using the Dirichlet warping approach, our method allows fairly arbitrary warping functions
and places no assumptions on the vertical separation among clusters. Thus, the scope of application
of our method may exceed that of existing methods, which make more restrictive assumptions.
Our simultaneous registration and clustering approach simplifies the analysis procedure and should
benefit researchers who cluster functional data.

Appendix A. Sampling Algorithm

Due to the complexity of the proposed model, an analytical posterior derivation is intractable,
so our inference is based on MCMC sampling of the posterior distribution. At iteration t, the
MCMC algorithm is as follows:

• Gibbs Sampling for Cluster Membership zi

The full conditional distribution of zi is

P(zi|rest) ∝ exp

−1

2
τ [t−1]

∥∥∥∥∥yi − a
[t−1]
i ϕ[γ

[t−1]
i (t)]

C∏
c=1

(β[t−1]
c )zic − s

[t−1]
i

∥∥∥∥∥
2


C∏
c=1

(p[t−1]
c )zic .

The cluster membership indicator vector is discrete and follows a multinomial distribution.
The probability of belonging to the j-th cluster is proportional to

exp

{
−1

2
τ [t−1]

∥∥∥yi − a
[t−1]
i ϕ[γ

[t−1]
i (t)] β

[t−1]
j − s

[t−1]
i

∥∥∥2} p[t−1]
j .

Let us denote the above quantity by qj . We have

zi|rest ∼ multi

(
q1∑
j qj

, . . . ,
qC∑
j qj

)
.

• Gibbs Sampling for Cluster Probabilities p1, . . . , pC
After updating the cluster membership, the full conditional distribution of the probabilities
is

P(p1, . . . , pC |rest) ∝
N∏
i=1

C∏
c=1

p
z
[t]
ic
c

C∏
c=1

pηc−1
c

∝
C∏
c=1

p
∑N

i=1 z
[t]
ic +ηc−1

c .
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It follows that

p1, . . . , pC |rest ∼ Dir

(
N∑
i=1

z
[t]
i1 + η1, . . . ,

N∑
i=1

z
[t]
iC + ηC

)
.

• Metropolis-Hastings Algorithm for Sampling Warping γi
We update γi1, . . . , γiM−1. The two endpoints satisfy the conditions γi0 = 0, and γiM =
1−
∑M−1

j=1 γij , because of the constraints of the warping function, and hence are not involved
in the updating procedure. After updating the zi, we propose a value of γ∗ij from a truncated

normal with mean γ
[t−1]
ij and variance σ2γ on [0, γiM + γij ] to guarantee a positive γ∗ij and

γ∗iM . We accept the proposed value with probability
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,

where γ
(j)
i is the warping function with the jump updated through the j-th element, and Φ

is the standard normal CDF.

• Gibbs Sampling for Spline Coefficients βk

After updating the γi’s and zi’s, we use a superscript as the updated membership indicator.

For example, y
(k)
i signifies that we classify observation yi into group k. Furthermore, let n

[t]
k

denote the size of group k at the current iteration. The full conditional of βk is given by
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Therefore,
βk|rest ∼ MVN(A−1C,A−1).

• Gibbs Sampling for Precision τ

19



After updating the γi’s, zi, and βk’s, the full conditional distribution of τ is given by

P(τ |rest) ∝ τKN/2 exp
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It follows that

τ |rest ∼ Gamma
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• Gibbs Sampling for Vertical Shift Si
After updating the γi’s, zi, βk’s, and τ , the full conditional distribution of Si is given by

P(si|rest)

∝ exp
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2
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To simplify the notation, let us define dl as the l-th element of the vector yi−
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The posterior then is

P(si|rest) ∝ exp

{
−1

2
τ [t]

K∑
l=1

(si − dl)
2

}
1{−ϕ<si<ϕ}
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The normal kernel indicates that the posterior distribution of the vertical shift Si is a trun-
cated normal with mean

∑K
l=1 dl/K, and variance 1/(τ [t]K), i.e.,

Si|rest ∼ N

(∑K
l=1 dl
K

,
1

τ [t]K

)
1{−ϕ<si<ϕ}.

Note that for a point estimate of these shifts, we simply require
∑

i si = 0 to ensure identifi-
ability.

• Gibbs Sampling for Stretching/Shrinking Factor ai
After updating the γi’s, zi, βk’s, τ , and si’s, the full conditional distribution of ai is given
by

P(ai| rest)
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For economy of notation, let us denote the l-th element of
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By completing the square, we have

ai| rest ∼ N
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Appendix B. Choosing the Number of Clusters C

The following algorithm determines whether we accept the decrease of the number of clusters
by 1. Let the number of non-empty clusters at iteration t be denoted by C [t].

At iteration t, C [t−1] = C∗ and C [t] = C∗ − 1;
if avg logLC∗ > avg logLC∗+1 then

accept C [t] = C∗ − 1;
else

reset C [t] = C∗ + 1;
reset the cluster membership to the first iteration in the most recent block of
iterations where the number of clusters is C∗ + 1;

end

Algorithm 1: Accept or reject the change of the number of clusters.

The following algorithm determines whether we increase the number of clusters by 1 if the
Markov chain stays at the same number of non-zero clusters for a long period.

At iteration t, C [t] = C∗ and MC∗ > M0;
if avg logLC∗ > avg logLC∗+1 then

keep C [t] = C∗;
else

reset C [t] = C∗ + 1;
reset the cluster membership to the first iteration in the most recent block of
iterations where the number of clusters is C∗ + 1;

end

Algorithm 2: Accept or reject the change the number of clusters when MC∗ > M0.
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