STAT 535 Test 1 Practice Derivation Problems

1. Suppose we have n iid observations Y_1, \ldots, Y_n that follow a gamma distribution with shape parameter known to be 3 and unknown rate parameter $\theta > 0$, i.e., having density

$$f(y|\theta) = \frac{\theta^3}{\Gamma(3)} y^{3-1} e^{-\theta y}, \quad y > 0$$

The analyst wishes to perform inference about the unknown parameter $\theta > 0$.

(a) Write and simplify the likelihood function based on Y_1, \ldots, Y_n .

(b) Suppose the analyst chooses a gamma prior distribution with shape parameter s and rate parameter r (the pdf is given in notes). Explain why this choice is sensible, with respect to the support of θ .

(c) If the analyst believes, before examining the data, that θ has a mean of 3 and a standard deviation of 1, then what are suitable choices for the (hyper)parameters of the gamma prior distribution? Briefly explain.

(d) Under this likelihood and prior, derive the posterior distribution for θ , given Y_1, \ldots, Y_n .

(e) Give an expression for the posterior mean, and express this as weighted average of the MLE (which is $3/\bar{Y}$) and the prior mean.

2. (The Beta-Geometric model) Consider the following new Bayesian model, like in Exercise 5.19 but with n data observations rather than a single observation:

where the Geometric model has pmf $f(y|\theta) = \theta(1-\theta)^{y-1}$ for $y \in \{1, 2, ...\}$. Note that the mean of this geometric distribution is $1/\theta$.

(a) Write and simplify the likelihood function based on Y_1, \ldots, Y_n .

(b) Assume we choose a beta (α, β) prior for θ . Derive the posterior model for θ given observed data y_1, \ldots, y_n . If possible, identify the name of the posterior model and its parameters.

(c) Is the Beta model a conjugate prior for the Geometric data model?

(d) Write an expression for the posterior mean, which could be used as a Bayesian point estimate of θ .